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Abstract We (once again) refute recurring claims about a public-key encryption scheme that allegedly provides
unconditional security. This is approached from two angles: We give an information-theoretic proof of impossibility,
as well as a concrete attack breaking the proposed scheme in essentially no time.
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1 INTRODUCTION
In 2017, Guess Again, a public-key encryption scheme claiming unconditional security against passive eavesdrop-
pers, was submitted to NIST’s call for post-quantum cryptography [2]. Although we publicly broke that scheme
with a fast attack script about three hours after the proposals were published by NIST [6], the authors still have not
acknowledged the attack nor withdrawn their proposal (though NIST deselected it from advancing to the second
round). About seven months later, a paper by a subset of the Guess Again authors describing essentially the same
system, with no mention of our earlier attack, appeared at ICMS 2018 [1]. The abstract of that paper states:

We offer a public-key encryption protocol where decryption of a single bit by a legitimate party is
correct with probability p that is greater than 1/2 but less than 1. At the same time, a computationally
unbounded (passive) adversary correctly recovers the transmitted bit with probability exactly 1/2.

In this note, we show that this claim is false, and in fact impossible to achieve.
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2 THEORY
A typical course in cryptography analyzes the one-time pad early on, deemed a helpful thing to study for multiple
reasons: its tremendous historical significance, as a first basic (but illuminating) example of formally provable
security, and to provide motivation and intuition for related concepts such as stream ciphers. Later in the crypto-
graphic curriculum, public-key cryptography is introduced, and alas, it turns out that the absolute security guarantee
of the one-time pad is unachievable in that setting—computational hardness assumptions must be made to separate
honest users from attackers. This observation was pointed out as early as 1976, in the very paper in which Diffie
and Hellman invented public-key cryptography [3]:

We note that neither public key cryptosystems nor one-way authentication systems can be uncondition-
ally secure because the public information always determines the secret information uniquely among
the members of a finite set. With unlimited computation, the problem could therefore be solved by a
straightforward search.

Notice that this well-known impossibility argument assumes a scheme in which each public key comes from at most
one private key. This is the apparent “gap” in the impossibility proof that the construction of [2, 1] tries to exploit,
by making the scheme probabilistic and incorporating decryption errors (i.e., occasionally decrypting correctly
generated ciphertexts into messages different from the original plaintext). Thus, indeed, the public information does
not always uniquely identify the secret information anymore and the reasoning above does not apply immediately.
However, a similar brute-force argument still works in the presence of decryption errors: Instead of defining a
single unique plaintext, a given ciphertext now determines a likelihood distribution on the set of potential messages,
and the attacker can (using massive but finite computation) simply evaluate this likelihood function and output the
most likely messages as their guess for the plaintext. Lemma 2 below shows that this attacker “never loses”.
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Remark 1. Another viewpoint to approach the question of unconditional public-key cryptography was pursued by
Maurer in the nineties [4]: Using information-theoretical bounds on conditional entropy and mutual information,
he concludes that two parties cannot possibly negotiate a shared secret over a public channel in an unconditionally
secure manner:

[...] if Alice and Bob do not share at least some partially secret information initially, they cannot
generate an information-theoretically secure secret key S [...] if they can only communicate over a
public channel accessible to Eve, even if this channel is authenticated.
This fact can be rephrased as follows: There exists no unconditionally-secure public-key cryptosystem or public-key distribution
protocol. [Footnote]

While, indeed, the machinery from [4] is certainly much stronger than necessary to imply Lemma 2, we will for
simplicity present a more concrete and computational proof similar to the brute-force argument from [3] quoted
above.

2.1 PROOF OF IMPOSSIBILITY
Recall the protocol flow of a public-key encryption scheme:

• Bob generates a key pair (pk,sk) and publishes the public key pk.
• Alice encrypts a message m and sends the ciphertext c = Encpk(m) to Bob.
• Bob decrypts c to obtain a message m′ = Decsk(c).

Here, Encpk() and Decsk() are both probabilistic algorithms. Note that it is not required that any of the involved
procedures be efficient; in fact, in the following, we only have to assume that Encpk will eventually halt almost
surely, i.e., with probability 1, for all messages.

Definition 1. Consider a public-key encryption scheme with the interface above and message space {0,1}, and fix
a key pair (pk,sk).

For any algorithm O taking a ciphertext and returning a single bit, we define the distinguishing advantage

Adv(O) := Pr[O(Encpk(1)) = 1] − Pr[O(Encpk(0)) = 1] ,

where the probabilities are taken over the randomness consumed by O and Encpk.

Remark 2. Typical definitions of the advantage take an absolute value to symmetrize the definition with respect to
distinguishers which are worse than pure guessing—and are thus in fact good at distinguishing. In our scenario,
this would clutter the notation and introduce unnecessary case distinctions, so we stick to the present definition and
point out that a negative advantage can easily be turned into a positive one of equal magnitude by inverting the
distinguisher’s output.

Also note that this definition of advantage equals the “other” choice Pr[O(Encpk(0)) = 0]−Pr[O(Encpk(1))= 0].

Lemma 1. As before, consider a public-key encryption scheme with the interface above and message space {0,1},
fix a key pair (pk,sk), and let O be a (not necessarily deterministic or efficient) algorithm that takes as input a
ciphertext and outputs a single bit.

Then, writing pm(c) := Pr[Encpk(m) = c] for shorthand, it holds that

Adv(O) ≤
∑
c

max
{
0, p1(c) − p0(c)} .

Proof. We first unroll the definition of Adv(O), using linearity of expectations and the fact that Pr[X = 1] = E[X]
when X is a random bit:

Adv(O) = Pr[O(Encpk(1)) = 1] − Pr[O(Encpk(0)) = 1]
= E

[
O(Encpk(1))

]
− E

[
O(Encpk(0))

]
= E

[
O(Encpk(1)) − O(Encpk(0))

]
=

∑
c

(
Pr[Encpk(1) = c] − Pr[Encpk(0) = c]

)
· E[O(c)]

=
∑
c

(
p1(c) − p0(c)

)
· E[O(c)] . (∗)

There are positive and negative terms in the sum (∗), determined by the sign of p1(c) − p0(c). To maximize the
advantage, it is clearly optimal to maximize E[O(c)] when p1(c) > p0(c) and minimize it when p0(c) > p1(c).
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Since O(c) is a random variable on {0,1}, its expectation E[O(c)]must lie in the interval [0;1]; therefore, the value
of Adv(O) is upper bounded by the quantity∑

c

(
p1(c) − p0(c)

)
·

{
0 if p0(c) ≥ p1(c);
1 if p1(c) > p0(c).

This is the same thing as ∑
c

max
{
0, p1(c) − p0(c)} . �

Example. For a public-key encryption scheme on {0,1} with guaranteed correct decryption, Decsk has advantage
one: Since Decsk(Encpk(m)) = m for all m, the definition immediately simplifies toAdv(Decsk) = Pr[1 = 1]−Pr[0 =
1] = 1.

On the other hand, a distinguisher O that ignores its input and simply outputs a uniformly random bit has
advantage zero, since both probabilities in the definition of Adv(O) equal 1/2 in that case.

Lemma 2. As above, consider a public-key encryption scheme with message space {0,1},1 and fix a public key
(pk,sk).

Using Encpk, one can construct a deterministic (but not necessarily efficient) algorithm Apk that achieves the
upper bound proved in Lemma 1. In particular, it is at least as good as Decsk at distinguishing the two random
variables Encpk(0) and Encpk(1), despite not knowing the secret key.

Proof. The argument consists of two parts: Constructing a maximum-likelihood estimator Apk for the message m
from (a single sample of) the random variable Encpk(m), and then showing thatApk achieves the upper bound from
Lemma 1 to conclude that Decsk cannot possibly do better than Apk.

The adversary Apk is constructed as follows: Given a ciphertext c, compute the two probabilities p0(c) =
Pr[Encpk(0) = c] and p1(c) = Pr[Encpk(1) = c] by iterating through all possible values of the randomness
consumed by Encpk and counting how often the ciphertext c is observed for either message. Then simply output the
plaintext guess 0 if p0(c) ≥ p1(c) and the guess 1 if p1(c) > p0(c). Via the assumption that Encpk halts almost surely,
it consumes only a finite amount of randomness almost surely, hence Apk can within finitely many computational
steps approximate p0(c) and p1(c) well enough to determine which one is bigger. Notice that the adversary Apk
indeed implements a maximum-likelihood estimator for the message m ∈ {0,1} from a single encryption Encpk(m)
of m. Moreover, the algorithm Apk achieves the upper bound from Lemma 1 (in fact, it is crafted precisely to do
so), hence no Decsk can ever do better than Apk. �

The claims from [2, 1] amount to the assertion that knowledge of the secret key permits honest users to succeed
in decrypting with probability

Pr[Decsk(Encpk(m)) = m] > 1/2 ,

while at the same time, for all adversaries Apk given only the public key,

Pr[Apk(Encpk(m)) = m] = 1/2 .

These statements imply Adv(Decsk) > 0 and Adv(Apk) = 0, which is impossible due to Lemma 2. Essentially,
the only way to make sure Apk cannot do better than guessing is to transmit no information whatsoever about the
plaintext in the ciphertext, but then Decsk must also resort to plainly guessing what the encrypted message was
supposed to be, which is utterly useless; in fact, it entirely defeats the purpose of communication as defined by
Shannon in his seminal paper [7]: “The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.”

Remark 3. The contents of this section can equivalently be phrased in terms of statistical distances: The absolute
value of Adv(O) is the distance between the output distributions of O when given encryptions of either 0 or 1.
Lemma 1 is the probability preservation property. Lemma 2 is the result that for any two distributions there exists
an optimal distinguisher, i.e., one that achieves the information-theoretic bound given by the statistical distance.

3 PRACTICE
We now show how the concrete proposal Guess Again works, how it is broken in practice, and where exactly the
flaw in the authors’ security argument lies.

1The restriction to one-bit messages does not sacrifice any generality: Any message space of cardinality at least two can represent single
bits, and conversely, bit strings suffice to encode any other message space.
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Table 1: Biases in a depending on the secret random choices during encryption. Notice in particular that the
decision whether the message bit is flipped or not is correlated with the bias in a.

A ≶ B t ← { f ,g} bias in a c

< f slightly biased towards B m
< g strongly biased towards B 1 ⊕ m
> f no significant bias 1 ⊕ m
> g slightly biased away from B m

We stress that demonstrating a concrete efficient attack is still relevant even when it is already known that
information-theoretical security is impossible: The attacker from the proof is inefficient, and it could happen that
in fact all attacks are inefficient, as is conjectured for some existing encryption schemes.

Note that the newer paper [1] does not use the name “Guess Again”, nor does it mention the NIST process [5].
Since the proposals in [2] and [1] are essentially identical, we shall use the name Guess Again to refer to both, and
point out differences where relevant.

3.1 DESCRIPTION OF GUESS AGAIN
The Guess Again scheme makes use of random walks. For each x ∈ Z and k ≥ 0, we thus define the random

variable walk(x, k) as the end point of a random walk of k steps, each adding either +1 or −1 with probability 1/2,
starting from x. Write s← S for sampling s uniformly at random from a finite set S.

• Parameters: Positive integer constants n, f ,g, h. [1] recommends n = 256, g = h = 2000, and f = 100000.
Note [2] suggested f = 120000 instead.

• Key generation: Bob picks a private key b ← {0, ...,n−1} and computes the public key B := walk(b, h). If
B ≥ n − 1, Bob starts over with a new b.

• Encryption: Alice samples values (a, t, δ) ← {B, ...,n−1} × { f ,g} × {± 1
2 } and computes A := walk(a, t)+ δ.

She repeats this step “sufficiently often” and groups the resulting pairs (a, A) into four lists L<
f , L<

g , L>
f , and

L>
g , according to the condition A ≶ B and the value of t.

She then selects r ← {<,>} and s ← { f ,g}, and a pair (a0, A0) ← Lr
s . Her ciphertext equals (m,a0) if

(r, s) ∈ {(<, f ), (>,g)} and (1 ⊕ m,a0) else.2

Upon receiving such a ciphertext (c,a0), Bob outputs either the bit m′ = c when b < a0, or m′ = 1 ⊕ c when
b ≥ a0.

It is stated in [1, Section 6] that (for the example parameters above) this protocol has a ≈ 0.55 chance of transmitting
a bit correctly, i.e., achieving m′ = m.

3.2 BIASES IN THE CIPHERTEXTS
The security argument in [1, Section 4.2] states that the bit m is flipped with probability 1/2 during the

encryption procedure, hence c contains no information whatsoever about the plaintext bit m. Moreover, the
additional component a0 of the ciphertext is uniform in a public range {B, ...,n−1}, hence also does not leak
information about m. Probabilistically speaking, these observations can be phrased as the (indeed true) fact that
the distributions of the values c and a0 are both independent of the plaintext m.

However, the crucial flaw in the security argument of Guess Again is that the joint distribution of (c,a0) is not
independent of m. To see this, notice that those values of a ← {B, ...,n−1} that lead to A < B must, on average,
be closer to B than those that lead to A > B. Moreover, this tendency clearly depends on the chosen number of
steps of the random walk: Shorter walks lead to closer nodes; in fact, the expected (absolute) distance travelled
by a simple random walk of k steps is Θ(

√
k). Therefore, there is a probabilistic dependency between the choice

of t ∈ { f ,g} and the condition A ≶ B. Working out the distribution of a conditioned on the choice of A ≶ B
and t ← { f ,g} is not particularly difficult, but rather tedious, hence we only give qualitative simulation results
showing the distribution of a relative to each of the four choices. See Figure 1 and Table 1. The bottom line is that
“flipped” ciphertexts are smaller on average, which is precisely the leakage exploited by the (simple) attack script
in Section 3.3.

2The bit-flipping description deviates from [2, 1], which uses the equivalent viewpoint of labelling intervals instead.
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1% –

B

–

n

–Approximate distribution of a when A < B and t = f .

1% –

B

–

n

–Approximate distribution of a when A < B and t = g.

1% –

B

–

n

–Approximate distribution of a when A > B and t = f .

1% –

B

–

n
–Approximate distribution of a when A > B and t = g.

1% –

B

–

n

–Approximate distribution of a when c = m.

1% –

B

–

n

–Approximate distribution of a when c = 1 ⊕ m.

Figure 1: Approximate distribution of a conditioned on the property A ≶ B and the number of steps t, where
(n, f ,g) = (256,100000,2000) and B has been fixed as n/2. (Similar graphs result from other public keys.) The
mean of each distribution is marked by a red vertical line. For efficiency reasons, we approximated the distribution
of the random walks walk(x, k) by the normal distribution N(x, k). Each of these histograms contains one million
data points.
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Algorithm 1: Breaking Guess Again with simple statistical analysis.

Input: a list of Guess Again ciphertexts
[
(c(1),a(1)0 ), ..., (c

(`),a(`)0 )
]
encrypting the same bit m ∈ {0,1}, such

that {c(i) | i ∈ {1, ..., `}} = {0,1}.
Output: the bit m, correct with high probability when ` is large.
Initialize empty lists X and Y .
for i ∈ {1, ..., `} do

if c(i) = 0 then append a(i)0 to X , else append a(i)0 to Y .

Compute the average values x :=
∑

X/ |X | and y :=
∑

Y/ |Y |.
if x ≥ y then return 0 else return 1.

l = 4000

def recover_bit(ct, bit):
assert bit < len(ct) // l
ts = [struct.unpack(’BB’, ct[i:i+2]) for i in range(l*bit, l*(bit+1), 2)]
xs, ys = [a for a, b in ts if b == 1], [a for a, b in ts if b == 2]
return sum(xs) / len(xs) >= sum(ys) / len(ys)

def decrypt(ct):
res = sum(recover_bit(ct, b) << b for b in range(len(ct) // l))
return int.to_bytes(res, len(ct) // l // 8, ’little’)

Figure 2: Excerpt of the attack script sent to NIST’s mailing list [6].

3.3 THE ATTACK
Recall from Section 3.1. that a Guess Again ciphertext consists of a tuple (c,a0) with c a single bit and a0 a

value between B and n−1. The bit c is either equal to the message bit m, or it is negated. In Section 3.2, we showed
that the choice between c = m and c = 1 ⊕ m influences the distribution of the corresponding value a0; concretely,
a0 is biased towards B when c = 1 ⊕ m. This means we can mount a distinguishing attack by comparing a0 to its
expected values relative to the assumptions c = m and c = 1⊕m, and output a guess according to which distribution
a0 is more likely to come from. This distinguisher has a better than 1/2 chance of identifying the message given a
ciphertext.

When more than one ciphertext encrypting the same message is sent at a time to boost the success rate, as was
done in [2], accumulating this leakage allows for a very reliable distinguisher (Algorithm 1): Group the ciphertexts
by their bit c, compute the average value of a0 in each group, and compare. Output the c with the bigger average a0
as a guess for m. This approach is implemented in the script below and works on 100% of the example ciphertexts
included in [2].

In [1, Section 5], the authors—perhaps in response to, but with no mention of, our earlier attack—warn
against naïvely encrypting the same bit multiple times, foreshadowing that “statistical attacks [...] may be possible”.
However, if the construction truly were information-theoretically secure, any number of repetitions would never
leak information (assuming uncorrelated randomness), hence acknowledging the reality of “statistical attacks” is
clearly incompatible with their claim of unconditional security upheld elsewhere in the paper.

Algorithm 1 gives a straightforward method to exploit this leakage. More practically, Figure 2 shows the
essential part of our Python implementation [6] which was sent to NIST’s pqc-forum mailing list on December
21st, 2017, not including boilerplate code to parse and break the example ciphertext files contained inGuess Again’s
NIST submission package.

Note that this script does not implement the adversary from Lemma 2; it does not brute-force anything and in
fact runs in time linear in the input size. We remark that it is certainly possible to tweak Guess Again in such a way
that any concrete attack would be (much) less efficient, but the fundamental impossibility of information-theoretic
security remains. Therefore, we conclude that the security claims of Guess Again are both theoretically impossible
as well as demonstrably broken in practice.
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