First Report of the Spiral Nematode Rotylenchus incultus (Nematoda: Hoplolaimidae) from Cultivated Olive in Tunisia, with Additional Molecular Data on Rotylenchus eximius

Ilhem Guesmi-Mzoughi, ${ }^{1}$ Antonio Archidona-Yuste, ${ }^{2}$ Carolina Cantalapiedra-Navarrete, ${ }^{2}$ Hajer Regaieg, ${ }^{1}$ Najet Horrigue-Raouani, ${ }^{1}$ Juan E. Palomares-Rius, ${ }^{2}$ and Pablo Castillo ${ }^{2}$

Abstract

Spiral nematode species of the genus Rotylenchus have been reported on olive (Olea europaea L.) in several Mediterranean countries (Castillo et al., 2010; Ali et al., 2014). Nematological surveys for plant-parasitic nematodes on olive trees were carried out in Tunisia between 2013 and 2014, and two nematode species of Rotylenchus were collected from the rhizosphere of olive cv. Chemlali in several localities of Tunisia (Tables 1,2). Twenty-two soil samples of 3 to 4 kg were collected with a shovel from the upper 50 cm of soil from arbitrarily chosen olive trees. Nematodes were extracted from $500 \mathrm{~cm}^{3}$ of soil by centrifugal flotation method (Coolen, 1979). Specimens were heat killed by adding hot 4% formaldehyde solution and processed to pure glycerin using the De Grisse's (1969) method. Measurements were done using a drawing tube attached to a Zeiss III compound microscope. Nematode DNA was extracted from single individuals and PCR assays were conducted as described by Castillo et al. (2003). Moderate-to-low soil populations of these spiral nematodes were detected ($5.5-11.5,1.5-5.0$ individuals $/ 500 \mathrm{~cm}^{3}$ of soil, respectively). This prompted us to undertake a detailed morphological and molecular comparative study with previous reported data. Morphological and molecular analyses of females identified these species as Rotylenchus eximius Siddiqi, 1964, and Rotylenchus incultus Sher, 1965. The morphology of R. eximius females (five specimens studied) was characterized by having a hemispherical lip region clearly off set, with four to five annuli, body without longitudinal striations, lateral fields areolated in the pharyngeal region only, stylet 32 to $36 \mu \mathrm{~m}$ long, and broadly rounded tail. The morphology of R. incultus females (51 females and 16 males; Table 2) was characterized by a hemispherical lip region with the basal annulus subdivided by irregular longitudinal striations, with three, rarely four annuli; stylet 21.5 to $27.5 \mu \mathrm{~m}$ long, female tail hemispherical with terminus regularly annulated; phasmids anterior to anus level (3-6 annuli above). The morphology of the isolated nematodes agreed with previous descriptions of R. eximius (Siddiqi, 1964; Castillo and Vovlas, 2005) and R. incultus (Sher, 1965; Castillo and Vovlas, 2005; Vovlas et al., 2008), respectively. A single individual was used for DNA extraction. Primers and PCR conditions used in this research were specified in Cantalapiedra-Navarrete et al. (2013), and a single amplicon of 800, 1,100, and 450 bp was obtained and sequenced for D2 to D3, ITS1, and cytochrome c oxidase subunit 1 (coxI), respectively. Sequence alignments for D2 to D3 (KX669231-KX669233), ITS1 (KX669238-KX669240), and coxI (KX669244-KX669245) from R. eximius, showed 99\% to $97 \%, 98 \%$ to $94 \%, 93 \%$ similarity to other sequences of R. eximius deposited in GenBank (EU280794-DQ328741, EU373663EU373664, JX015401-JX015402, respectively). Similarly, D2 to D3 (KX669234-KX669237), ITS1 (KX669241-KX669243), and coxI (KX669246-KX669249) sequence alignments from R. incultus, showed $99 \%, 99 \%$ to $95 \%, 99 \%$ to 90% similarity, respectively, to other sequences of R. incultus deposited in GenBank (EU280797, EU373672-EU373673, JX015403, respectively). The best fitted model of DNA evolution was obtained using jModelTest v. 2.1.7 (Darriba et al. 2012) with the Akaike information criterion. BI analyses were performed under the general time reversible (GTR) with invariable sites and a gamma-shaped distribution of substitution rates (GTR + $\mathrm{I}+\mathrm{G}$) model for ITS1 and coxI. Phylogenetic analyses of ITS1 and coxI using Bayesian inference (BI) placed R. eximius and R. incultus from Tunisia in subclades that included all R. eximius and R. incultus sequences deposited in GenBank (Fig. 1), which agrees with previous results (Cantalapiedra-Navarrete et al., 2013). Morphology, morphometry, and molecular and phylogenetic data obtained from these samples were consistent with R. eximius and R. incultus identification. To our knowledge, this is the first report of R. incultus in Tunisia. Consequently, all these data suggest that spiral nematode species of the genus Rotylenchus are predominant in olive as previously reported in other Mediterranean areas (Ali et al., 2014).

Key words: Bayesian inference, detection, new geographic record, phylogeny, spiral nematodes.

Literature Cited

Ali, N., Chapuis, E., Tavoillot, J., and Mateille, T. 2014. Plant-parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: A review. Comptes Rendus Biologies 337:423-442.

[^0]Cantalapiedra-Navarrete, C., Navas-Cortés, J. A., Liébanas, G., Vovlas, N., Subbotin, S. A., Palomares-Rius, J. E., and Castillo, P. 2013. Comparative molecular and morphological characterisations in the nematode genus Rotylenchus: Rotylenchus paravitis n. sp., an example of cryptic speciation. Zoologischer Anzeiger 252:246-268.

Castillo, P., Nico, A., Navas-Cortés, J. A., Landa, B. B., JiménezDíaz, R. M., and Vovlas, N. 2010. Plant-parasitic nematodes attacking olive trees and their management. Plant Disease 94:148-162.

Castillo, P., and Vovlas, N. 2005. Bionomics and identification of the genus Rotylenchus (Nematoda: Hoplolaimidae). Leiden, Netherlands: Brill Academic Publishers, pp. 377.

Castillo, P., Vovlas, N., Subbotin, S., and Troccoli, A. 2003. A new rootknot nematode, Meloidogyne baetica n. sp. (Nematoda: Heteroderidae), parasitizing wild olive in Southern Spain. Phytopathology 93:1093-1102.

Coolen, W. A. 1979. Methods for extraction of Meloidogyne spp. and other nematodes from roots and soil. Pp. 317-329 in F. Lamberti and C. E. Taylor, eds. Root-knot nematodes (Meloidogyne species). Systematics, biology, and control. New York: Academic Press.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9:772.

De Grisse, A. T. 1969. Redescription ou modifications de quelques techniques utilisées dans l'étude des nématodes phytoparasitaires. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 34:351-369.

Sher, S. A. 1965. Revision of the Hoplolaiminae (Nematoda) V. Rotylenchus Filipjev, 19361). Nematologica 11:173-198.

Siddiqi, M. R. 1964. Rotylenchus eximius n. sp. (Nematoda: Hoplolaiminae) found around almond roots in Tunisia. Nematologica 10:101-104.

Vovlas, N., Subbotin, S. A., Troccoli, A., Liébanas, G., and Castillo, P. 2008. Molecular phylogeny of the genus Rotylenchus (Nematoda, Tylenchida) and description of a new species. Zoologica Scripta 37:521-537.

Table 1. Rotylenchus eximius Siddiqi, 1964 and R. incultus Sher, 1965 sampled in olive cv. Chemlali in Tunisia and sequences used in this study.

Species	Sample code	Locality	D2-D3	ITS1
R. eximius	P03N68	Abida, Kairouan	KX669231	KX669238
R. eximius	P11R34	Sbitla, Kasserine	KX669232	KX669239
R. eximius	P4AA10	Abida, Kairouan	KX669233	KX669240
R. incultus	P11R08	Sbitla, Kasserine	KX669234	KX669241
R. incultus	P1AA11	Chott-Mariem, Sousse	KX669235	KX669245
R. incultus	P04R35	Abida, Kairouan	KX669236	KX669246
R. incultus	P03N70	Abida, Kairouan	KX669237	KX669242

(-) Not obtained. (*) Sequenced population but not deposited in GenBank database because of their similarity with other of the species.

Fig. 1. Phylogenetic relationships within Rotylenchus species found in Tunisia and other species from GenBank. Bayesian 50% majority rule consensus trees as inferred from ITS1 and coxI sequences alignments under the GTR + I + G model. Posterior probabilities more than 0.70 are given for appropriate clades. Newly obtained sequences in this study are in bold. Scale bar $=$ expected changes per site.
Table 2. Morphometrics of Rotylenchus incultus Sher, 1965 from olive cv. Chemlali in Tunisia. ${ }^{\text {a }}$

Characters/ratios ${ }^{\text {b }}$	$\frac{\text { Abida, Kairouan (P3) }}{\text { Female }}$	Abida, Kairouan (P4)		Sbitla, Kasserine (P11)		Chott-Mariem, Sousse (P1)	
		Females	Male	Females	Males	Females	Males
n	1	10	1	19	5	21	10
L	833	$789 \pm 34(739-833)$	778	$850 \pm 65.5(755-983)$	$799 \pm 55.4(728-850)$	$942 \pm 67.7(828-1,061)$	834 ± 81.2 (683-983)
a	32.7	$28.6 \pm 1.9(26.2-31.8)$	29.2	$31.2 \pm 2.7(27.1-36.6)$	34.0 ± 3.0 (29.6-36.2)	$34.3 \pm 2.5(29.6-40.0)$	37.3 ± 2.7 (32.4-41.0)
b	7.1	$7.3 \pm 0.3(6.8-7.8)$	7.5	7.2 ± 0.7 (6.1-8.5)	6.8 ± 0.3 (6.5-7.1)	8.0 ± 0.8 (6.8-10.0)	7.2 ± 0.8 (6.0-8.2)
C	53.7	$41.4 \pm 3.5(36.8-47.8)$	33.1	47.4 ± 9.0 (30.3-60.2)	$33.1 \pm 2.9(29.7-36.4)$	53.8 ± 7.6 (41.1-71.3)	31.4 ± 4.2 (24.6-38.6)
c^{\prime}	0.8	1.0 ± 0.1 (0.9-1.2)	1.6	0.9 ± 0.2 (0.7-1.3)	1.7 ± 0.1 (1.6-1.8)	0.9 ± 0.1 (0.7-1.2)	$1.8 \pm 0.2(1.6-2.3)$
V or T	55.0	$55.3 \pm 1.3(53.0-57.0)$	49.0	$54.8 \pm 1.6(52.0-57.0)$	$52.2 \pm 11.9(45.2-70.0)$	$54.1 \pm 1.5(51.0-57.0)$	46.4 ± 3.5 (41.3-52.8)
Stylet length	23.5	$24.7 \pm 1.3(22.0-26.5)$	24.0	24.9 ± 1.3 (21.5-27.0)	$23.4 \pm 1.5(22.0-25.5)$	$25.4 \pm 1.1(23.5-27.5)$	$22.8 \pm 0.8(21.5-23.5)$
Dorsal gland opening	4.0	$4.8 \pm 0.5(4.0-5.5)$	3.5	$4.3 \pm 1.1(2.5-6.0)$	$4.3 \pm 0.4(4.0-4.5)$	5.6 ± 0.6 (4.0-7.0)	5.2 ± 0.6 (4.5-6.0)
O	17.0	$19.5 \pm 1.5(17.0-21.6)$	14.6	16.1 ± 3.8 (10.2-24.5)	18.5 ± 1.0 (17.8-19.2)	21.9 ± 2.6 (16.3-28.6)	22.6 ± 3.0 (19.2-27.3)
Pharynx length	132.0	136.7 ± 14.3 (117-161)	114.5	$139.9 \pm 12.8(122-173)$	143.5 ± 22.6 (120-172)	$144.4 \pm 11.8(130-169)$	$141.9 \pm 16.9(119-165)$
Pharyngeal overlap	17.5	21.7 ± 3.7 (16.5-28.0)	14.0	22.2 ± 8.1 (13.5-46.0)	20.7 ± 6.1 (14.0-26.0)	$22.5 \pm 5.1(14.5-30.0)$	$21.6 \pm 7.4(13.0-34.5)$
Maximum body diameter	25.5	27.7 ± 2.0 (24.5-31.0)	26.0	$27.2 \pm 2.0(24.0-33.5)$	$23.6 \pm 2.5(20.5-26.5)$	$27.5 \pm 1.4(25.0-31.0)$	$22.4 \pm 1.0(20.5-24.0)$
Anal body diameter	20.0	$19.0 \pm 1.0(17.5-20.5)$	14.5	$20.3 \pm 1.8(16.0-24.5)$	13.9 ± 0.6 (13.0-14.5)	18.9 ± 2.6 (16.0-22.0)	$14.8 \pm 1.5(13.5-18.5)$
Tail	15.5	$19.3 \pm 1.9(16.5-22.5)$	23.5	$18.0 \pm 3.4(13.5-27.5)$	$24.3 \pm 2.1(21.5-26.5)$	17.8 ± 2.6 (12.0-22.5)	$26.9 \pm 3.2(22.0-31.5)$
Tail annuli	8	12.0 ± 2.0 (9-14)	-	10.7 ± 3.0 (6-15)	-	$10.1 \pm 2.8(6-16)$	-
Phasmid to terminus	15	$25.8 \pm 4.4(20.0-32.5)$	-	$22.9 \pm 5.7(15.0-33.5)$	-	23.6 ± 5.8 (9.0-30.0)	-
Spicules	-		22.5	-	$30.8 \pm 1.9(29.0-33.5)$	-	$28.4 \pm 2.2(26.0-33.0)$
Gubernaculum	-	-	8.5	-	10.5 ± 0.6 (10.0-11.0)	-	12.6 ± 2.0 (9.5-16.0)

[^1]
[^0]: Received for publication August 22, 2016.
 ${ }^{1}$ Department of Biological Sciences and Plant Protection, Higher Institute of Agronomy, University of Sousse, Chott Mariem, UR: R13AGR04, Bp47, 4042 Sousse, Tunisia.
 ${ }^{2}$ Institute for Sustainable Agriculture, CSIC, Campus de Excelencia Internacional Agroalimentario, ceiA3, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain.

 This research was supported by grant KBBE 219262 ArimNET-ERANET FP7 2012-15 Project PESTOLIVE "Contribution of olive history for the management of soilborne parasites in the Mediterranean basin" from the Tunisian Agricultural Organization-IRESA (l'Institution de la Recherche et de l'Enseignement Supérieur Agricoles) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), grant AGR-136 from "Consejería de Economía, Innvovación y Ciencia" from Junta de Andalucía, and Union Europea, Fondo Europeo de Desarrollo regional, "Una manera de hacer Europa." The sixth author is a recipient of a "Juan de La Cierva" contract from Ministerio de Economía y Competitividad of Spain.
 The authors thank J. Martín Barbarroja and G. León Ropero from IAS-CSIC for the excellent technical assistance, and anonymous reviewers and editor for their valuable suggestions to improve the manuscript.

 E-mail: p.castillo@csic.es.
 This paper was edited by Andrea M. Skantar.

[^1]: Measurements are in $\mu \mathrm{m}$ and in the form: mean $\pm \mathrm{SD}$ (range).
 Abbreviations are defined in Siddiqi (2000).

