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Morphological and Molecular Characterization of Two Aphelenchoides

Endophytic in Poplar Leaves

LynN K. CARTA,1 SHIGUANG LI,1 ANDREA M. SKANTAR,I AND GEORGE NEWCOMBE2

Abstract: During a long-term, large network study of the ecology of plant endophytes in native habitats, various nematodes have been
found. Two poplar species, Populus angustifolia (narrowleaf cottonwood) and Populus trichocarpa (black cottonwood), are important
ecological and genomic models now used in ongoing plant-pathogen—-endophyte interaction studies. In this study, two different aphe-
lenchid nematodes within surface-sterilized healthy leaves of these two Populus spp. in northwestern North America were discovered.
Nematodes were identified and characterized microscopically and molecularly with 28S ribosomal RNA (rRNA) and 18S rRNA molecular
markers. From P. angustifolia, Aphelenchoides saprophilus was inferred to be closest to another population of A. saprophilus among sequenced
taxa in the 18S tree. From P. trichocarpa, Laimaphelenchus heidelbergi had a 28S sequence only 1 bp different from that of a Portuguese
population, and 1 bp different from the original Australian type population. The 28S and 18S rRNA trees of Aphelenchoides and Laima-
phelenchus species indicated L. heidelbergi failed to cluster with three other Laimaphelenchus species, including the type species of the genus.
Therefore, we support a conservative definition of the genus Laimaphelenchus, and consider these populations to belong to Aphelenchoides,
amended as Aphelenchoides heidelbergi n. comb. This is the first report of these nematode species from within aboveground leaves. The
presence of these fungal-feeding nematodes can affect the balance of endophytic fungi, which are important determinants of plant health.

Key words: nematode ecology, phylogeny, ribosomal DNA, systematics, taxonomy.

During a long-term, large network study of the ecology
of plant endophytes in native habitats, various nematodes
have been found. These include fungal-feeding Para-
phelenchus acontioides Taylor and Pillai, 1967 (Carta et al.,
2011) and bacterialeeding Panagrolaimus artyukhovskii
Blinova and Mishina, 1975 (Baynes et al., 2012) within
cheatgrass stems from Colorado. Two other species of
fungalfeeding nematodes were isolated from within di-
cots, specifically from the leaves of two species of poplar
(P. angustifolia and P. trichocarpa) originating in Utah and
western Washington, respectively. These plants are im-
portant ecological and genomic models, respectively, used
in ongoing plant—pathogen—endophyte interaction stud-
ies (Busby et al., 2013). Here, we characterize these two
fungalfeeding nematodes microscopically and with two
DNA markers for identification and phylogenetic analysis.
Their potential ecological impact is also discussed.

MATERIALS AND METHODS

Microscopy: Nematodes from leaves surface-sterilized
with 70% ethyl alcohol were imaged at X40-60 on an
Olympus BX51 microscope equipped with polarization
optics and with a DP71 camera (Olympus America Inc.,
Center Valley, PA). Measurements in micrometers were
taken with an ocular micrometer on a Zeiss Ultraphot II
compound microscope (Carl Zeiss, Inc., Jena, Germany)
with Nomarski optics before formalin fixation, and images
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were also measured with the calibrated measuring tool
in the imaging program CellSens version 1.6 (Olympus
America Inc.). Fixed specimens were processed for per-
manent slides according to the formalin—glycerine method
(Golden, 1990). Measurements in micrometers and mor-
phometrics were calculated on an Excel spreadsheet.

DNA analysis: Specimens were mechanically disrupted
in 20 wl of extraction buffer (Thomas et al., 1997), then
stored in polymerase chain reaction (PCR) tubes at —80°C
until needed. Extracts were prepared from thawed pools
by incubating the tubes at 60°C for 60 min, followed by
95°C for 15 min to deactivate proteinase K. Two microliter
of the extract was used for each 25-ul PCR reaction.

The ribosomal 28S D2-D3 expansion segment was am-
plified with primers D2A 5'-ACAAGTACCGTGAGGGAA
AGTTG-3" and D3B 5'TCGGAAGGAACCAGCTACTA-3’
(Nunn, 1992) using a previously published amplification
procedure (Ye et al., 2007). The sequence is listed in
Table 1 with other 28S sequences from GenBank.

For 18S sequence reaction components, per 25 pl re-
action: 17.55 pl HyO, 2.5 ul 10X PCR buffer, 0.5 w1 ANTP
mix (10 mM each dNTP), 0.75 ul MgCly, 50 mM, 0.75 .l
185-G18S4 primer, 10 pM, 0.75 wl 18S-18P primer, 10 uM,
0.2 pl Taq (1 unit Invitrogen platinum, Carlsbad, CA),
23 pl of the above mix + 2 pl template DNA. Cycling
conditions were 94°C for 2 min; 94°C for 30 sec, 50°C for
30 sec, 68°C for 2 min, repeating 40 times; 68°C for 10 min;
hold at 4°C. Primers of Thomas et al., 1997 were used for
PCR and sequencing.

28S rRNA gene PCR products were visualized with UV
illumination after ethidium bromide staining. DNA was
excised from the gels and purified with the QIAquick Gel
Extraction Kit (Qiagen, Valencia, CA). Clean PCR prod-
ucts were directly sequenced by a local vendor (Genewiz,
Inc., Germantown, MD and South Plainfield, NJ). PCR
products were visualized and purified within the Lonza
FlashGel " DNA system (VWR International, Radnor, PA),
and sequences were generated with an ABI BigDye
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Species, strains, localities, 28S ribosomal DNA sequence lengths, and GenBank accession numbers for sequences included in

Name Isolate/strain Accession no. bp no. Locality Authors
Laimaphelenchus EU287595 714 Australia  Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W.,
heidelbergi Kanzaki, N., Mergen, H., Keskin, N., and Thomas, W. K.
Zhao, Z., Ye, W., Giblin-Davis, R. M., Li, D.,
Thomas, W. K., Davies, K. A., and Riley, I. T.
Laimaphelenchus 87F1 KT884898 723 Canada This study
heidelbergi Poplar
Laimaphelenchus australis EU287600 713 Australia Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W., Kanzaki, N.,
Mergen, H., Keskin, N., and Thomas, W. K.
Zhao, 7., Ye, W., Giblin-Davis, R. M., Li, D., Thomas, W. K.,
Davies, K. A., and Riley, I. T.
Aphelenchoides sp. Japan J8503 KF638651 783 Japan Fang, Y., Gu, J., Wang, X., and Li, H.
Aphelenchoides sp. Korea 23556 KF772859 775 Korea Gu, J., Fang, Y., Wang, X, and Li, H.
Laimaphelenchus sp. RGD636L AB368539 724 Kanzaki, N., Giblin-Davis, R. M., Cardoza, Y. J., Ye, W,
Raffa, K. F., and Center, B. J.
Laimaphelenchus HQ283353 761 China Huang, R-E., Ye, W., Liang, J., Lu, Q., and Zhao, X.-Y.
varicaudatus
Schistonchus benjamina RGD441 ABb35553 725 Australia  Davies, K. A., Bartholomaeus, F., Ye, W., Kanzaki, N.,
and Giblin-Davis, R. M.
Schistonchus RGD75 ABb35534 742 Australia  Davies, K. A., Bartholomaeus, F., Ye, W., Kanzaki, N.,
altermacrophylla and Giblin-Davis, R. M.

Terminator v3.1 kit with sample sequence data analyzed
on an ABI 3130XL Automated DNA sequencer (Applied
Biosystems, Foster City, CA). The 28S sequence was deter-
mined on both strands using D2A and D3B primers.

The DNA sequences for the following genes were
deposited in GenBank: A. cf. saprophilus 18S rDNA
(KT884899), A. heidelbergi (n. comb.) (= original Lai-
maphelenchus) 285 rDNA (KT884898), and Aphelenchoides
cf. parietinus 18S rDNA (KU525689).

Phylogenetic analysis: DNA sequences were analyzed
using BLASTN of nematode sequences contained in
the EBI-EMBL parasite sequence database (http://www.
ebi.ac.uk/blast2/parasites.html). Nematode sequences
with highest evalues for BLAST similarity and morpholog-
ically close nematode species that had GenBank sequences
were aligned in ClustalW (Thompson et al., 1994) using
default parameters, as implemented in Geneious version
7.1.7 (BioMatters, Auckland, New Zealand). Markov chain
was run for 1,100,000 generations, with the first 100,000
trees discarded as burn-in. The Bayesian likelihood tree was
inferred using the MrBayes plugin (Huelsenbeck and
Ronquist, 2001) as also implemented in Geneious. Gen-
Bank sequences (Table 1 for 18S rDNA, Table 2 for 28S
rDNA) were aligned with those determined in this study.

REsuLTS

SYSTEMATICS

Aphelenchoides cf. saprophilus Franklin, 1957
(Fig. 1)
Voucher description

Female (n =4): L =521 + 34 (495-567) pm, V% =70 + 1
(69-72), a = 26.6 + 3.1 (22.1-28.9), b = 10.0 + 1.0 (8.9—
10.9), c=16.5 + 2.7 (12.6-18.3), ¢’ =3.2 + 0.2 (2.8-3.3) um,

stylet = 10.8 1.2 (9.3-12.1) wm, body width (BW) =20 * 2
(18-22), tail = 32.8 £ 6.2 (28.8-42.0) wm, postvulval sac
(PVS) = 57 = 0 (56-57) pm, PVS/vulval anal distance
(VAD) % = 46 = 4 (41-51).

Male (n=4):L.=534 + 24 (509-567) wm, a=30.0 = 3.44
(26.1-34.3),b=9.9 £ 0.57 (9.3-10.5), c = 15.8 = 1.74 (14.5-
18.3), ¢’ = 3.02 = 0.37 (2.52-3.40), stylet = 10.3 ., tail =
34.0 = 4.0 (28.8-38.4) pm, spicule =21.8 * 1.6 (20.0-23.0).

Locality and host: Ogden, UT, along Weber River,
P angustifolia (narrowleaf cottonwood), cultured on
Trichoderma sp. endophytic from within P. angustifolia.

Specimen designation and deposition: Seven slides (G-21529
to G-21535) with 10 females and 20 males were de-
posited in the U.S. Department of Agriculture Nematode
Collection (USDANC).

Differential diagnosis: The stylet demonstrates a wider
range than the type population of A. saprophilus (9.3-12.1
vs. 11 wm for original description where n = 4), and two
of the four lateral incisures are very faint, but this di-
agnosis fits better than Aphelenchoides pinusi Bajaj and
Walia, 2000, a species with two lateral incisures and
a larger spicule size (>25 wm) than A. saprophilus.

Aphelenchoides heidelbergi (Zhao, Davies, Riley, and Nobbs,
2007) n. comb. (syn. Laimaphelenchus heidelbergi Zhao,
Davies, Riley, and Nobbs, 2007)

(Fig. 2)

Voucher description

Female (n = 3): L = 397 = 68 (349-445) pm, a =38.1 =
1.57 (87.0-39.2),b="7.0 = 0.08 (6.9-7.0), b’ =4.42 + 0.29
(4.22-4.62),c=19.0 = 5.26 (15.3-22.7), ¢’ =3.55 = 0.71
(3.04-4.05), V=0.67 = 0.01 (0.67-0.68), stylet = 8.7 =
0.6 (8.2-9.1) pm, tail = 22.2 = 9.7 (15.3-29.1) pm,
PVS =35 = 7 (30-40) pm, PVS/BW = 3.3 + 0.3 (3.1-3.5),
PVS/VAD% = 36 * 4 (33-42).
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TABLE 2.

18S rDNA sequence numbers, lengths, and localities from GenBank for Aphelenchoides and Laimaphelenchus sequences included in
phylogenetic analysis.

Name Isolate/strain Accession no. bp no. Locality Authors

Bursaphelenchus 186 AYH08034 1,706  Japan Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K.,
xylophilus and Thomas, W. K.

Aphelenchoides stammeri ~ NK218 AB368535 1,699 Kanzaki, N., Giblin-Davis, R. M., Cardoza, Y. J., and

Ye, W.

Laimaphelenchus VO-2014 KF881745 1,142 Serbia Oro, V.
belgradiensis

Laimaphelenchus LaimPenl AY593918 1,697 Helder, J., Van den Elsen, S. J. J., Bongers, A. M. T,,
penardi Wurff, A. W. G., and Bakker, J.

Laimaphelenchus 467a/467 EU287590 1,706  Australia Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W.,
preissi Kanzaki, N., Mergen, H., Keskin, N., and

Thomas, W. K.

Laimaphelenchus EU287587 1,673  Australia Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W.,
heidelbergi = Kanzaki, N., Mergen, H., Keskin, N., and
Aphelenchoides Thomas, W. K.
heidelbergi n.comb.

Aphelenchoides FJ235883 884 Huang, L.
macronucleatus

Aphelenchoides HR3 GU337993 1,707 Cui, R., Zhuo, K., Wang, H., and Liao, J.
paradalianensis

Aphelenchoides XP1 F]520227 1,552 Zhuo, K., Cui, R,, Ye, W., Luo, M., Wang, H., Hu, X,
Jujianensis and Liao, J.

Aphelenchoides sp. Us02 GU337997 1,707 Cui, R., Zhuo, K., and Liao, J.

Aphelenchoides sp. USo1 GU337998 1,683 Cui, R., Zhuo, K., and Liao, J.

Aphelenchoides sp. HB GU337999 1,680 Cui, R., Zhuo, K., and Liao, J.

Aphelenchoides sp. YN GU337996 1,680 Cui, R., Zhuo, K., and Liao, ].

Aphelenchoides sp. Be GU337995 1,696 Cui, R., Zhuo, K., and Liao, J.

Aphelenchoides sp. KP GU337994 1,711 Cui, R., Zhuo, K., and Liao, J.

Aphelenchoides sp. 23556 KF772858 888 Korea Gu, J., Fang, Y., Wang, X., and Li, H.

Aphelenchoides sp. JB012 DQ901553 1,439 Chizhov, V. N., Chumakova, O. A., Subbotin, S. A.,

and Baldwin, J. G.

Aphelenchoides sp. H1 WY-2008 EU287591 1,708 Australia Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W.,

Kanzaki, N., Mergen, H., Keskin, N., and Thomas, W. K.

Aphelenchoides sp. K1 WY-2008 EU287589 1,674  Australia Gulcu, B., Hazir, S., Giblin-Davis, R. M., Ye, W.,

Kanzaki, N., Mergen, H., Keskin, N., and
Thomas, W. K.
Aphelenchoides sp. 2137 FJ040412 1,552 Holterman, M. H. M., van den Elsen, S. J. J., Mooijman,
P.]J. W., Pomp, R., van Megen, H. H. B., and Helder, H.
Aphelenchoides sp. 2134 FJ040411 1,660 Holterman, M. H. M., van den Elsen, S. J. J., Mooijman,
P.]J. W, Pomp, R., van Megen, H. H. B, Helder, H.
Aphelenchoides sp. 2130 FJ040410 1,659 Holterman, M. H. M., van den Elsen, S. J. J., Mooijman,
P.J. W, Pomp, R, van Megen, H. H. B., and Helder, H.
Aphelenchoides sp. SC DQIY01552 1,479  United States  Chizhov, V. N., Chumakova, O. A., Subbotin, S. A., and
Baldwin, J. G.

Aphelenchoides 57F12 KU525689 1,578 This study
parietinus

Aphelenchoides E2_500F1108  KT884899 565  Ogden, UT. This study
saprophilus

Aphelenchoides clarus Konza ICC13 AY911887 632 Powers, T. O., Mullin, P. G., Harris, T. S., and Sutton, L.

Aphelenchoides cf 2145 FJ040407 1,546 Holterman, M. H. M., van den Elsen, S. J. J., Mooijman,
bicaudautus P.]J. W., Pomp, R., van Megen, H. H. B., and Helder, H.

Aphelenchoides AChoBic AY284643 1,657 Helder, J., Van den Elsen, S. ]. J., Bongers, A. M. T,
bicaudatus Wurff, A. W. G., and Bakker, J.

Aphelenchoides DQIY01554 1,559  Russia Chizhov, V. N., Chumakova, O. A., Subbotin, S. A.,
ritzemabosi and Baldwin, J. G.

Aphelenchoides besseyi 98 AY508035 1,714 Ye, W., Giblin-Davis, R. M., Braasch, H., Morris, K.,

and Thomas, W. K.

Aphelenchoides 2140 FJ040408 1,660 Holterman, M. H. M., van den Elsen, S. J. J., Mooijman,
saprophilus P.]J. W., Pomp, R., van Megen, H. H. B., and Helder, H.

Aphelenchoides AY284644 1,679 Helder, J., Van den Elsen, S. J. J., Bongers, A. M. T,,
blastophthorus Wurff, A. W. G., and Bakker, J.

Aphelenchoides fragariae  AChoFral AY284645 1,676 Helder, J., Van den Elsen, S. J. J., Bongers, A. M. T,,

Wurff, A. W. G., and Bakker, J.




Fic. 1.

Aphelenchoides cf. saprophilus male. A. Body, lateral view. B.
Pharynx with stylet (S), median bulb, and pharyngeal gland (G). C.
Tail with spicule. D. Tail tip with mucro, endophytic from within
healthy, surface-sterilized narrow leaf cottonwood leaves, Populus

angustifolia.

Male (n = 3): L = 445 + 213 (264-679) pm,w=11 = 3
(8-14) wm, e = 55 = 12 (41-61) pm, testis = 266 = 173
(133-462) pm, t=30.8 = 4.6 (25.6-34.4) um, a = 40.8 *
14.38 (24.4-50.9), b=8.3 = 3.55 (4.3-11.1),b' = 4.4 + 1.7
(24-5.7), c =144 * 59 (8.1-9.7), ¢’ =35 = 1.5 (2.5-4.5),

Poplar Leaf Aphelenchoides: Carta et al. 31

Fic. 2. Laimaphelenchus heidelbergi/Aphelenchoides heidelbergi n. comb.
female from within healthy, surface-sterilized black cottonwood leaves,
Populus trichocarpa. A. Body, lateral view with vulva (arrow). B. Vulva,
ventral view (arrow). C. Offset tail tip with single tubercle.

stylet = 10.9 = 0.6 (10.2-11.2) wm, spicule = 14.9 * 1.3
(14.0-15.8) pm.

Locality and host: An alluvial floodplain of the Nisqually
River west of the crest of the Cascade Mountains in
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Fi6. 3. Bayesian phylogenetic tree of Aphelenchoides and Laimaphelenchus species inferred from an 806-bp fragment of 28S ribosomal DNA
(rDNA). Sequences were aligned in ClustalW. In analysis, Markov chain was run for 1,100,000 generations, with first 100,000 trees discarded
as burn-in. LnL. mean/run = —4184.6. Node support is given above branches to left of nodes. Sequence generated in this work is indicated by

an arrow.
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Fi6. 4. Bayesian phylogenetic tree of Aphelenchoides and Laimaphelenchus species inferred from an 1846-bp fragment of 18S rDNA. Sequences
were aligned in ClustalW. Sequences were analyzed under a Tamura—-Nei model. Markov chain was run for 1,100,000 generations, with first
100,000 trees discarded as burn-in. LnL. mean/run = —13413.144, —13413.594. Node support is given above branches to left of nodes.

Sequences generated in this work are indicated by arrows.

western Washington (latitude and longitude: 46.84808
N, —122.31585 W), P. trichocarpa.

Specimen  designation and deposition: Four slides
(G-21546 to G-21549) with five females and four males
(one juvenile) were deposited in the USDANC.

Differential diagnosis: Both the stylet and “b” ratio are
slightly smaller in this population than in Australian
(Zhao et al., 2007) or Portuguese (Maleita et al., 2014)
populations of L. heidelbergi.

Molecular alignment and phylogeny: 28S rDNA: The se-
quence from this population was 99.7% identical to that
of Australian L. heidelbergi Zhao, Davies, Riley, and Nobbs,
2007 from pine (EU287585; Zhao et al., 2008), with G-A
transitions at 106 and 305/688 alignment pair positions.
The sequence differed from that of a Portuguese cork
bark population (KJ564293) only at the first position
(99.8% similar). In the tree (Fig. 3), L. heidelbergi did not
share a clade with Laimaphelenchus sp. and L. australis
Zhao, Davies, Riley and Nobbs, 2006, a species having the
tail and vulval features of the Laimaphelenchus type species
Laimaphelenchus penardi Steiner, 1914.

18S rDNA: In the tree (Fig. 4), L. heidelbergi did not share
a clade with three other Laimaphelenchus species, including
the type species of the genus. Instead, it was inferred to be
much closer to A. cf. parietinus Franklin, 1957 (slightly lower
a ratio and higher ¢’ ratio than the type population of A.
parietinus) from Idaho Pinus strobus var. monticola taproots
with galls of undetermined origin (USDANC G-21546 to

G-21549). The relatively short sequence for A. cf. saprophilus
had 94.1% similarity (536,570 bp similarity of aligned nu-
cleotides) compared to the 1,660-bp sequence for A. sap-
rophilus isolate 2140 (FJ040408) from the laboratory at
Wageningen, The Netherlands (Holterman et al., 2006).

DiscussioN

Laimaphelenchus spp. are polyphyletic among Aphelenchoides
and Schistonchus in molecular phylogenetic trees of ri-
bosomal and cylochrome oxidase I genes (Kanzaki et al.,
2009; Zeng et al., 2010; Wang et al., 2013), consistent
with our findings (Figs. 3,4). This isolate of putative L.
heidelbergi does not have the four-pronged tail, the scler-
otized vagina, or the vulval flap present in L. penardi, the
type species of the genus. Therefore, we support the
conservative definition of Hirling (1982, 1986) for Laima-
phelenchus, and we amend species L. heidelbergi to A. hei-
delbergi n. comb. sensu Hirling, 1986. The divergent posi-
tion of L. heidelbergi from other Laimaphelenchus species that
are more congruent with the original genus description was
also noted in other phylogenetic analyses of Aphelenchida
(Oro, 2015). Laimaphelenchus heidelbergi is not closely related
to poplar leaf endophyte A. saprophilus (i.e., a nonpatho-
genic nematode that lives inside surfacesterilized plant
leaves), but the latter species is closely related to another
potential root endophyte, A. cf. parietinus (Fig. 4). There-
fore, the association with leaves does not seem to be limited



to close phylogenetic relatives. Possibly all Aphelenchoides
are capable of living endophytically, but further sam-
pling and experimentation are necessary to support this
hypothesis.

Laimaphelenchus and Aphelenchoides have been found
in lichens (Hirling, 1982), moss, and algae from co-
niferous trees (Hirling, 1986), from twigs and bark (on
and under) of trees (Negi and Ye, 2011), and insect
frass from trees (Bajaj and Walia, 2000). However, to
our knowledge, there have been no reports of L. heidelbergi
or A. saprophilus from within leaves independent of soil.
Likewise, neither nematode species has been reported to
cause damage to plants. The presence of fungalfeeding
nematodes undoubtedly affects the balance of endo-
phytic fungi within a leaf community, and incidence of
disease can depend as much or more on composition of
endophyte species than on plant genotype (Raghavendra
and Newcombe, 2013). Furthermore, the ability of an
Aphelenchoides species to cause plant disease may depend
on the composition of different endophytic fungi within
a given host. Although epiphytic organisms were not the
focus of this paper, and thus were not sampled, based on
our finding here it would not be surprising to find Ap-
helenchoides living epiphytically as well, especially in humid
habitats. Further characterization of nematode abun-
dance, geographical distribution, variability, life history,
and culturability of these nematodes is worth pursuing to
better understand plant-microbe relationships within
the poplar microbiome (Hacquard and Schadt, 2015).
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