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Free-Living Nematodes in the Freshwater Food Web: A Review

NABIL MAJDI AND WALTER TRAUNSPURGER

Abstract: Free-living nematodes are well-recognized as an abundant and ubiquitous component of benthic communities in inland
waters. Compelling evidence from soil and marine ecosystems has highlighted the importance of nematodes as trophic
intermediaries between microbial production and higher trophic levels. However, the paucity of empirical evidence of their role in
freshwater ecosystems has hampered their inclusion in our understanding of freshwater food web functioning. This literature survey
provides an overview of research efforts in the field of freshwater nematode ecology and of the complex trophic interactions between
free-living nematodes and microbes, other meiofauna, macro-invertebrates, and fishes. Based on an analysis of the relevant literature
and an appreciation of the potential of emerging approaches for the evaluation of nematode trophic ecology, we point out research
gaps and recommend relevant directions for further research. The latter include (i) interactions of nematodes with protozoans and
fungi; (ii) nonconsumptive effects of nematodes on microbial activity and the effects of nematodes on associated key ecosystem
processes (decomposition, primary production); and (iii) the feeding selectivity and intraspecific feeding variability of nematodes
and their potential impacts on the structure of benthic communities.

Key words: algae, bacteria, ecology, fish, food web, free-living, freshwater, fungi, interaction, macrofauna, meiofauna, method,

organic matter, predation, protozoa, selectivity.

Freshwater benthic micro-metazoans (also referred to
as meiofauna or meiobenthos) have been fascinating and
popular subjects of research ever since microscopy made
them accessible to observation (e.g., Van Leeuwenhoeck,
1677). This early enthusiasm led to important morpho-
logical (and taxonomical) descriptions during the 19th
and the first half of the 20th century. Despite this
promising start, there has been little quantitative eval-
uation of the role of meiofauna in freshwater ecosys-
tems (Robertson et al., 2000; but see Schmid-Araya
et al., 2002; Giere, 2009). By contrast, important prog-
ress in ecological research has been made by including
mesofauna and meiofauna in models of soil and marine
benthic food webs, respectively (e.g., Leguerrier et al.,
2003; Wardle et al., 2004; Krumins et al., 2013).

Over the last 15 yrs, the inclusion of freshwater
meiofauna within an ecological research framework has
gained momentum, following the publication of com-
prehensive monographs in a special issue of Freshwater
Biology (2000, volume 44) and of two books dedicated to
this subject: Freshwater Meiofauna (Rundle et al., 2002)
and Freshwater nematodes: ecology and taxonomy (Abebe
etal., 2000). Yet, there are still substantial research gaps
concerning the ecology of freshwater meiofauna. For
instance, there is mounting consideration of the eco-
logical role of meiofauna in streams; however, meio-
fauna is still excluded from our current conceptions of
how large river ecosystems function. Ecosystems in
large rivers are especially affected by human activities; it
is therefore critical to understand their ecological
functioning in an integrative way to propose a wide-
range of solutions for decision-making or management
contexts, leading Giere (2009) to plaid: “meiofauna
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ecology of large rivers requires urgent investigation.”
Furthermore, most available studies concern interstitial
habitats (gravel, sediment, and mud, e.g., Hodda, 2006),
and a proper assessment of the role of meiofauna in
productive interface ecosystems, such as the microbial
mats coating mineral and organic hard substrates
(Pusch et al., 1998), is mostly lacking.

Free-living nematodes are a major component of
freshwater meiofaunal communities, where they often
attain very high densities (>1 million individuals per m?;
Traunspurger, 2000; Traunspurger et al., 2012), and
cover a body-size spectrum of several orders of magni-
tude (Traunspurger and Bergtold, 2006). Their variety
of feeding types suggests their marked trophic special-
ization (Traunspurger, 1997, 2000, 2002; Moens et al.,
2006), whereas their high-degree of intraguild species
diversity may be a consequence of trophic niche spe-
cialization based on the diversity of available food
sources (algae, bacteria, fungi, protozoans, meiofauna,
and organic matter, e.g., Traunspurger, 2002; Moens
et al., 2006). Nematodes, in turn, provide a food re-
source for larger benthic and pelagic invertebrates and
vertebrates (Beier et al., 2004; Muschiol et al., 2008b;
Spieth et al., 2011; Weber and Traunspurger, 2014b),
highlighting their pivotal position in freshwater food
webs as trophic intermediaries between benthic mi-
crobial production and macroscopic consumers.

Given their high diversity and rapid population turn-
over rates, nematodes are useful model organisms for
testing general ecological theories (Reiss et al., 2010).
The inclusion of free-living nematodes in conceptual
models of freshwater food webs may help to disentangle
pathways describing the “small-scale” control of some
key ecological processes. There is mounting evidence
that free-living nematodes have an important function in
soil and marine food webs, by affecting the structure of
microbial communities and connecting primary pro-
duction and the decomposition of organic matter to
higher trophic levels (De Mesel et al., 2004; Hohberg
and Traunspurger, 2005; Pascal et al., 2008b; Evrard
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et al., 2010; Steel et al., 2013; Heidemann et al., 2014).
Nonetheless, evidence of the role of nematodes in
freshwater food webs is both relatively scarce and scat-
tered across the literature, thus hampering both robust
comparisons and validation of the patterns in freshwa-
ter benthic food webs (Ward et al., 1998; Moens et al.,
2006; Thompson et al., 2012). The community struc-
ture of freshwater nematodes is a promising indicator
of pollution in river sediments (Heininger et al., 2007;
Hoss et al., 2011; Hagerbaumer et al., 2015, this issue).
Nematodes can occupy different trophic-levels in ben-
thic food webs (e.g., bacterivorous, algivorous, and
predators), hence their responses to pollutants may
vary accordingly. Therefore, we also believe that a more
complete knowledge of freshwater food webs using
nematodes may be potentially beneficial to risk assess-
ment and managerial approaches.

Here, we review the role of free-living nematodes in
the freshwater benthic food web, with particular em-
phasis on research published during the last decade.
After (i) a brief overview of recent research efforts, we
focus on (ii) the trophic interactions of nematodes with
microbes and the potential consequences on ecosystem
processes, (iii) nematode feeding selectivity, (iv) pre-
dation on freshwater nematodes, and (v) emerging
methodological approaches that may help in elucidat-
ing the complex interactions between freshwater nem-
atodes, their prey, and their predators.

Throughout this literature review, we have given
priority to studies of the trophic interactions of free-
living nematodes from strict freshwater lotic and lentic
environments. In some places, comparisons are made
with other freshwater meiofaunal taxa or with the re-
sults of soil and marine studies, to avoid taxon- and
habitat-based oversimplification and to place the dis-
cussion within the framework of the functional re-
dundancy of similarsized heterotrophic organisms in
various ecosystems (Gilljam et al., 2011). For a broader
overview, including nematode feeding type distribution
and trophic ecology in terrestrial and marine ecosys-
tems, we recommend that readers consult the reviews of
Traunspurger (2002), Bilgrami and Gaugler (2004),
Moens et al. (2006), Traunspurger et al. (2006a),
Moens et al. (2013), and Traunspurger (2013).

BRIEF OVERVIEW OF RESEARCH EFFORTS
IN THE FIELD

Through an extensive literature survey using the XML
package in R (Nolan and Lang, 2014) for parsing and
extracting XML content from the literature databases,
ISI Web of Science and Google Scholar (last search: 11th
November 2014), we obtained 540 publications issued
within the last 60 yrs (1954-2014), retrieved by the
search query in title—-keyword—abstract of the words:
“nematod*” AND (“freshwater” OR “river” OR “lake”
OR “stream” OR “pond” OR “hyporheic”) NOT “soil”

NOT (“marine” OR “sea” OR “ocean” OR “tidal” OR
“estuary” OR “lagoon” OR “brackish” OR “beach”)
NOT (“elegans” OR “parasit*”), which potentially
represents research conducted on free-living freshwater
nematodes. Of these, 93 publications (listed in Table 1)
were selected based on their report of field and/or
laboratory evidence of at least one trophic interaction
involving free-living freshwater nematodes. We recorded
the location and type of the study sites recorded in those
publications, the main approaches, and the participants
in the described trophic interactions (Table 1). While
numerous descriptive studies of nematode species and
feeding type distribution have been conducted in vari-
ous freshwater ecosystems, we selected only those studies
in which a significant correlation between distribution
pattern and potential prey/predator was reported.

Evidence based on distribution patterns made up
a large share of the contributions (42% of studies) to
knowledge of nematode trophic interactions in fresh-
water ecosystems. Although the information from those
in situ surveys is mostly qualitative, evidence from vari-
ous ecosystems collectively supports the existence of an
important trophic link between nematodes and microbes
(especially microphytobenthos [MPB] and bacteria)
and foremost between nematodes and the availability of
dissolved and particulate organic material (see scheme
in Fig. 1). Note that this scheme does not really show the
ecological importance of illustrated trophic links, but
rather their occurrence as direct or indirect (correlative)
evidence throughout relevant literature. As a result, this
scheme must be interpreted with caution owing to (i)
potential historical bias (e.g., to date, much attention
has been paid to the microbe-nematode interaction)
and (ii) links which do not necessarily imply a direct
trophic interaction. Specifically it is unclear whether the
correlation usually observed between nematodes and
the amount of organic material is due to direct or to
indirect trophic interaction such as ingestion of organic
matter via its adsorption onto microbial cells (Hoss et al.,
2001).

Mounting evidence obtained from in situ manipula-
tive experiments and analyses of the gut contents of
predators supports reciprocal trophic linkages between
nematodes and other permanent as well as temporary
meiofauna (oligochaetes, harpacticoid copepods, tardi-
grades, water mites, rotifers, and chironomid larvae),
with nematodes serving both as predator and as prey for
these minute metazoans. Nematodes themselves are also
the prey of larger invertebrates and vertebrates and are
ingested by gastropod grazers (Table 1; Fig. 1). Never-
theless, trophic transfers from nematodes to higher
trophic levels are still incompletely understood. Also,
little attention has been paid to the complex trophic
interactions between nematodes and protozoans/fungi
(but see Bergtold et al., 2005), even though the latter
are important regulators of ecosystem processes and
contribute substantially to secondary production in
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Macrofauna

Nematodes

Protozoa

Microphytobenthos

Bacteria

Dissolved and Particulate Organic Material

Fic. 1. Trophic interactions involving nematodes in freshwater
ecosystems based on their frequencies of occurrence in literature.
Arrow size is relative to the number of trophic interactions directly or
indirectly evidenced in the relevant literature (93 studies; listed in
Table 1). Arrow trajectory shows the trajectory of energy. Scale bar for
metazoans is 1 mm. Meiofauna include permanent meiofaunal taxa,
such as rotifers, tardigrades, water mites, harpacticoid copepods, and
oligochaetes; as well as temporary meiofauna, such as larvae of chi-
ronomids. Macrofauna include gastropods, flatworms, and shrimps;
Vertebrates include fishes and amphibian larvae. Macrophytes also
include bryophytes.

freshwater ecosystems (Gessner and Chauvet, 1994;
Bergtold and Traunspurger, 2005b; Risse-Buhl et al.,
2012; Faupel and Traunspurger, 2012).

For the period between 2003 and 2013, there was
neither a decrease nor an increase in the number of
studies that showed trophic interactions of freshwater
nematodes (Fig. 2A; Mann-Kendall; 7= 0.2; P=0.53), in
contrast to the total number of studies dealing with
freshwater nematodes, which increased significantly
during the same period (Fig. 2B; Mann-Kendall; 7 = 0.6;
P=0.01). This striking difference should foster further
evaluation of the role of nematodes in freshwater food
webs. Moreover, 73% of the research efforts on the
trophic ecology of freshwater nematodes were concen-
trated in European inland waters (Fig. 2B), whereas
food web dynamics in tropical and subtropical rivers
and lakes, i.e., areas currently experiencing acute an-
thropogenic pressure (Dudgeon et al.,, 2006), have
largely been ignored.

INTERACTIONS WITH MICROBES AND
EcosysTEM PROCESSES

There is a large body of evidence supporting the in-
timate association of nematodes with bacteria and
decaying detritus, with potential consequences on the

50 | ¥/ Freshwater nematodes
@ Trophic interactions of freshwater nematodes
v
40 —
=
9
g
£ 30+
3
a
k]
g 20
[S
o |
z
10 4
0 sl

(b) & o7

Fic. 2. (A) Yearly publication rate of studies considering broad
aspects of free-living freshwater nematodes versus studies highlighting
their trophic interactions, from 1991 to 2013. (B) Global distribution
of study/collection sites where evidence of trophic interactions in-
volving free-living freshwater nematodes has been obtained (collec-
tion/study sites listed in Table 1). Some sites have been investigated
repeatedly (N> 3 different studies): Lake Erken (E), Lake Constance
(C), Garonne River (G), and Movile Cave (M).

decomposition process in lentic and lotic ecosystems. For
instance, Goedkoop and Johnson (1996) observed a rapid
increase in nematode densities in Lake Erken (Sweden)
after the sedimentation of a pelagic diatom bloom on the
lake bottom. Within 35 days, bacteria had mineralized an
average of 12.4% of the detrital C pool, while sediment-
dwelling meiofauna had assimilated 7.2% and chirono-
mids 6% of detrital C. In a 1-yr study of Lake Constance
(Germany), Witthoft-Muhlmann et al. (2005a) recorded
a similarly strong positive response of nematode densities
to river-borne particulate organic matter sedimentation
on the lake bottom. Surprisingly, the response of nema-
todes to organic matter availability was much stronger
than that of the lake’s benthic microbial communities. A
possible rationale for this could be the importance of top-
down control and/or indirect effects of nematodes on
microbial communities (see below), in analogy to the
green world hypothesis proposed by Hairston et al.
(1960). Taken together, these findings highlight the in-
volvement of nematodes in energy turnover in sediment
patches enriched with allochthonous organic material.
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Fic. 3.

(A) Scheme of detritus-pellet formation by a Chromadoridae nematode. After adherence of the nematode’s tail to the substrate via

caudal secretions, the surrounding particles are collected by oscillation movements and further agglutinated into a pellet (after Meschkat 1934;
modified in Riemann and Helmke 2002). (B) Anterior part of a living Chromadorina bioculata retrieved from epilithic biofilms of the Garonne
River (France). The white arrow shows the constriction of the nematode cuticle due to the attachment of secretions. A diatom cell and detrital
particle are trapped in secretions. Bacterial density is high in the pellet and around the trapped diatom. Scale bar is 50 pum.

In forested streams, where shading by the riparian
canopy can alter primary production, the decomposition
of plant litter is an essential ecological process that fuels
stream food webs. During a 3-yr litter exclusion experi-
ment, Wallace et al. (1997) observed a significant
reduction of nematode densities in reaches that were
prevented from litter fall inputs. Other field evidences
also support the ability of nematodes to aggregate pref-
erentially in leaf packs with the highest biomass of mi-
crobial decomposers (fungi and bacteria) and/or the
largest amount of organic matter clumps (Palmer et al.,
2000; Swan and Palmer, 2000; Gaudes et al., 2009).
Nematodes may influence decomposition rates in for-
ested streams by affecting microbial decomposers, al-
though the relative importance of this mechanism in
freshwater ecosystems is discussed controversially in the
literature (Cummins, 1974; Abrams and Mitchell, 1980).
Yet, it is broadly accepted that nematodes significantly
affect decomposition processes in soil and marine eco-
systems (e.g., Freckman, 1988; Alkemade et al., 1992).

Although fungal biomass is generally several orders
of magnitude greater than bacterial biomass in leaf packs,
typical fungalfeeding nematodes (e.g., Aphelenchoides spp.,
Filenchus spp.) were rarely found in the streams of south-
western France and Canada whereas bacterialfeeding
nematodes (e.g., Fumonhystera spp., Plectus spp.) domi-
nated consistently (Majdi et al., 2014, unpubl. data).
This suggests either low access to the mycelial biomass
embedded in leaf tissues or competitive exclusion due
to the greater diet flexibility and/or greater coloniza-
tion success of bacterial-feeding species in leaf packs.
Interestingly, aquatic fungi are not only nematode prey,
they are also nematode predators, as several hyphomy-
cete species were shown to prey on litter-dwelling nem-
atodes (Peach, 1950; Hao, et al., 2005; Swe et al., 2009).

In lotic systems, it is still difficult to separate the dis-
tribution trends of nematode species from the multiple
influences of intraguild interference, environmental

forcing, and trophic interactions with microbes. Nem-
atode distribution in exposed riverine patches such as
litter packs or epibenthic biofilms may undergo im-
portant variations according to fluctuations in the hy-
drological regime and the downstream transport of
dissolved and particulate resources (Palmer et al., 2000;
Swan and Palmer, 2000; Majdi et al., 2012c). Under lab-
oratory controlled conditions, Perlmutter and Meyer
(1991) showed that harpacticoid copepods can remove
>30% of bacterial biomass from decaying leaf surfaces.
Additional experimentally based evaluations of the role of
nematodes in lotic detritus-based food web are needed,
especially studies focusing on the pathway of top-down
control on microbial decomposers and examining the
potential indirect consequences on decomposition rates.
In fact, insights gained from laboratory investigations of
bacteria—mematode interactions (Traunspurger et al,
1997; Gaudes etal., 2013) tend to support the importance
of indirect control pathways (bioturbation, excretion) on
microbial activity, but whether this mechanism operates in
natura remains to be determined.

Primary production is another key ecosystem process
in which nematodes exert top-down regulation. Con-
sistent surveys of nematodes dwelling in phototrophic
biofilms (or periphyton) have provided increased evi-
dence of a tight linkage between the biomass of MPB
and that of nematodes (especially Chromadoridae)
in lakes (Traunspurger, 1992; Hillebrand et al., 2002;
Peters and Traunspurger, 2005; Schroeder et al., 2012b;
Kazemi-Dinan et al.,, 2014) and rivers (Esser, 2006;
Gaudes et al., 2006; Majdi et al., 2011, 2012c). The
dominance of Chromadoridae within nematode com-
munities in shallow freshwater periphyton has been
consistently reported for the last 100 yrs (Micoletzky,
1914; Schneider, 1922; Meschkat, 1934; Meuche, 1938;
Young, 1945; Pieczynska, 1964; Croll and Zullini, 1972;
Traunspurger, 1992; Majdi et al., 2011; Schroeder et al.,
2012a, 2013a). In some cases, Chromadoridae were
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observed to collect and agglutinate particulate material
using their caudal sticky secretions to form a so-called
detritus pellet (Fig. 3). Croll and Zullini (1972) as-
cribed this behavior to the predominantly epilithic
lifestyle of Chromadoridae, in which fixation to the
substratum allows these nematodes to overcome epi-
benthic shear-stress constraints. It may also be related
to mucus-trap feeding and enzyme sharing (Riemann
and Schrage, 1978; Riemann and Helmke, 2002), two
proposed mechanisms whereby nematodes directly
feed on items trapped in their secretions and/or ben-
efit from the enzymatic activity of bacteria that cleaves
the refractory material agglutinated in secretions into
more edible labile compounds. Moens et al. (2005)
further show experimentally that a specific bacterial
assemblage can develop on nematode secretions, un-
derlining a potential example of nematode—bacterium
cooperation (see also Murfin et al., 2012). Based on
combined assessments of the gut contents of nema-
todes and of their assimilation of freshly photo-
synthesized carbon (C) in the Garonne River (France),
Majdi et al. (2012a,b) showed that Chromadoridae can
derive 1% to 27% of their energetic demand from the
direct ingestion of diatom cell contents and that the
assimilation of freshly photosynthesized C completely
(104%) fulfills their energetic demand. A major part of
the C fixed by photosynthesis is rapidly exuded by di-
atoms as exopolymeric substances (EPS) and then
processed by bacteria (Romani and Sabater, 1999).
These results suggest that Chromadoridae for the most
part feed on the EPS exuded by diatoms, possibly
through “gardening” interactions with bacteria, and to
a lesser extent graze directly on diatom cells.
Quantitatively, freshwater nematode communities
exert rather low grazing pressure on MPB (Borchardt
and Bott, 1995; Majdi et al., 2012a,b; Graba etal., 2014).
However low grazing pressure does not mean un-
important impacts on microbial communities (e.g., De
Mesel et al., 2004; Hubas et al., 2010), and in a labora-
tory experiment, Mathieu et al. (2007) determined
a threshold of 100 individuals/ cm2, above which di-
atom biofilms show much higher rates of oxygen pro-
duction. As this density threshold is often exceeded in
the periphyton (Gaudes et al., 2006; Majdi et al., 2011;
Schroeder et al., 2012b, 2013a), primary production
may well be substantially affected by nematodes (Fig.
3). The result is a greater spatial heterogeneity of mi-
crobial mats and thus higher rates of solute transport
within those mats (Derlon et al., 2013). The presence of
nematodes in phototrophic biofilms likely stimulates
primary production, by enhancing both the porosity of
biofilms to nutrients and light penetration in the mat,
as was observed in the upper few millimeters of muddy
estuarine sediments by Pinckney et al. (2003). Qualita-
tively, nematode feeding preferences are also expected
to affect the assemblage of phototrophic communities,
as discussed in Food Recognition and Selection. In return,

bottom-up control is likely to influence the local diversity
of nematode communities. For instance, nematode com-
munities dwelling diatom-dominated periphyton in rivers
and lakes consistently show both a low diversity and an
overwhelming dominance of one or two chromadorid
species (Peters et al., 2005; Gaudes et al., 2006; Majdi
et al., 2011; Schroeder et al., 2012a). Nonetheless, it is
not clear whether this pattern was due to bottom-up
structuring (diatom feeding), or to environmental
forcing such as the important exposition to flow or wave
disturbance of these habitats which could favour again
Chromadorids able to anchor themselves efficiently
using their sticky caudal secretions (Croll and Zullini,
1972). More generally, it is beyond the scope of this
review and still premature to elaborate much about the
drivers of nematode diversity, due to the scarcity of
comparable datasets from which general patterns can
be drawn (Hodda et al., 2009).

Foop RECOGNITION AND SELECTION

Free-living nematodes forage in small-scale patchy
environments. Hence, they are likely able to discrimi-
nate among the many different food items they en-
counter (bacteria, algae, fungal hyphae and spores,
protozoans, particulate, and dissolved organic matter),
selecting the highest quality food available at the lowest
possible cost (e.g., in their closest vicinity). Food rec-
ognition and specific handling can translate into typical
behavioral and morphological traits that are identifi-
able during in vivo observations and in behavioral as-
says (e.g., Jensen 1982; Moens and Vincx 1997; Moens
et al.,, 1999b; Hockelmann et al., 2004; Bilgrami and
Gaugler 2005; Salinas et al., 2007; Hohberg and
Traunspurger 2009; Weber and Traunspurger 2013).
Recognition of food hotspots can lead to intra-specific
agglutination mechanisms. Agglutination can be pro-
voked by kairomones (e.g., Hockelmann et al., 2004;
detailed below). In addition, intra-specific chemical
communication using pheromones also mediates a va-
riety of behavioral responses from avoidance to attrac-
tion (Choe et al., 2012), supporting the existence of
complex mechanisms for food recognition and ex-
ploitation in nematodes. The presence of selectively
feeding nematodes changes the size spectra and species
composition of soil and marine microbial communities
(Romeyn and Bouwman, 1983; Jensen 1987; De Mesel
et al., 2004; Salinas et al., 2007; Rzeznik-Orignac et al.,
2008; Moens et al., 2014), and thus microbial activity as
well as the rates of associated ecological processes. Al-
though often advocated as a rationale for the high di-
versity and apparent species redundancy of freshwater
nematodes (Hodda et al., 2009), feeding selectivity has
nonetheless received scant attention, and large-scale
quantitative investigations are, for the most part, lack-
ing (Moens et al., 2006). In this context, there is still
considerable  controversy about how specialist
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nematodes can be in their selection of food items.
Trophic opportunism is widespread in nature, and the
number of feeding-types undoubtedly underestimates
the real number of feeding modes in free-living fresh-
water nematodes. In the following paragraphs, we listed
some arguments to this debate.

In their laboratory study of chemotaxis by the
freshwater nematode Bursilla monhystera (Rhabditidae)
toward odors of cyanobacterial strains present in
biofilms, Hockelmann et al. (2004) provided the first
evidence of the selective attraction of nematodes to
axenic cyanobacterial biofilms of Plectonema sp. but not
to those of Calothrix sp. B. monhystera was also not at-
tracted by single volatile organic compounds (or
odors) isolated from cyanobacterial biofilms, clearly
indicating the specificity of the chemotaxis response
for complex multi-component odors. The same authors
also observed that B. monhystera moved toward attractive
odor spots at a rate of ~1.5 cm/min, although upon its
arrival it did not ingest the cyanobacterial filaments
directly, but rather browsed in search of associated
bacteria or EPS.

Using a “cafeteria-design” in laboratory microcosms,
Weber and Traunspurger (2013) further observed the
different and marked food choices of two nematode
species, Panagrolaimus cf. thienemanni (Panagrolaimidae)
and Poikilolaimus sp. (Rhabditidae), isolated from the
submerged Movile Cave (Romania). Panagrolaimus pre-
ferred high densities, and Poikilolaimus low densities of
Escherichia coli (10° cells per ml and 10° cells per ml,
respectively). Despite a cell size similar to that of E. coli,
the green algae Chlorella minutissima was rarely preyed
upon by nematodes. Moreover, the two nematode spe-
cies were rarely found at the same FE. coli density spot,
suggesting the absence of competition due to trophic
niche specialization based on the recognition of food
density levels. Those results corroborated with the aut-
ecological characteristics and distributional patterns of
both species in the cave ecosystem (Muschiol and
Traunspurger, 2007; Schroeder et al., 2010; Muschiol
et al.,, 2015).

In a laboratory experiment, Estifanos et al. (2013)
offered a diet consisting of either E. coli, Matsuebacter sp.,
or both to cultures of Caenorhabditis elegans, Acrobeloides
tricornis, Panagrolaimus sp., and Poikilolaimus sp. Differ-
ences in the '°C and 3'°N signatures of these nematode
species were recorded and were shown to be linked to
their differential assimilation capacities of the mono-
bacterial diet offered. Feeding selectivity was quantified
in mixed bacterial diet experiments showing that E. coli
contributed 71% to the C supply of C. elegans, whereas
Matsuebacter sp. contributed >90% to that of A. tricornis.
In their further study of the natural periphytic commu-
nities of Lake Erken (Sweden), Estifanos et al. (2013)
similarly followed the fate of C and nitrogen (N) from
algae and bacteria in a stable isotope probing (SIP) ex-
periment. Their results, showing that nematodes quickly

incorporated freshly photosynthesized material, high-
lighted the importance of algal-derived material (i.e.,
diatoms, green algae, and their EPS) in the diet of peri-
phytic nematodes. This conclusion confirmed a previous
in situ SIP experiment that showed the rapid in-
corporation of freshly photosynthesized C by periphytic
nematodes from the Garonne River (France) (Majdi
et al., 2012a).

Algal biomarker pigments in the guts of periphytic
nematodes were quantified using high-performance
liquid chromatography in studies carried out at a single
date in three Swedish lakes, Largen, Erken, and Limmaren
(Kazemi-Dinan et al., 2014), and over a l-yr period in the
Garonne River in southwestern France (Majdi et al.,
2012b). Through comparisons of the ratios of bio-
marker pigments in periphyton and in nematodes,
nematode algivory was examined regarding the relative
availabilities of the main MPB groups (diatoms, green
algae, and cyanobacteria). Diatom biomarkers were
found in all nematodes. In fact, diatoms consistently
dominated the MPB in the studied lakes and river.
However, in the shallow zones of Lake Erken (mesotro-
phic) and in Lake Largen (oligotrophic), green algae
were preferentially ingested, based on the accumulation
of the respective pigments in nematode guts. In the
Garonne River, the ingestion of chlorophyll a was pro-
portional to its availability in the periphyton, suggest-
ing the nonselective opportunistic ingestion of diatom
cells. As grazing on diatom cells only covered a small
fraction of the energetic demands of periphytic nem-
atodes, diatom-derived polymeric substances were
proposed to be an important additional food resource
(see Interactions with Microbes and Ecosystem Pro-
cesses for details).

There is little information on the diet of predatory
nematodes in freshwater ecosystems, but Prejs (1993)
and Schmid-Araya and Schmid (1995) observed the
ingestion of various meiofauna (rotifers, naidid and en-
chytraeid oligochaetes, other nematodes, and chiron-
omids) by Anatonchus dolichurus, Anatonchus tridentatus,
and Prionchulus punctatus. Although still understudied,
predatory nematodes in freshwater ecosystems are likely
able to exhibit prey selectivity, based on compelling evi-
dence gained from laboratory observations of the feed-
ing behavior of soil and marine predatory nematodes
on nematode prey (e.g., Bilgrami, 1993; Moens et al.,
1999a, 2000; Bilgrami and Gaugler, 2005; Bilgrami et al.,
2005). Those studies showed that predatory nema-
todes tend to select their prey according to their
physical, chemical, and behavioral characteristics (e.g.,
thickness of the cuticle, secretion of deterrent sub-
stances, and capacity to adopt escape strategies). How-
ever, the placement of predatory nematodes in agar
medium may affect their perception of prey cues. For
this reason, we stress that the feeding selectivity of
predatory nematodes in natural communities remains
to be ascertained.
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NEMATODES AS PREY

Few studies of freshwater ecosystems have tackled the
energy fluxes between fungi, protozoans, and nema-
todes (Fig. 1). Although trophic interactions between
nematodes and eukaryotic microbes are thought to be
nonreciprocal, those microbes indeed prey upon
nematodes. For example, nematodes can be preyed
upon by specialized aquatic hyphomycetes (e.g., Hao
etal., 2005), and there is evidence from soil ecosystems
of predatory ciliates (Urostyla sp. and testate amoebae)
attacking and consuming even relatively large nema-
tode taxa, such as Ironus, Clarkus, and Tobrilus spp.
(Doncaster and Hooper, 1961; Yeates and Foissner,
1995). In the benthos, reciprocity in the trajectory of
trophic interactions is certainly plausible, given the
coexistence of a diverse assemblage of protozoan and
metazoan species with overlapping body sizes. Intraguild
predation may well be intense, since the most efficient
way to cope with competitors surely is to devour them!
Several studies have reported reciprocal predation
between nematodes and other metazoan meiofauna
(Fig. 1; Table 1). In this context, the timing of coloni-
zation (“priority-effects”) becomes crucial for determin-
ing species distribution and food web structure—a topic
that deserves, again, further evaluation.

Nematodes are by no means a “trophic dead-end” in
freshwater ecosystems, as increasing evidence supports
the consumption of nematodes by macrofauna and
vertebrates that are several orders of magnitude larger
(Table 1). For instance, the massive consumption of
nematodes together with algae by “peaceful” herbivo-
rous snails grazing the periphyton has been clearly
demonstrated (Hillebrand et al., 2002; Kelly and Hawes,
2005; Peters and Traunspurger, 2012; Schroeder et al.,
2013b). Whether the presence of nematodes and other
meiofauna increases the palatability of periphyton to
grazers has not been thoroughly examined, but pe-
riphyton containing nematodes probably fuel grazers
with nonnegligible sources of high-quality protein and
essential polyunsaturated fatty acids. Voracious macro-
invertebrate predators, such as flatworms can also affect
nematodes, either negatively, by direct top-down con-
sumption (Beier et al., 2004), or positively, by the bot-
tom-up stimulation of sediment retention and bacterial
biomass through copious mucus secretions (Majdi
etal., 2014). The latter authors showed that in intricate
detritus-based habitats, the indirect effects of predators
on habitat structure may have potentially larger conse-
quences than consumptive effects. In the same context,
a recent experiment using Chloroperlidae larvae as
predators showed negative effects on the nematode
community due to sediment resuspension by these ac-
tive predators (N. Majdi, unpubl. data).

The consumption of nematodes by a variety of juve-
nile and adult freshwater fishes (Characidae, Cypri-
nidae, Ciclidae, and Centrarchidae; see Table 1) has

been reported, strengthening the hypothesis of direct
top-down control of meiofauna by fishes (Weber and
Traunspurger, 2014b). That same study determined
a strong reduction of nematode biomass (80-94%) in
sediment exposed to the predation of juvenile carp
(Cyprinus carpio) and gudgeon (Gobio gobio). Effects of
fish predation on the body-size distribution of nema-
tode prey appear to be species-specific (Spieth et al.,
2011; Weber and Traunspurger, 2014a). The rationale is
that many benthivorous fish species are size-selective
feeders because of the different morphologies of their
oral cavities and gill rakers. An interesting implication
of trophic transfer from nematodes to highly mobile
organisms, such as fishes, is that the localized benthic
secondary production of nematodes can be exported
both vertically and horizontally, thereby enhancing the
ecological connectivity of freshwater ecosystems.

EMERGING APPROACHES

Many different approaches have been applied to
disentangle the trophic interactions of freshwater
nematodes, including descriptions of nematode species
and feeding-type distribution patterns (see Table 1),
the quantification of gut pigment contents (Majdi etal.,
2012b; Kazemi-Dinan et al., 2014), the assessment of
predator—prey functional responses (Beier et al., 2004;
Hohberg and Traunspurger, 2005; Muschiol et al.,
2008a, 2008b), food tactism assays (Hockelmann et al.,
2004; Weber and Traunspurger 2013), and the use of
fatty acid (FA) profiling, SIP, and other biomarkers/
tracers to investigate the trophic positioning and fluxes
of matter that are mediated by freshwater nematodes
and other meiofaunal organisms (Borchardt and Bott,
1995; Bott and Borchardt, 1999; Caramujo et al., 2008;
Majdi et al., 2012a, 2012b; Peters et al., 2012; Estifanos
et al., 2013; Mialet et al., 2013; Kazemi-Dinan et al.,
2014). In this section we briefly describe the ap-
proaches (SIP, FA, profiling, gut DNA content, and
automated image tracking) that may fully reveal the
composition of the nematode diet, allowing nematodes
to be properly placed within a more comprehensive
picture of freshwater food webs. For more detailed
descriptions of these approaches, the reader is referred
to the reviews of King et al. (2008), Crotty et al. (2012),
Traugott et al. (2013), and Dell et al. (2014). Most of
our knowledge about nematode feeding ecology has
been grasped at the level of feeding-types or, at best, at
the level of species. Understanding the variation of in-
dividual traits is a key constraint to resolve population-
level effects (Violle et al., 2012). However, we still have
a very limited knowledge of intraspecific variability in
nematodes. In this context, this section deals first with
approaches requiring (many) individuals in one anal-
ysis, and then present some approaches that have the
potential to reveal feeding variability at the individual
level.
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Despite their disadvantages—mostly their low reso-
lution when multiple food sources are consumed by the
study organisms—SIP and FA profiling are powerful
approaches that enable the assessment of the feeding
history of consumers and a quantification of their as-
similation of ingested food items. Furthermore, the two
techniques can be merged (compound-specific stable
isotopic analysis) to better examine the use of a labeled
basal food source by various consumers (Ruess and
Chamberlain, 2010). However, the most challenging
aspect of including nematodes into a broader picture of
freshwater food webs is the low individual biomass of
most free-living nematodes, which makes such ap-
proaches time-consuming because of the copious
amounts of nematode individuals needed to achieve
proper signal detection. For instance, minimum N and
C requirements for most standard mass spectrometry
platforms are approximately 20 pg of N and C per
sample, which practically means sorting, cleaning, and
encapsulating tens to hundreds of nematodes to meet
the minimum sample amount required for signal
detection. While mass spectrometer systems can be
specifically modified to allow the analysis of smaller
samples (>1 pg N and 2 pg C; Carman and Fry, 2002),
the inclusion of nematodes is far from routine in the
vast majority of trophic studies. One way around this
methodological limitation is to use nematode species
reared in the laboratory on strains of labeled microbes,
which allows high individual recovery rates and thus
areliable assessment of nematode assimilation rates and
metabolic pathways at the level of species (e.g., Ruess
et al., 2002; Pascal et al., 2008a; Estifanos et al., 2013).

In a wider sense, individuals can be seen as the
“single-cell” components of ecosystems. Individual-
based approaches enable individual traits to be linked
to the properties of the systems they compose; this is
achieved using well-developed statistical tools such as
individual-based modeling (DeAngelis and Mooij,
2005; Grimm and Railsback, 2005). It is possible to
merge SIP with Raman microspectroscopy to detect
enrichment from a '’C-labeled source at the individual
level (Li et al., 2013). Using this approach, the latter
authors detected 'C assimilation by C. elegans fed on
YCabeled E. coli based on the Raman spectra of a sin-
gle C. elegans individual, which showed distinctive red
shifts similar to that of its prey. Li et al. (2013) showed
that the Raman shift of the thymine band provides
a simple indicator of '*C incorporation into nematode
cells. Further application of this method in laboratory and
field conditions may be a relevant alternative approach to
examine more finely the C flows in freshwater food webs.

The detection and identification of prey DNA con-
tained in the guts of nematodes is a recent and poten-
tially complementary qualitative approach. It brings the
advantages of a higher specificity and sensitivity and
thus the possibility to obtain more detailed insights into
trophic network complexity. With sufficient temporal

replication, a reduction of the possibility of contami-
nation, and the establishment of a prey molecular
database as a reference, this approach could bring
valuable information on nematode selectivity in situ
and could be even applied to individual-based diet
analyses. To the best of our knowledge, the use of mo-
lecular techniques to unravel the diet of nematodes is
an as yet untested strategy. However, it has been applied
to analyze the gut contents of marine copepods, with
the detection of DNA of algae, cyanobacteria, and in-
vertebrate preys (Nejstgaard et al., 2003; Vestheim et al.,
2005; Motwani and Gorokhova, 2013). These examples
of the successful use of this approach should pave the
way for its application to nematodes and other meio-
fauna. Conversely, the detection of nematode DNA in
the guts of predators will reveal the connections of
nematode species with higher trophic levels, provided
that DNA target primers take into account the degra-
dation dynamics of nematode DNA during its passage
through the guts of predator species (e.g., Heidemann
et al., 2014). A growing number of studies in soil and
marine ecosystems detecting nematode DNA ingested
by a variety of micro-predators have provided empirical
support for the role of nematodes as an important
trophic resource for many terrestrial and marine in-
vertebrates (Read et al., 2006; Heidemann et al., 2011,
2014; Maghsoud et al., 2014).

Direct in vivo observations of nematode feeding
behavior have established a robust benchmark for un-
derstanding the participation of nematodes in the tro-
phic dynamics of various ecosystems (e.g., Wood, 1973;
Romeyn and Bouwman, 1983; Jensen, 1987; Moens and
Vincx, 1997). This approach was used in 13% of the
studies examining the trophic interactions of nema-
todes in freshwater ecosystems, as determined in our
literature search (Table 1). Approaches based on image
tracking and computer-aided analysis are a logical
continuum of traditional observational studies and can
provide a high-throughput evaluation of nematode feed-
ing behavior, with minimum commitments of time and
effort. They have been applied to study nematode loco-
motion (Tsibidis and Tavernarakis, 2007; Buckingham
and Sattelle, 2009; Wang and Wang, 2013) and may
prove useful for monitoring a variety of behaviors in
vivo, including attraction to food, mechanisms of
physical food recognition, feeding strategy, and behav-
ioral responses to the presence of predators, competi-
tors, or conspecifics. Live observations can be recorded
in semi-natural conditions using home-made miniature
flow cells (e.g., Esser, 2006; Norf et al. 2009), and the
availability of open-source software for recording and
processing images (e.g., Stuurman et al., 2007; Wang
and Wang, 2013) make automated image tracking of
nematodes very accessible. It is fairly possible to com-
plement those observations with other in vivo imaging
techniques, such as confocal laser scanning microscopy
with differential fluorescent probing, which may lead us
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to the answers to some of the outstanding questions in
nematode ecology, including the selective feeding by
nematodes on bacteria, algae, and EPS and the in vivo
consequences of nematode bioturbation on biofilm
architecture.

CONCLUSION

The following conclusions/recommendations can be
drawn from our literature review:

(i) Knowledge on the trophic ecology of freshwater
nematodes is heterogeneous and for the most part
insufficient. Although some studies suggest that
nematodes are key intermediaries between microbial
production and macro-organisms, many significant
gaps remain in our understanding of their role for
instance in mediating the decomposition of organic
matter in lakes and streams. Investigations into this
aspect of nematode ecology as well as the interactions
between nematodes and protozoans and nematodes
and fungi will yield important information.

(ii) There is recent mounting evidence of the influence of
nematodes on primary production in phototrophic
microbial mats. As grazing pressure is rather low, it is
suggested that indirect effects such as bioturbation
may affect biofilms more deeply by increasing their
porosity to nutrient fluxes for instance. However,
further research is needed to disentangle the relative
importance of nematode controls on the architecture
of these productive interface ecosystems.
(iii) The ability of freshwater nematodes to discriminate
and select food items is increasingly recognized based
on laboratory experiments. However, large-scale in-
vestigations of feeding-selectivity in natural or semi-
natural conditions are still needed to better understand
the effects of nematode selectivity on complex benthic
communities.
(iv) Thus far, only a few studies, using the typical meth-
odologies of trophic ecology (e.g., isotopic tracers),
have attempted to unravel the position of nematodes
in freshwater food webs. The paucity of quantitative
studies may be due to the large number of nematode
individuals that need to be sorted to allow significant
signal detection in the various probing methods. We
believe that emerging techniques, such as SIP coupled
with Raman microspectroscopy, gut DNA contents of
nematodes and their predators, and automated image
tracking used in the framework of individual-based
modeling, would provide the high-throughput of the
data needed for large-scale investigations of nematode
positioning within freshwater benthic food webs.
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