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Abstract: Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of
nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This
paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial
economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied
in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific
nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.
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Nematode infestations tend to be spatially clustered
within agricultural fields and result in crop yield pen-
alties in some areas but not in others (Evans et al., 2002;
Wyse-Pester et al., 2002; Monfort et al., 2007). Nema-
tode control in cotton is primarily dependent on the
application of nematicides because of a lack of effective
resistant cultivars (Koenning et al., 2004).

The relatively high cost of fumigant nematicides, the
difficulty in their application, and environmental con-
cerns with using fumigants has encouraged many cot-
ton growers in the United States to consider ways to
target specific zones within fields for nematicide ap-
plication to minimize waste and expense (Mueller et al.,
2011). The advent of ‘‘precision agriculture’’ technol-
ogies provides the possibility of site-specific nematode
management rather than the ‘‘whole-field’’ approach that
has historically been used. In order for a site-specific
nematicide placement strategy to be utilized at the farm
level, a clear indication of the potential for profitability
as well as the efficacy of this approach must be per-
ceived. Logically, estimation of profitability of site-
specific nematode management and the development
of application recommendations for individual fields
must be based on the estimation of yield potential
(penalty) where nematodes are yield-limiting. Site-
specific crop yield data, as with most other agronomic
data obtained at high resolutions within fields, are ex-
pected to be spatially structured, and failure to properly
account for spatial structure of the yield data may result
in inefficient parameter estimates for yield response
functions. We review the spatial statistical techniques
that model the correlation among neighboring ob-
servations and develop a spatial economic analysis to
determine the potential of site-specific nematicide ap-
plication from a theoretical and practical perspective.
The spatial econometric methodology used to determine

site-specific crop yield response is a necessary link be-
tween data analysis and site-specific recommendations
that will help to provide a practical site-specific method
of controlling nematodes.

STATISTICAL ANALYSIS PROBLEMS ASSOCIATED

WITH PRECISION AGRICULTURE DATA

Recent advances in precision agriculture technolo-
gies provide farmers with the tools to determine the
impact of nematode infestation and implement site-
specific variable rate nematicide application (Mueller
et al., 2011; Ortiz et al., 2012). Site-specific sensors that
measure either soil electrical conductivity or electro-
magnetic induction provide continuous soil data over
space so that models can be evaluated with a continu-
ous covariate rather than discrete categories to explore
the correlation between crop yield, nematode popula-
tion density, and soil texture (Monfort et al., 2007; Ortiz
et al., 2012). Global positioning systems (GPS) combined
with yield monitors and variable rate fertilizer applica-
tors have been used in conducting site-specific on-farm
experiments (Griffin, 2009). However, difficulties ex-
perienced in the analysis of spatial crop data have been
one of the key constraints to prevent the widespread
adoption of site-specific technology (Anselin et al., 2004).
Improving the precision of crop data analysis makes it
possible to pinpoint geographic or environmental fac-
tors that affect nematode populations, and this, in turn,
facilitates effective site-specific nematode management
recommendations.

Omitted variables: Most precision agriculture data, in-
cluding yield monitor data, contains thousands of ob-
servations. Generally speaking, statistically significant
treatment effects would be expected with a large num-
ber of observations even with very small effects (Hicks
et al., 1997). However, although many observations
of the dependent variable exist, precision agriculture
datasets tend to have few explanatory variables. This
results in omitted variable problems or an under spec-
ification of the model. Ordinary least square estimates
(OLS) are biased and generally inconsistent under
omitted variables (Wooldridge, 2003) and OLS residuals
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are expected to be spatially correlated when an impor-
tant omitted variable has spatial structure (Bockstael,
1996; Bell and Bockstael, 2000). Additional spatial
problems may also arise from measurement errors in
attributes and location.

Stationarity and heteroskedasticity: Spatial data, in gen-
eral and precision agriculture data, in particular, results
from spatial stochastic processes. Depending on assump-
tions regarding spatial stationarity, the unknown spatial
stochastic process may result in spatial effects such as
spatial heterogeneity and spatial dependence. These
spatial effects occur in two-dimensional random fields
generated by random processes in <2 space that
define the surfaces that are modeled (Cressie, 1993;
Schabenberger and Gotway, 2005). Stationarity is con-
cerned with the mean, variance, and covariance of the
distribution. Spatial heterogeneity refers to structural
instability across space, i.e., a nonconstant mean or
variance (Anselin, 1988; Casetti, 1997; Anselin, 2001;
Florax and Nijkamp, 2004). This instability across space
can occur in functional forms or varying parameters or
as heteroskedasticity. In general, heteroskedasticity is
the lack of constant variance for random regression
errors across all observations and is formally expressed
as var eið Þ ¼ s2

i where s2
i differs for all i (Wooldridge,

2003). Spatial heteroskedasticity results from a non-
stationarity process that links the variation in s2

i to lo-
cation of the observational units (Anselin and Griffith,
1988). Since spatial units such as agricultural plots may
differ in some influential characteristics (e.g., soil tex-
ture, elevation, etc.), homoskedasticity, which is a strong
assumption in classic statistical models, may not hold in
applied spatial data analysis, such as site-specific nema-
tode data. OLS estimates remain unbiased and consistent
but are inefficient in the presence of heteroskedasticity,
and therefore, aspatial estimators are inefficient with
spatially heteroskedastic data.

Spatial dependence: On the other hand, the charac-
teristics at proximal locations appear to be either pos-
itively or negatively correlated, which is called ‘‘spatial
dependence.’’ Spatial dependence leads to the spatial
autocorrelation problem in statistics. Spatial autocor-
relation is a weak stationarity process with nonzero
covariance. Spatial autocorrelation occurs when obser-
vations are correlated with respect to distance—in other
words, an observation is similar to, and can be partially
predicted by, neighboring observations (Anselin, 1989).
Positive spatial autocorrelation occurs when neighbor-
ing observations are more similar than observations
further away, and this is anticipated in agricultural fields,
analogous to Tobler’s first law of geography (1970).

Spatial autocorrelation may occur in the error term,
dependent variable, or in exogenous variables. Spatially
autocorrelated residuals arise from omitted spatially
autocorrelated variables (Bockstael, 1996; Bell and
Bockstael, 2000), measurement error (Anselin, 1989),
and specification error (Anselin, 1989). Because of

spatially autocorrelated data, a set of spatially de-
pendent observations contains less information than
independent observations of the same sample size
(Anselin 1989; Florax and Nijkamp, 2004). Anselin (1989)
states, ‘‘the loss of information that results from the
dependence in the observation should be accounted
for.’’ The misspecification and measurement error
leading to spatial autocorrelation may also cause spatial
heteroskedasticity (Anselin and Griffith, 1988).

Spatial autocorrelation has traditionally been neu-
tralized in agricultural field research by reducing ex-
perimental unit sizes until plot sizes could be assumed
to be homogeneous (Montgomery, 2001). Replication,
randomization, and blocking techniques can be com-
bined with small plots to determine treatment differ-
ences. However, treatment effects are more efficiently
estimated by modeling spatial autocorrelation than using
the traditional approach of neutralizing spatial autocor-
relation via randomization (Cressie, 1993). Spatial het-
erogeneity and spatial dependence jointly yield biased
parameter estimates, which can be statistically misleading
(Anselin and Griffith, 1988). However, site-specific mea-
surements, spatial statistical modeling, and computation
allow for new approaches to statistically valid inference.

SPATIAL STATISTICAL METHODS FOR SITE-SPECIFIC

NEMATODE MANAGEMENT

Most agricultural data, including site-specific crop
yield data, are expected to be spatially structured
(autocorrelated and heteroskedastic), which violates
the assumptions of classical statistics regarding in-
dependence of observations and homoskedastic error
terms. Failing to account for spatial structure results in
inefficient parameter estimates that bias the test sta-
tistics. The two most commonly used models that ad-
just for spatial dependence in site-specific agricultural
data are spatial autoregressive error models and spatial
autoregressive lag models. Either model can be esti-
mated by maximum likelihood (ML), general method
of moments (GM), instrumental variables (IV), and
other classic estimators. A third extended spatial model
is the spatial Durbin model, which addresses the con-
cern over omitted variables.

Spatial error model. The spatial error model is given as
follows:

y ¼ Xbþ e; e ¼ lWeþ m or in reduced form as
y ¼ Xbþ ðI � lWÞ�1

m, where y is a n 3 1 vector of
dependent variables, X is a n 3 k matrix of explanatory
variables, b is a k 3 1 vector of regression coefficients, is
an n 3 1 vector of residuals, l is a spatial autoregressive
parameter, W is an n 3 n spatial weights matrix, and m is
a well-behaved, nonheteroskedastic, uncorrelated error
term (Anselin, 1988). When the spatial autoregressive
term l is 0, the spatial error model reverts to the aspatial
model. The spatial error process can be characterized
by the autoregressive (AR) or the moving average (MA)
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error process resulting in global and local spillovers,
respectively. The spatial error model has no substantive
economic interpretation. When the spatial error model
is appropriate, OLS estimates remain unbiased but are
inefficient.

Spatial lag model: The spatial lag model is given as
follows: y ¼ rWyþXbþ m or in reduced form y ¼
ðI � rWÞ�1½Xbþ m�, where r is the spatial autore-
gressive parameter and the others as previously defined
(Anselin, 1988). Similar to the spatial error model, the
spatial lag model reverts to the aspatial model when the
spatial autoregressive term r is 0. Spatial lags result in
global spillovers and have a substantive economic in-
terpretation. Spatial lag models are sensitive to local-
ized shocks influencing the whole system through the
spatial multiplierðI � rWÞ�1. The OLS estimator is in-
consistent for purely spatial autoregressive processes
(Lee, 2002).

Spatial Durbin model: Another model that can be used
when there is concern about omitted variables for site-
specific agricultural data is the spatial Durbin model.
This model is equivalent to a mixed autoregressive
model on a specification that includes spatially lagged
dependent and exogenous variables. The spatial Durbin
model is given as follows: y ¼ Xbþ h; h ¼ rWhþ e;
e ¼ Xg þ u or in reduced form y ¼ ðI � rWÞ�1½Xbþ
WXg þ u�, where h is an n 31 vector of a spatially cor-
related omitted variable following a spatial autore-
gressive process with autoregressive parameter r, and u
is an n 31 vector of well-behaved independent identi-
cally distributed (i.i.d) random error terms. The omit-
ted variable is correlated with X wheng 6¼ 0. The other
terms are the same as previously defined. The spatial
Durbin model assumes the dependent variable for each
region depends on its own-region factors from the
matrix X, plus the same factors spatially weighted av-
eraged over the neighboring regions, WX, while ac-
counting for the omitted variable not included in the
model specifications. To empirically determine whether
we need to apply a spatial model other than the standard
aspatial model and to decide which spatial model, is
more appropriate, spatial diagnostics such as Moran’s I
and Lagrange Multiplier (LM) tests of the OLS residuals
provide insight into the underlying contagion.

The most common test for the existence of global
spatial autocorrelation, which is the main motivation
for applying a spatial statistical model, is the Moran’s I
test (Anselin, 1988) and it is given as follows:

I ¼ n

So

x0Wx

x0x

where x is an n 3 1 vector of a random variable as deviations
from the mean, W is an n 3 n spatial weights matrix de-
scribed earlier in relation to spatial process models, and So

is the sum of the elements of W (Anselin, 1988). Moran’s I
is interpreted as a correlation coefficient (Anselin, 1988).

Positive values of Moran’s I indicate that observations of
a similar value occur as neighbors, whereas negative values
signify that both high and low value observations occur as
neighbors. A Moran’s I value of zero signifies a random
spatial distribution. A local indicator of spatial association
(LISA) (Anselin, 1995) or the so-called local Moran’s I,
tests for local spatial autocorrelation. The LISA indicates
significant spatial clustering and sums up proportional to
the global Moran’s I (Anselin, 1995). It is possible that
a dataset could have significant local spatial clustering but
no global spatial autocorrelation. Although Moran’s I has
power over spatially autocorrelated dependent variables
and residuals including spatial lag and spatial error, re-
spectively, additional misspecification tests are necessary to
distinguish between the two. Five LM tests for spatial au-
tocorrelation diagnostics are commonly conducted using
OLS residuals including LM error (LMl), Robust LM er-
ror (LM�

l), LM lag (LMr), Robust LM lag (LM�
r), and LM

Spatial Autoregressive Moving Average (SARMA) (LMlr).
The LMl and LMr tests are unidirectional tests with the
spatial error and spatial lag models as alternative hypoth-
eses, respectively. The LM�

l and LM�
r tests take into ac-

count the potential presence of spatial lag or spatially
correlated residuals. The LM l, LM�

l, LMr, and LM�
r as-

ymptotically follow a x2
1 distribution. The LMlr test is

a multidirectional test that follows a x2
2 distribution.

The LM test with the highest x2 value, or alternatively
the lowest p-value between LMl and LMr, indicates
whether the spatial error or spatial lag model is appro-
priate. Although LMlr is distributed x2

2 rather than x2
1

as with the other four LM tests, a lower p-value indicates
the higher-order model is appropriate. Since the LM
tests do not distinguish between MA and AR processes,
significant LMlr indicate either SARMA or SARAR
models. If none of the LM tests are significant, then the
data can be analyzed aspatially rather than with spatial
techniques. Similar to tests against spatial autocorrela-
tion, LM tests may test against spatial heteroskedasticity.
Besides the LM tests, some specification testing pro-
cedures, including likelihood ratio (LR) tests outlined
by Elhorst (2010), Spatial Hausman test proposed by
LeSage and Pace (2009) provides the possibility of a
model with spatially-lagged independent variables (the
spatial Durbin model).

Both the spatial error model (Anselin et al., 2004;
Lambert et al., 2004; and Griffin et al., 2008) and the
spatial lag model (Florax et al., 2002) have been used
with site-specific yield data. The spatial Durbin model
has not been widely used for spatial econometric ap-
plications. When a pathogen such as nematodes is the
dependent variable, spatial contagion is expected to
exist in the dependent variable, thus the spatial lag
process model would be most appropriate. However,
LeSage and Pace (2009) found that, when the spatially
autocorrelated error terms (omitted variables) are cor-
related with explanatory variables, the coefficient esti-
mates from the spatial error model are unbiased but

14 Journal of Nematology, Volume 46, No. 1, March 2014



inefficient, and the spatial Durbin model is more ap-
propriate.

CASE STUDY OF ECONOMIC ANALYSIS FOR THE POTENTIAL

OF SITE-SPECIFIC NEMATODE MANAGEMENT

The clear establishment and precise estimation of
yield potential (the yield penalty associated with nema-
todes) is essential to analyzing profitability and developing
site-specific nematicide application recommendations.
Function specification should reflect site-specific dif-
ferences in yield response to nematicide application.
Fumigant nematicides are spatially and temporally dy-
namic and their effectiveness depends on many factors
including nematode population density, soil texture,
and geographic characteristics. Model specification
should account for the complexity of yield response.
Improperly specified models are susceptible to omitted
variable bias, which may be costly for site-specific or
variable-rate nematicide application since prescriptions
are based on the coefficient estimates from the yield
response function. Moreover, failing to properly account
for the spatial structure of the data could result in in-
efficient estimates for the site-specific yield response
function and, in turn, affect the profitability analysis for
the nematicide application.

Our case study applied spatial econometric methods
to conduct an economic analysis of yield monitor data
for the study of cotton response to nematicide appli-
cation in Arkansas. On-farm experiments were con-
ducted from 2001 to 2004 in a 6.07-ha production field
in southeastern Arkansas. The field was subdivided into
512 plots (32 plots wide 3 16 plots long). Each plot was
approximately 0.012 ha consisting of four 30.5-m long
rows (30.5 3 3.9 m). The geographic location of each
plot was determined with a differential GPS receiver
(Trimble, Sunnyvale, CA) accompanied by a GPS map-
ping software (Site-Mate, Farmworks, Hamilton, IN).
The nematicide, 1,3-dichloropropene (Telone II, Dow
Agrosciences, Indianapolis, IN), was applied 2 wk before
planting in strips at rates of 0, 14.1, 29.2, or 42.2 l/ha in
2002. The experimental design for the trials was a ran-
domized complete block design, and the treatments
were replicated eight times. All plots were sampled
for root-knot nematode (Meloidogyne incognita) pop-
ulation density each year before nematicide applica-
tion (Mipre), at the time of planting (to represent the
initial population after fumigation (Mipi)), at peak
bloom (Mipm), and at harvest (Mipf). Yield files in-
clude data-point information about yields, latitude,
longitude that were used to generate a geopositioned
data file, and also soil texture (% sand fraction) and
nematicide (Telone) application rate. The data for
the 2002 crop season were used for the analysis. A
queen contiguity spatial weight matrix (eight neigh-
bors to each cell) was employed to capture the ex-
isting spatial structure.

We hypothesize that crop yield penalties are a func-
tion of nematode population density (Mipi02, Mipm02,
and Mipf02), nematicide application rate (Telone), and
soil texture (Zsand). Since the evidence indicates a
correlation between crop yield penalties, magnitude
of infestation, and soil texture (Monfort et al., 2007;
Mueller et al., 2011), some interaction terms, such as
the soil texture interaction with nematode population
and soil texture interaction with nematicide applica-
tion rate, were included in the model to explore the
potential relationship among soil properties, treat-
ment application, and yield response. Then the em-
pirical model estimated was expressed as follows:

Yield ¼ f ðMipi02;Mipm02;Mipf 02;Zsand;Telone;

Zsand : Telone;Mipi02 : Zsand;Mipm02 : Zsand;

Mipf 02 : ZsandÞ

The estimation results for Standard (OLS), Spatial
Lag (SAR), Spatial Error (SEM), and Spatial Durbin
(SDM) models are summarized in Table 1. We inter-
preted the coefficient based on the best fit model, so we
start explanation from the diagnostic tests conducted.
Both Lagrange Multiplier (LM) Error test (LM-Error =
164.83, which is distributed as x2 with 1 degree of
freedom) and LM Lag test (LM-Lag = 162.13, which is
distributed as x2 with 1 degree of freedom) strongly
reject the null hypothesis of no spatial autocorrelation
at very high significance levels (p , 0.001). Also the
spatial autoregressive parameter l (Lambda) in the
spatial error model and r (Rho) in the spatial lag model
and spatial Durbin model are all highly significant at
1% significance level, which also indicates that spatial
autocorrelation exists in the data, and the spatial model
is more appropriate than standard aspatial model. Al-
though Robust LM tests suggest a spatial error model as
the proper alternative rather than a spatial lag model
with higher statistic value, the spatial Hausman test re-
jects the null hypothesis and suggests the omitted var-
iables are a problem and that the spatial Durbin model
should be used in this situation (LeSage and Pace,
2009). The model fit improves when the spatial Durbin
model is applied, as indicated by an increase in the log
likelihood (from 23346 to 23314) and a decrease in
AIC (from 6,843 to 6,670). In this site-specific nematode
management case, spatially autocorrelated omitted var-
iables (e.g., geographic characteristics) may influence
the included explanatory variables (e.g., nematode
population), so the local crop yield may not depend
simply on local determinants, but also the neighboring
plot’s determinants. Thus, the spatial Durbin model is
selected as the best fit model in this case study based
on both empirical statistic diagnostics and theoretical
considerations.

The signs of the coefficient estimates in Spatial Durbin
model are the same as in the standard OLS model, with
the exception of the significance level for some variables.
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The nematode population at planting time (Mipi) and
at harvest time (Mipf) are significant determinants for
the cotton yield in the OLS model whereas the pop-
ulation density at the bloom time (Mipm) is highly
significant for the yield variability suggested by the re-
gression results from spatial Durbin model. The soil
texture (percent sand fraction, Zsand) has significant
impact on the crop yield across spatial and aspatial
models. Nematicide application (Telone) is not a signif-
icant factor for the cotton yield variability, but it can
have significant impact when interacting with the soil
texture (Zsand:Telone), indicating that the yield response
for the nematicide application varies with soil texture.
The yield response for a given nematode population
density is also different depending on soil texture
(Mipm02: Zsand). The spillover effects of some explan-
atory variables from neighboring plots also significantly
influence the local crop yield (lag.Mipm02, lag.Mipf02,
lag.Zsand, lag.Telone, lag.Zsand: Telone, lag.Mipm02: Zsand,
lag.Mipf02: Zsand) although some of the coefficient
signs are different from the local effect signs since the
spillover effects in the spatial Durbin model extend
throughout the whole spatial system.

It should be noted that the magnitude of coefficients
of the spatial Durbin model cannot be compared di-
rectly with coefficients from a model that does not
contain a spatially lagged dependent variable since the

autoregressive parameter interacts with the explanatory
variables. To interpret the magnitude of the coefficient,
we need to derive the marginal effects of a particular
explanatory variable, which can be decomposed into
direct, indirect, and total effects as illustrated by LeSage
and Pace (2009).

The coefficient estimates suggested that the crop
yield response for a given nematode infestation level or
nematicide application rate differs by soil texture; there-
fore, site-specific nematicide application may be mod-
estly profitable. The delineation of management zones
for nematicide application decisions within fields can
be evaluated based on nematode density and soil tex-
ture (percentage of sand, clay, silt, or electrical conduc-
tivity as a proxy). In this case study, because soil texture
was the most useful factor for explaining variation in
yield, management zone based on soil texture categories
can be delineated as follows: (i) 0% to 30% sand, (ii) 30%
to 45% sand, (iii) 45% to 65% sand, and (iv) 65% to
100% sand. The average return for the field was esti-
mated as the weighted sum of returns in each man-
agement area, where the weights are the proportion of
the area. Maximization of expected profit from vari-
able rate application can be expressed as follows:

MaxE p½ � ¼�
4

i¼1
Areai � E PC � EðYieldÞ � PT � Ti½ �

TABLE 1. Coefficient estimates and diagnostic statistics.

OLS SAR SEM SDM

Variables
(Intercept) 2161.000*** 897.580*** 2151.800*** 348.560
Mipi02 -0.187* -0.151* -0.152* -0.139
Mipm02 -0.019 -0.036** -0.058*** -0.048***
Mipf02 -0.134** -0.068 -0.038 -0.046
Zsand -18.350*** -13.909*** -17.187*** -15.053***
Telone -3.810 -3.531 -4.855** -2.620
Zsand:Telone 0.118* 0.127** 0.169*** 0.121**
Mipi02:Zsand 0.002 0.002 0.002 0.002
Mipm02:Zsand 0.0003 0.0006* 0.0011*** 0.0008**
Mipf02:Zsand 0.003** 0.001 0.001 0.001
lag.Mipi02 0.167
lag.Mipm02 0.166***
lag.Mipf02 -0.382***
lag.Zsand 18.212**
lag.Telone 19.651*
lag.Zsand:Telone -0.631**
lag.Mipi02:Zsand -0.008
lag.Mipm02:Zsand -0.003***
lag.Mipf02:Zsand 0.008***
Rho 0.818*** 0.833***
Lambda 0.902***
Measures of fit
Log likelihood -3346 -3340 -3314
AIC 6843 6717 6704 6670
Diagnostic tests d.f. Value Prob
Lagrange multiplier (error) 1 164.832 0.000
Robust LM (error) 1 12.545 0.000
Lagrange multiplier (lag) 1 162.133 0.000
Robust LM (lag) 1 9.846 0.002
Hausman test 10 93.748 0.000

Significance is designated at P = 0.01, 0.05, and 0.10 by ***, **, and *, respectively.
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where E = expectation operator; p = total net returns over
site-specific nematicide application ($ ha21); Areai = pro-
portion of management area i (i = 1,...,4); Pc = price of
cotton ($ kg21); E (Yield) = expected yield estimate from
the yield response function estimated with the spatial
Durbin model (kg/ha); PT = price of nematicide (Telone)
($ kg21); and Ti = quantity of nematicide applied in area i.

We can also calculate the expected net return from
uniform rate application. The difference of the net
return from the variable rate application and uniform
rate application can be viewed as the breakeven variable
rate (VR) fee. On the other hand, we can estimate the
VR application cost, which may include the equipment
costs, staff training cost, etc. If the breakeven VR fee
can cover the estimated VR application cost, then site-
specific nematicide application would be profitable.
This economic analysis provides an initial insight into
the potential of site-specific nematode management.

CONCLUSIONS

The spatial statistical and economic analysis tech-
niques offer an opportunity to develop more precise
parameter estimates in a crop yield response function
for site-specific nematicide application by exploiting
spatial structure inherent in agricultural yield data. The
precision of economic analysis related to yield, return,
and profitability of site-specific nematode management
can be improved based on the parameter estimates
from the appropriate spatial statistical model. Success-
ful adoption of the spatial econometric methodology
requires more mature field-scale experimentation in-
cluding experimental design, implementation, data
collection, analysis, and interpretation. To use the site-
specific response estimates in decision making more
efficiently, spatial modeling applied for panel data,
which accounts for both spatial and temporal hetero-
geneity and dependencies, should be given more at-
tention in future research.
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