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Abstract: Although sporadic human infection due to Burkholderia cepacia has been reported for many years, it has been only during
the past few decades that species within the B. cepacia complex have emerged as significant opportunistic human pathogens.
Individuals with cystic fibrosis, the most common inherited genetic disease in Caucasian populations, or chronic granulomatous
disease, a primary immunodeficiency, are particularly at risk of life-threatening infection. Despite advances in our understanding
of the taxonomy, microbiology, and epidemiology of B. cepacia complex, much remains unknown regarding specific human
virulence factors. The broad-spectrum antimicrobial resistance demonstrated by most strains limits current therapy of infection.
Recent research efforts are aimed at a better appreciation of the pathogenesis of human infection and the development of novel
therapeutic and prophylactic strategies.
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Until relatively recently, Burkholderia cepacia had been
considered a phytopathogenic or saprophytic bacterial
species with little potential for human infection. How-
ever, reports of sporadic human infection have ap-
peared in the biomedical literature, generally describ-
ing infection in persons with some underlying disease
or debilitation (Dailey and Benner, 1968; Poe et al.,
1977). Indeed, an early review of one medical center’s
experience with B. cepacia infection during the years
1968–1969 indicated that essentially all infections oc-
curred in patients with a chronic disease that predis-
posed them to opportunistic infection (Ederer and
Matsen, 1972). Other reports described “pseudo-
epidemics” among hospitalized patients, most often at-
tributed to contamination of disinfectants used in the
preparation of blood culture systems (Berkelman et al.,
1981; Craven et al., 1981; Sobel et al., 1982). Contami-
nation of antiseptic and anesthetic solutions also has
resulted in true nosocomial infection and “mini-
epidemics,” particularly in intensive care units (Phillips
et al., 1971; Steere et al., 1977).
Chronic Granulomatous Disease: In addition to hospital-

acquired infection, persons with certain chronic dis-
eases are susceptible to infection by B. cepacia. Among
these disorders is chronic granulomatous disease
(CGD). In this inherited primary immunodeficiency
disease, white blood cells are unable to kill some bac-
terial and fungal species after phagocytosis (Winkel-
stein et al., 2000). The underlying defect is an inability
of phagocytic cells to generate superoxide and reactive
oxidants that are necessary for intracellular microbici-
dal activity. As a result of this defect, CGD patients suf-
fer from recurrent life-threatening infections, such as
severe pneumonia and bacteremia caused by certain
catalase-positive species. The observation that not all
catalase-positive bacteria are capable of causing severe
infection in CGD suggests that some species, including

B. cepacia, possess other factors that remain to be elu-
cidated that also mediate pathogenicity in this condi-
tion (Speert et al., 1994). Fortunately, CGD is a rela-
tively rare disease, having an average annual incidence
of approximately 1/200,000 live births in the United
States; this means there are approximately 20 persons
with CGD born each year in the United States.
Cystic fibrosis: Cystic fibrosis (CF) is another inherited

disorder in which B. cepacia can cause severe infection
(LiPuma 1998a). In contrast to CGD, CF is relatively
common. It is, in fact, the most common lethal genetic
disorder among Caucasians, affecting approximately
1/2,750 live births. One person in 25 is an asymptom-
atic carrier. There are currently some 30,000 persons
with CF in the United States, and an equal number can
be found in Europe. Cystic fibrosis is a multisystem dis-
ease that is believed to result primarily from a mutation
in the gene encoding the cystic fibrosis transmembrane
conductance regulator (CFTR), a cAMP-dependent
chloride channel. The consequences of this defect are
complex (Larson and Cohen, 2000; Zeitlin, 1999), but
the resultant altered respiratory epithelial surface fluid
in some way predisposes to chronic pulmonary infec-
tion. Nearly 1,000 mutations have been identified in
the CF gene—the most common being a deletion of
phenylalanine at amino acid position 508 (�F508). De-
spite the presence of this mutation among the majority
of persons with CF, there is a wide spectrum of disease
severity. Most persons have some degree of respiratory
dysfunction and are prone to chronic respiratory tract
infection (Dinwiddie, 2000). Common bacterial patho-
gens in young CF patients include Staphylococcus aureus
and Haemophilus influenzae. During adolescence Pseudo-
monas aeruginosa infection becomes common, and by
adulthood nearly 80% of CF patients are chronically
infected with P. aeruginosa. Progressive lung deteriora-
tion secondary to recurrent or chronic infection is the
leading cause of death in CF; the median survival age is
approximately 32 years. Nevertheless, it is important to
point out that many persons with CF are in relatively
good health, infrequently hospitalized, and lead pro-
ductive and active lives.
History of B. cepacia infection in CF: The first reports of
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B. cepacia infection in persons with CF appeared in the
late 1970s (Blessing et al., 1979; Laraya-Cuasay et al.,
1977). Shortly thereafter, a report described severe
pneumonia, sepsis, and death due to B. cepacia in a CF
patient (Rosenstein and Hall, 1980), and a study of
prophylactic antibiotic use in CF from Toronto in 1982
reported that 45% of enrolled patients were infected
with B. cepacia (Nolan et al., 1982). The seminal report
by Isles et al. (1984) subsequently described in greater
detail the clinical significance of B. cepacia infection in
the Toronto CF center. In addition to documenting a
steadily increasing prevalence of B. cepacia infection
during the previous decade, these investigators de-
scribed a syndrome of severe progressive respiratory
failure with bacteremia that occurred in several pa-
tients. Soon thereafter, this so-called “cepacia syn-
drome” was also described in reports from other North
American CF treatment centers that had witnessed simi-
lar increases in incidence of B. cepacia infection among
their patients (Tablan et al., 1985; Thomassen et al.,
1985). A number of subsequent studies further defined
the impact of B. cepacia infection in CF and identified
several risk factors for infection, including hospitaliza-
tion and having an infected sibling (Goldmann and
Klinger, 1986; Tablan et al., 1987).
Virulence of B. cepacia: Several case-controlled studies

have demonstrated an association between infection
with B. cepacia and poor prognosis in CF (Brown et al.,
1993; Ledson et al., 2002; Lewin et al., 1990; Taylor et
al., 1993; Whiteford et al., 1995). In fact, although
many individuals may remain infected with B. cepacia
for prolonged periods, up to 20% succumb to a rapidly
progressive necrotizing pneumonia soon after infection
is recognized (Isles et al., 1984; Tablan et al., 1987;
Simmonds et al., 1990). Despite this association, the
precise role B. cepacia plays in the pathology of CF lung
disease is not clear. This uncertainty has fueled specu-
lation that B. cepacia is merely a marker of pulmonary
deterioration in a subpopulation of individuals with
more severe underlying disease. This hypothesis is chal-
lenged by the observations that fatalities have occurred
in adults with mild pulmonary disease prior to infection
(Govan et al., 1993) and that infection frequently oc-
curs in persons who have had no apparent antecedent
decline in lung function (Muhdi et al., 1996).
Unfortunately, the lack of clearly defined virulence

factors and the limitations of current models of human
infection have precluded a better understanding of the
mechanisms by which B. cepacia acts as a human patho-
gen. Several extracellular products known to contribute
to virulence in other bacterial species, including prote-
ases, lipases, siderophores, and hemolysins, have been
identified in B. cepacia (Nelson et al., 1994). At least five
different classes of pili that may mediate bacterial ad-
herence to respiratory mucins or epithelial cells also
have been described (Goldstein et al., 1995). However,
the role of these factors in virulence is yet to be firmly

established. There is increasing evidence that the lung
damage seen with B. cepacia infection results from a
marked host inflammatory response (Hughes et al.,
1997). For example, B. cepacia lipopolysaccharide is a
potent stimulator of neutrophil respiratory burst re-
sponses and induces significantly more production of
tumor necrosis factor alpha from monocytes in vitro
than does lipopolysaccharide from P. aeruginosa (Shaw
et al., 1995). The ability of B. cepacia to invade and
survive within respiratory epithelial cells (Chiu et al.,
2001; Keig et al., 2001; Martin and Mohr, 2000) and
resist intracellular killing by phagocytic cells (Saini et
al., 1999) may play a role in evasion of host immune
response and persistence of infection. Finally, N-
acylhomoserine lactone-dependent quorum-sensing
systems that most likely regulate biofilm production by
B. cepacia in vivo have been described (Gotschlich et al.,
2001; Lewenza et al., 1999).
Antimicrobial resistance: The broad-spectrum antibiotic

resistance demonstrated by most strains of B. cepacia
severely limits effective therapy of human infection. In
fact, identification of strains resistant to all currently
available antibiotics, particularly in CF patients, fre-
quently renders infection refractory to antimicrobial
therapy. The sparse phosphorylation of B. cepacia lipo-
polysaccharide is believed to be responsible for intrin-
sic resistance to polycationic peptides including
aminoglycoside antibiotics (Hancock, 1998). Inducible
chromosomal �-lactamases are present in the majority
of strains (Chiesa et al., 1986) as are antibiotic efflux
pumps that mediate resistance to chloramphenicol,
quinolone antibiotics, and trimethoprim (Burns et al.,
1996). Altered dihydrofolate reductase is yet another
mechanism by which some strains may exhibit tri-
methoprim resistance (Burns et al., 1989).
Taxonomy and clinical microbiology: Although B. cepacia

was described 50 years ago (Burkholder, 1950), the
complex taxonomy of this and closely related species
was not fully appreciated until recently. Originally des-
ignated Pseudomonas cepacia, this species, along with sev-
eral others (including the closely related P. gladioli),
was placed in Pseudomonas RNA homology group II
(Palleroni et al., 1973). Based on subsequent molecular
analyses that demonstrated significant differences with
other pseudomonads, this entire group became mem-
bers of the new genus Burkholderia in 1992 (Yabuuchi et
al., 1992).
More recently, Vandamme et al. (1997) employed a

polyphasic approach including whole-cell protein and
fatty acid analyses together with DNA-DNA and DNA-
rRNA hybridization to demonstrate several distinct spe-
cies among presumed B. cepacia isolates recovered from
CF sputum culture. Initially, five genomic species (ge-
nomovars) were identified and collectively referred to
as the “B. cepacia complex.” During the past few years
four additional species have been described that are
also considered members of this group. (A more com-
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plete description of the taxonomy of the B. cepacia com-
plex is provided elsewhere in these proceedings—
Vandamme and Mahenthiralingam (2002) see also the
review by Coenye et al. (2001).
Accurate identification of B. cepacia complex species

may be problematic. Misidentification is relatively com-
mon and likely results from the taxonomic complexity
described previously. In recent studies employing poly-
merase chain reaction (PCR)-based analyses, approxi-
mately 10% of putative B. cepacia isolates referred from
clinical microbiology laboratories had been misidenti-
fied based on phenotypic assessment alone (McMena-
min et al., 2000; Shelly et al., 2000). The use of selective
media, including TB-T (Hagedorn et al., 1987), PC
agar (Gilligan et al., 1985), and OFPBL (Welch et al.,
1987), which take advantage of these species’ broad
antibiotic resistance, is important in recovery of B. ce-
pacia complex from clinical specimens. However, these
media may allow the growth of other related bacteria
such as B. gladioli, Alcaligenes spp., Comamonas spp., Fla-
vobacterium spp., and Stenotrophomonas maltophilia. A
more recently described medium, B. cepacia selective
agar (BCSA), is better able to inhibit related species
while supporting the growth of all B. cepacia strains ex-
amined (Henry et al., 1997, 1999). Commercial test
systems specifically developed for the identification of
gram-negative, non-fermenting bacilli offer another im-
portant adjunct in identification, but these do not al-
ways yield unequivocal results (Kiska et al., 1996; Shelly
et al., 2000). A number of PCR-based assays targeting B.
cepacia complex species-specific 16S rDNA or recA gene
sequences have been developed (Bauernfeind et al.,
1999; LiPuma et al., 1999; Mahenthiralingam et al.,
2000) and provide the most accurate tools in current
identification schemes (Coenye et al., 2001).
Epidemiology of B. cepacia complex infection: During the

1980s, the clustering of B. cepacia infection at some CF
treatment centers with the sparing of others, and the
dramatic reduction in incidence of infection after in-
stitution of strict infection-control measures (Thomas-
sen et al., 1986), suggested nosocomial acquisition or
person-to-person transmission of B. cepacia. Studies em-
ploying isolate ribotyping analysis demonstrated that,
within several CF treatment centers, the majority of B.
cepacia-colonized patients harbored the same strain
(LiPuma et al., 1988). Inter-patient spread of B. cepacia
was documented in 1990 (LiPuma et al., 1990), and a
number of studies since have provided compelling evi-
dence of person-to-person transmission of B. cepacia
through nosocomial and social contact (LiPuma,
1998b).
More recent studies have applied a variety of geno-

typing methods including random amplified polymor-
phic DNA (RAPD) typing, pulsed field gel electropho-
resis (PFGE), and repetitive extragenic palindromic
PCR (rep-PCR) typing to further investigate the epide-
miology of B. cepacia complex infection in CF. These

efforts confirm that patients receiving care in the same
CF treatment center are frequently infected with the
same so-called “epidemic” B. cepacia complex strain. In
fact, in one center the same genomovar III strain,
termed PHDC, has been recovered from the majority of
infected patients for the past 20 years (Chen et al.,
2001). This endemicity was punctuated by the spread of
this strain between CF treatment centers in two cities,
presumably via re-location of an infected patient.
Bacterial features specific for B. cepacia complex

strains with an apparent enhanced capacity for human
infection or transmission have been sought. Mahenthi-
ralingam et al. (1997) found that several strains recov-
ered from multiple patients contained a conserved 1.4-
kb genomic fragment not found in strains recovered
from single patients. This fragment, termed the B. ce-
pacia epidemic strain marker (BCESM), encodes an ap-
proximately 834-bp open reading frame, esmR, with ho-
mology to negative transcriptional regulators; however,
the role of this putative gene in virulence remains un-
known. ET12, a genomovar III strain that dominates
among CF patients in Ontario, Canada, and is associ-
ated with inter-patient spread in the United Kingdom,
has been the most completely studied epidemic lin-
eage. In addition to esmR, this strain elaborates large
peritrichous pili, termed cable pili. The gene encoding
cable pili, cblA, has been characterized, as has the epi-
thelial cell receptor for the cable pili associated adhesin
(Sajjan et al., 1995, 2000). Although cblA-bearing ET12
are common among CF patients in Canada and the
United Kingdom, a recent study of B. cepacia complex
isolates recovered from more than 600 United States
CF patients demonstrated that only one contained the
complete cblA sequence (LiPuma et al., 2001). Strain
PHDC (described above) contains neither esmR nor
cblA sequences (Chen et al., 2001). Therefore, while
having potential roles in the virulence of some epi-
demic strains, the presence of these markers clearly is
not essential in all epidemic lineages.
Distribution of B. cepacia complex species: The apprecia-

tion that several distinct species comprise bacteria pre-
viously identified merely as B. cepacia has provided an
opportunity to reassess the natural history and epide-
miology of “B. cepacia” infection in CF. In the study
noted above, B. cepacia complex isolates from 606 CF
patients receiving care at 132 treatment centers in 105
cities in the United States were assessed to determine
species distribution within the B. cepacia complex. Iso-
lates were also examined for the presence of esmR and
cblA (LiPuma et al., 2001). Fifty percent of patients were
infected with B. cepacia complex genomovar III, 38%
with B. multivorans (genomovar II), and 5% with B.
vietnamiensis (genomovar V); fewer than 5% of patients
were infected with either genomovar I, B. stabilis (ge-
nomovar IV), genomovar VI, B. ambifaria (genomovar
VII), B. anthina (genomovar VIII), or B. pyrrocinia (ge-
nomovar IX). The esmR locus was found in 46% of
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genomovar III isolates and not in any other species.
Only one isolate, from a patient infected with the ET12
epidemic lineage, contained the complete cblA pilin
subunit gene.
Recent studies from Canada (Speert et al., 2002) and

Italy (Agodi et al., 2001) similarly demonstrate the
dominance of genomovar III among B. cepacia com-
plex-infected CF patients. In addition, most strains de-
scribed to date as being involved in inter-patient spread
are genomovar III. However, multiple patients infected
with the same B. multivorans strain have been found
(Segonds et al., 1999), and the “epidemic” strain in-
volved in the first description of inter-patient spread of
B. cepacia is now known, in fact, to be genomovar VI
(LiPuma et al., 1990, 1994). Whether these differences
in epidemiology translate into differences in virulence,
per se, remains to be determined. Recent observations
among CF patients undergoing lung transplantation
have demonstrated substantially greater rates of post-
operative mortality among persons infected with ge-
nomovar III compared with other B. cepacia complex
species (Aris et al., 2001; DeSoyza et al., 2001). Never-
theless, bacteremia and death among CF patients in-
fected with non-genomovar III species certainly occurs
(unpubl. obs.).
In summary, these data indicate that although all

nine species currently constituting the B. cepacia com-
plex are capable of causing infection in CF, their dis-
tribution is quite disproportionate, suggesting a differ-
ential capacity for human infection among these phy-
logenetically closely related species. The low frequency
of esmR and cblA indicates that they are not sufficient
markers of B. cepacia complex virulence or transmissi-
bility in human infection.

Conclusions

Although species of the B. cepacia complex are gen-
erally not pathogenic for healthy humans, sporadic hu-
man infection and outbreaks among debilitated hospi-
talized patients have been recognized for many years.
More importantly, for reasons that remain to be eluci-
dated, persons with certain underlying disorders, par-
ticularly CGD and CF, are susceptible to life-
threatening infection. In both conditions infection can
result in acute illness and death or remain chronic for
many years. Unfortunately, effective therapy is severely
limited by the inherent broad-spectrum antibiotic resis-
tance exhibited by most strains.
Comprehensive taxonomic studies that have defined

several closely related species within the B. cepacia com-
plex provide a critical platform for further study of the
pathogenesis, epidemiology, and natural history of hu-
man infection due to “B. cepacia.” Within this context,
recent investigation indicates a high rate of misidenti-
fication of B. cepacia complex species based on pheno-
type alone. Recent work also indicates that although all

B. cepacia complex species are capable of causing infec-
tion, some (i.e., B. multivorans and genomovar III) are
much more frequently involved than are others. Fur-
thermore, some specific strains, especially within ge-
nomovar III, seem to possess a particular predilection
for human infection and(or) person-to-person trans-
mission. Ongoing study is aimed at defining the specific
human features and bacterial virulence factors in-
volved. Such studies are prerequisites for the develop-
ment of novel therapeutic and preventive strategies.
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