Host Suitability of Rapeseed for *Heterodera schachtii*¹

ERIC L. NIELSEN,² DAVID D. BALTENSPERGER,² ERIC D. KERR,³ CHARLIE L. RIFE⁴

Abstract: Because rapeseed, especially canola, has the potential to be grown in rotation with sugarbeet in the north-central region of the United States, this study was initiated to assess its susceptibility to infection by *Heterodera schachtii* and to develop a screening method for *Brassica* germplasm. Existing methodology was adapted for growing *Brassica juncea, B. napus, B. rapa, Brassica* hybrids, and sugarbeet, *Beta vulgaris,* in *H. schachtii*-infested soil to count the females that developed on the roots. Cysts on sugarbeet contained a mean of 130 eggs compared with 240 for *B. napus,* lowest for the *Brassica*. Viability of eggs produced was assessed in soil planted with *Brassica* and sugarbeet and infested with with 0, 100, 1,000, 3,000, and 5,000 eggs to count resulting females and cysts. Number of females (y) was related linearly to infestation rate (x) by the regression equations y = 2.82 + 0.07(x) for the *Brassica* lines ($R^2 = 0.79$; P < 0.001) and y = 0.43 + 0.04(x) for sugarbeet ($R^2 = 0.69$; P < 0.007). These data indicated the potential for *H. schachtii* population increase if the two crops are used in rotation. All of the 111 germplasm lines tested were susceptible. The methodology developed during this research would benefit attempts to develop rapeseed cultivars resistant to *H. schachtii*.

Key words: Beta vulgaris, Brassica hybrid, Brassica juncea, Brassica napus, Brassica rapa, canola, Heterodera schachtii, rapeseed, resistance screening, sugarbeet, sugarbeet cyst nematode, susceptibility.

Heterodera schachtii Schmidt, 1871, the sugarbeet cyst nematode, has been a negative factor in sugarbeet production for many years. It is reported in most sugarbeet (*Beta vulgaris* L.)-growing regions of the United States (Nematode Geographical Distribution Committee of the Society of Nematologists, 1984) and, depending on nematode densities, economic losses vary from a trace to 70% (Altman and Thomason, 1971). During his surveys in the 1920s, Thorne (1961) noted rapid distribution of sugarbeet cyst nematodes in the sugarbeet production areas of the western United States due to poor management practices.

Control practices for H. schachtii in sugarbeet production involve crop rotation, strict sanitation procedures, early planting, and chemical nematicides. In highly infested fields, yields are often doubled by nematicide treatments, and yield increases have averaged 11 to 15 tons/ha following soil fumigation treatments compared to untreated soil (Altman and Thomason, 1971). Trap crops of radish and white mustard, which stimulate hatching but depress reproduction, have been developed and used in Europe to reduce H. schachtii populations. Research to evaluate the effectiveness of this control method has been performed in the United States (Gardner and Caswell-Chenn, 1993; Koch, et al. 1998). Research has been conducted in Europe to develop hybrid species of oil-seed rape with resistance to H. schachtii by making crosses with geno-

E-mail: dbaltensperger1@unl.edu

types of related white mustard and fodder radish species that are resistant (Lelivelt et al. 1993a; Lelivelt et al. 1993b). Crop rotation can be an effective control practice when properly managed. *Heterodera schachtii* eggs may have a potential life span of 10 years, with the majority hatching within the first 3 to 5 years (Jones, 1956). Once hatched, the second-stage juveniles (J2) have a relatively short time in which to find a crop or weed host (Roberts and Thomas, 1981).

In recent years some sugarbeet producers in the north-central region of the United States have planted rapeseed (*Brassica* species L.), especially canola, as an alternative rotation crop. This study was initiated to assess the suitability of *Brassica* species with potential for canola-quality oils as hosts for *H. schachtii* and investigate methodologies for rapidly screening new rapeseed lines for resistance.

MATERIALS AND METHODS

The experiment was conducted in two phases. In the initial phase, soil from a field highly infested with *H. schachtii* was collected and used to fill two sizes of 'Conetainers' (Steuewe and Sons, Inc., Corvallis, OR), 3.8×20.9 cm and 3.8×13.9 cm. The nematode population in the soil averaged 32 eggs and J2/cm³ soil, as determined from cysts extracted from the soil by a modified version of the technique developed by Caswell et al., (1985) and crushed in a Tenbroeck Pyrex model 7726 tissue homogenizer (Corning, Inc., Science Products Division, Corning, NY) to free the eggs to be counted at x60 magnification. The soil also contained an undetermined quantity of *Nacobbus abberans* (Thorne, 1935) Thorne and Allen, 1994.

A diverse selection of winter and spring types of *Brassica* germplasm was represented in the experiment (Table 1). Spring types included four hybrids, three *B. juncea* experimental lines, 12 *B. napus* cultivars, and 10 experimental lines. Winter types included five *B. rapa* experimental lines, one cultivar, 14 *B. napus* cultivars, and 62 experimental lines. Sugarbeet, *Beta vulgaris* cy. 'Monohikari', was grown as a standard control.

Received for publication 15 March 2002.

¹ A contribution of the University of Nebraska Agricultural Research Division, Lincoln, NE 68583. Journal Series No. 13638. Research was supported in part by funding from the Sugarbeet Research and Education Board of Minnesota and North Dakota.

² Research Assistant and Professor, respectively, Department of Agronomy, University of Nebraska Panhandle Research and Extension Center, 4502 Ave. I, Scottsbluff, NE 69361.

³ Professor Emeritus, Department of Plant Pathology, University of Nebraska Panhandle Research and Extension Center, Scottsbluff, NE 69361.

⁴ Research Assistant Professor, Department of Agronomy, Kansas State University, Manhattan, KS 66506.

The authors thank James F. Margheim, Robert F. Heyduck, Andrew J. Green, and Debra A. Underhill for technical assistance.

This paper was edited by Terry L. Niblack.

TABLE 1. Germplasm tested and mean scores of *Heterodera schachtii* females from four replications of each line and averaged over species.

TABLE 1. Continued

species.					Cermplasm	Species	Habit	Germplasm mean ^a	Species
			Germplasm	Species	K\$8981	B natus	winter	19	
Germplasm	Species	Habit	mean ^a	mean	KS8281	B. napus B. napus	winter	12	
KSR925	Brassica rapa	winter	14		KS8208	B. napus B. napus	winter	12	
KSR903	B. rapa	winter	13		KS7448	B. napus	winter	12	
KSR912	B. rapa	winter	13		KS7489	B. napus	winter	12	
KSR943	B. rapa	winter	13		KS7688	B. napus	winter	12	
Debut	B. rapa	winter	12		KS7727	B. napus	winter	12	
KSR953	B. rapa	winter	12		Arctic	B. napus	winter	11	
				13	Ericka	B. napus	winter	11	
KS6120	Brassica napus	winter	15		Inka	B. napus	winter	11	
KSM3-1-120	B. napus	winter	15		Jetton	B. napus	winter	11	
Pendleton	B. napus	winter	15		KS8189	B. napus	winter	11	
Rapier	B. napus	winter	15		KS8284	B. napus	winter	11	
Winfield	B. napus	winter	15		KS8309	B. napus	winter	11	
KS8114 VC0197	B. napus	winter	15		KS7756	B. napus	winter	11	
K58157	b. napus	winter	15		K58520	B. napus	winter	10	
K58203 V\$8220	B. napus B. napus	winter	15		K57554 V\$7910	B. napus B. napus	winter	10	
K30339 KS8343	D. napus B. napus	winter	15		KS7210 KS7478	B. napus B. napus	winter	9	
KS8346	D. napus B. napus	winter	15		Cyclone	D. napus B. napus	spring	15	
KS8357	D. napus B. napus	winter	15		Norseman	B. napus	spring	15	
K\$8361	B. napus B. napus	winter	15		93 SN 195 9 1	B. napus	spring	15	
KS8367	B. napus B. napus	winter	15		93 SN 21 8 3	B. napus B. napus	spring	15	
KS7013	B. napus B. napus	winter	15		93 SN 545 8 2	B. napus B. napus	spring	14	
KS7017	B. napus	winter	15		Flint	B. napus	spring	13	
KS7123	B. napus	winter	15		Impulse	B. napus	spring	13	
KS7284	B. napus	winter	15		Legend	B. napus	spring	13	
KS7369	B. napus	winter	15		Sunrise	B. napus	spring	13	
KS7412	B. napus	winter	15		G96202	B. napus	spring	13	
KS7574	B. napus	winter	15		G97097A	B. napus	spring	13	
KS7667	B. napus	winter	15		93.SN.195.10.3	B. napus	spring	13	
KSB0008	B. napus	winter	14		Brigade	B. napus	spring	12	
KSM3-1-124	B. napus	winter	14		Westar	B. napus	spring	12	
Olsen	B. napus	winter	14		93.SN.545.5.6	B. napus	spring	12	
Wichita	B. napus	winter	14		Bingo	B. napus	spring	11	
WW1089	B. napus	winter	14		Quantum	B. napus	spring	11	
KS8071	B. napus	winter	14		A112	B. napus	spring	10	
KS8202	B. napus	winter	14		Jewel	B. napus	spring	10	
KS8313	B. napus	winter	14		CL2078	B. napus	spring	10	
KS8369	B. napus	winter	14		RPX06.7.5.M4	B. napus	spring	10	
KS8381	B. napus	winter	14		Crown	B. napus	spring	8	10
KS7007 VS7519	B. napus B. napus	winter	14		0929014519	Duranian lambaid		14	15
KSW001	D. napus B. napus	winter	14		92A2914512	spp_upkpoup	spring	14	
ADC01099 501	D. napus B. napus	winter	14		08BC 91699	Brassica hybrid	enring	19	
Ceres	D. napus B. napus	winter	13		95BC.21022	spp_upkpowp	spring	12	
KS3203	B. napus B. napus	winter	13			spp. unknown			13
Plainsman	B. napus B. natus	winter	13		92 BL 13 B 5	Brassica juncea	spring	14	10
KS8279	B natus	winter	13		92 BL 26 B 2	B iuncea	spring	13	
KS8334	B. napus	winter	13		ZEM 1	B. juncea	spring	13	
KS8372	B. napus	winter	13			J. J. J. L.	1 8		13
KS8063	B. napus	winter	13		CI3	B. juncea ×	spring	12	
KS8130	B. napus	winter	13			B. napus	1 0		
KS7083	B. napus	winter	13			hybrid			
KS7174	B. napus	winter	13		CII3	B. juncea ×	spring	12	
KS7340	B. napus	winter	13			B. napus			
KS7566	B. napus	winter	13			hybrid			
KS7703	B. napus	winter	13						12
KS7740	B. napus	winter	13		Monohikari,	Beta vulgaris		8	
KSC004	B. napus	winter	13		sugarbeet				
Bridger	B. napus	winter	12						8
Casino	B. napus	winter	12		Grand mean			13	19
KS1701	B. napus	winter	12		LSD (0.05)			NS	3.55
KS8094	B. napus	winter	12					110	5.55
KS8118 KS8173	B. napus B. napus	winter winter	12 12		^a Counts were d considered to be h	liscontinued at 15 aduits igh level of infection. If $(R \ge 0.71)$	ılt females Differences i	and cysts. This in germplasm m	level was leans were

The experiment was conducted in a greenhouse during late fall and winter. Four replications of 112 entries each, with two replications grown in the 3.8×20.9 -cm cones and two grown in 3.8 × 13.9-cm cones, were evaluated for females after 5 weeks. Individual plants were removed from the cones, the roots carefully washed of soil with a gentle spray of water, and both viewed at $\times 10$ to ×30 magnification with dissecting microscopes. For the purpose of this experiment counts of 15 or more females were considered high levels of infection, so females were counted and scored from 0 to 15 for statistical analysis. Roots also were inspected for response to infection by N. abberans, and galls were counted and dissected for verification. Data for H. schachtii were analyzed by means of the SAS PROC GLM (SAS Institute Inc., Cary, NC) with species as whole plots and germplasm as subplots.

Females were collected from a subset of six *Brassica* experimental lines and six cultivars, as well as *Beta vulgaris*, and examined in more detail. Females from each plant were ground in a tissue homogenizer to free the eggs, which were then counted under ×30 magnification to determine the average number of eggs per female.

The second phase of the experiment was designed to test the viability of the eggs. Roots of remaining plants were washed and all females were collected by the modified version of the technique developed by Caswell et al. (1985). The collected females were ground in a tissue homogenizer, and the freed eggs were placed in 500 eggs/cm³ water. The eggs were used to infest heat-treated, uncontaminated soil in 3.8×20.9 -cm 'Cone-tainers' planted with two replications of 10 of the *Brassica* lines and sugarbeet.

Disposable plastic syringes with 14-gauge $\times 3/75$ -cm needles were used to infest the soil. The eggs were maintained in a constant state of suspension with a magnetic stirrer. The stirrer was stopped only long enough to fill a syringe to minimize potential variance caused by fluid flow. Injection was as near roots as possible without damage to the plant. Each replication included infestation levels of 5,000 eggs (10-ml suspension), 3,000 eggs (6-ml suspension), 1,000 eggs (2-ml suspension), 100 eggs (1-ml suspension diluted to 100 eggs/cm³), and a control without eggs. After 34 days the roots were washed and the females were counted. Data were analyzed with SAS contrast statements in PROC GLM and PROC REG to calculate coefficients of linear effects. Infestation levels were inspected for linear, quadratic, and cubic effects.

RESULTS

None of the selections tested displayed resistance to *H. schachtii*. More females developed on roots of plants in the larger 'Cone-tainers' (P < 0.001), probably due to the additional soil volume, which allowed increased

root development and increased the inoculum level per plant. There was no difference (P > 0.71) among the varieties tested and no difference (P > 0.13) among species (Table 1). Sugarbeet had fewer females (P < 0.05) as well as small root systems compared to the extensively developed rapeseed root systems, which ultimately provided more opportunity for infection.

Nacobbus abberans, which infected several sugarbeet roots, averaged fewer than one per plant. Although present, they had little effect on root systems so no interaction with *H. schachtii* was expected. No *N. abber*ans galls were observed on any of the *Brassica* roots, indicating it may not be a suitable host for this particular species.

Females from sugarbeet roots contained a mean of 130 eggs compared with 240 for *B. napus*, the lowest among the *Brassica* species (Table 2). Although eggs per female were lower on sugarbeet than *Brassica* lines (P < 0.01), there were no differences (P > 0.29) among lines within species of the *Brassica* subset tested.

When eggs from this phase were used to infest soil at various levels, viability of the eggs was demonstrated by the production of large numbers of females. Sugarbeet produced lower numbers of females (P < 0.04) at all levels of infestation. Because there was no difference (P > 0.06) among the *Brassica* species, they were combined for regression analysis in which only the linear effect was significant for infestation levels (Fig. 1).

DISCUSSION

Sugarbeet had lower numbers of females when grown in naturally infested soil and under all artificial infestation levels compared with any of the *Brassica* lines. It also produced fewer eggs per female than any of the *Brassica* lines. Because this germplasm represents a wide range of the canola types used in current breeding programs, this indicates that sugarbeet cyst nema-

TABLE 2. Mean number of *Heterodera schachtii* eggs per female averaged over two replications of selected subset.

Line	Species	Germplasm mean	Species mean
Brigade	Brassica napus	390	
Wichita	B. napus	260	
Plainsman	B. napus	210	
Legend	B. napus	190	
Ceres	B. napus	170	240
92.BJ.13.B.5	Brassica juncea	370	
92.BJ.26.B.2	B. juncea	290	330
Debut	Brassica rapa	270	
KSR953	B. rapa	250	
KSR925	B. rapa	220	250
CI3	B. juncea \times B. napus hybrid	260	
CII3	B. juncea \times B. napus hybrid	240	250
	Mean	260	270 NS ^a
Monohikari	Beta vulgaris	130	

^a Differences between lines and *Brassica* species are not significant.

FIG. 1. Relationship between soil infestation level of *Heterodera schactii* (x) and number of females produced (y) on *Brassica* lines (—) and *Beta vulgaris* (---).

todes could present major problems in canola production. Furthermore, canola may increase problems with *H. schachtii* on sugarbeet when included with it in the same rotation. The germplasm evaluated represents a small proportion of the total rapeseed and related species germplasm (GRIN, 2001). Although none of the experimental lines or cultivars in the test proved to be resistant to *H. schachtii*, this experiment established a relatively fast and efficient procedure to evaluate rapeseed resistance to *H. schachtii* that may be of value in transferring resistance from poorly adapted types, such as those being developed by Lelivelt et al. (1993a,b), to well-adapted canola quality types.

LITERATURE CITED

Altman, J., and I. Thomason. 1971. Nematodes and their control. Pp. 335–367 *in* R. T. Johnson, J. T. Alexander, G. E. Rush, and G. R. Hawkes, eds. Advances in sugarbeet production: Principles and practices. Ames, IA: The Iowa University Press.

Caswell, E. P., I. J. Thomason, and H. E. McKinney. 1985. Extraction of cysts and eggs of *Heterodera schachtii* from soil with an assessment of extraction efficiency. Journal of Nematology 17:337–340.

Gardner, J., and E. P. Caswell-Chen. 1993. Penetration, development, and reproduction of *Heterodera schachtii* on *Fagopyrum esculentum, Phacelia tanacetifolia, Raphanus sativus, Sinapis alba,* and *Brassica oleracea.* Journal of Nematology 25:695–702.

GRIN. 2001. Germplasm Resources Information Network, National Plant Germplasm System. ">http://www.ars-grin.gov/npgs/.>.

Jones, F. G. W. 1956. Soil populations of beet eel worm (*Heterodera schactii* Schm.) in relation to cropping II microplot and field plot results. Annals of Applied Biology 44:25–56.

Koch, D. W., F. A. Gray, and J. M. Krall. 1998. Nematode-resistant oil radish for *Heterodera schachtii* control II sugarbeet-dry bean-corn rotations. Journal of Sugarbeet Research 35 (1–2):62–75.

Lelivelt, C. L. C., W. Lange, and O. Dolstra. 1993a. Intergeneric crosses for the transfer of resistance to the beet cyst nematode from *Raphanus sativus* to *Brassica napus*. Euphytica 68:111–120.

Lelivelt, C. L. C., E. H. M. Leunissen, H. J. Frederiks, J. P. F. G. Helsper, and F. A. Krens. 1993b. Transfer of resistance to the beet cyst nematode (*Heterodera schachtii* Schm.) from *Sinapis alba* L. (white mustard) to the *Brassica napus* L. gene pool by means of sexual and somatic hybridization. Theoretical and Applied Genetics 85:688–696.

Nematode Geographical Distribution Committee of the Society of Nematologists. 1984. Distribution of plant-parasitic nematode species in North America. Hyattsville, MD: The Society of Nematologists.

Roberts, P. A., and I. J. Thomas. 1981. Sugarbeet Pest Management: Nematodes. Special Publication 3272. University of California, Division of Agriculture Science, Riverside. Thorne, Gerald. 1961. Principles of Nematology. New York: McGraw-Hill Book Co.