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Discriminating Tsuga canadensis Hemlock Forest Defoliation Using
Remotely Sensed Change Detection’

D. D. RovyLe? axp R. G. LATHROP"

Abstract: The eastern hemlock ( Tsuga canadensis) is declining in health and vigor in eastern North America due to infestation by
an introduced insect, the hemlock woolly adelgid {Adelges tsugne). Adelgid feeding activity resulis in the defoliation of hemlock forest
canopy over several yvears, We investigated the application of Landsat satellite imagery and change-detection technigues to monitor
the health of hemlock forest stands in northern New Jersey, We described methods used o correct effects due 1o atmospheric
conditions and monitor the health status of hemlock stands over time. As hemlocks defoliate, changes occur in the spectral
reflectance ol the canopy in near inlrared and red wavelengths—changes captured in the Normalized Difference Vegetation Index,
By relating the dilference in this index over time to hemlock deloliation on the ground, four classes of hemlock forest health were
predicted across spatially heterogeneous landscapes with 82% accuracy. Using a time series of images, we are investigating temporal
and spatial patterns in hemlock defoliation across the study area over the past decade. Based on the success of this methodology,

we are now expanding our study to monitor hemlock health across the entire Mid-Atlantic region.
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The eastern hemlock (Ysuga canadensis Carriere) is
an important native conifer in the forests of the north-
castern United States and southern Canada, where it is
highly valued for its ecological, cultural, and cconomic
significance (Quimby, 1996). Onc of the major forest
health issues impacting the castern United States is the
declining health and dieback of the eastern hemlock by
the hemlock woolly adelgid (HWA) (Adelges tsugae An-
nand), an introduced Asian insect (Lashomb et al.,
2002; McClure, 1987; McManus et al., 1999; Salom et

1., 1996). Dispersed by wind, birds, and mammals (Mc-
Clure, 1990), this tiny (1-mm), sap-feeding, aphid-like
insect has spread into at least 15 easiern states since its
introduction around 1950 (Onken, 2002; Sioetzel,
2002). As a result of this infestation, hemlock is threat-
ened throughout its natural range (Souto et al., 1996).
Hemlock deloliation and mortality have been high over
the past decade in the Mid-Atlantic region, especially in
northern New Jersey (Royle and Lathrop, 1997) and
ncighboring eastern Pennsylvania, where hemlock is an
important natural feature in numerous local, state, and
national parks and forests (Evans ct al., 1996).

Modecling hemlock vulnerability to HWA, based on
site and landscape characteristics, is an important goal
in hemlock research (Williams et al., 2002). Informa-
tion about the location of hemlock stands, their current
condition, and the rate at which they are declining is
crucial for analyses that examine the effects of hemlock
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deloliation and mortality on ecological processes and
forest succession (Lashomb et al., 2002; McManus et al..
1999). In addition, this information would be useful for
selecting stands in which Lo release natural predators of
HWA (Cheah and McClure, 2002). The first step in
modeling hemlock vulnerability, however, is to map
and quantify hemlock forest health at the appropriate
temporal and spatial scales with the highest possible
accuracy.

Remote sensing provides an efficient, cost-effective
means for monitoring forest health (Lachowski et al.,
1992). Tt has been used to detect, quantify, and map
forest canopy defoliation by a number of insect herbi-
vores including spruce budworm (Franklin and Raske,
1994) and gypsy moth (Muchoney and Haack, 1994).
In the mid-1990s, we nundertook a pilot study to inves-
tigate the utility of satellite imagery and image-
processing techniques to monitor eastern hemlock [or-
est health. To minimize differences in solar illumina-
tion and vegetation phenology between scenes, we used
anniversary dates (1984 and 1994) of Landsat Thematic
Mapper (TM) imagery (i.e., Landsat images acquired at
about the same time of year). We detected and quan-
tified our levels of canopy defoliation of eastern hem-
lock forest by HWA for a 1,695-km? study area in north-
ern New Jersey with a classification accuracy of 64% for
four levels of defoliation, and 70% to 72% accuracy for
three levels of defoliation (Royle and Lathrop, 1997).
Since that time, we have investigated further refine-
ments to our initial study with the objective of develop-
ing a robust methodology suitable for monitoring hem-
lock forest health across a heterogeneous landscape at
the regional scale, i.e., thousands of square kilometers.

Challenges in remotely sensed detection of HWA defoliation:
The application ol remote sensing technology to forest
health monitoring is beset by a number of challenges.
As in any change-detection project, positional inaccu-
racy, atmospheric haze, and terrain shadowing are com-
plicating factors that must be addressed. Additionally,
the spatial heterogeneity of naturally occurring hem-
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lock stand structure in a complex landscape presents
special challenges not normally encountered in an ag-
ricultural setting.

The nature and course of WA defoliation deter-
mincs the appropriateness of various techniques de-
signed to detect changes in forest canopics. Hemlock
woolly adelgid defoliation is characterized as a slow loss
of needles and a reduction in new growth, generally
progressing from the lower branches upward to the top
of the crown. Thus, HWA damage appears as a general
thinning of foliage taking place over the course of sev-
eral years, though iree death can occur in 2 10 4 years
(McClure, 1987). Hemlock woolly adelgid damage
symptoms differ from those of some other [oresi insects
(e.g.,

changes in the color of damaged [ollage although

spruce budworm) in that there are no distinct

hemlock needles can take on a grayish cast as they des-
iccate [rom loss ol [luids.

Various methods have been used to detect and quan-
tify defoliation in forest canopies (Bannari et al., 1995;
Coppin and Bauer, 1996; Singh, 1989). One method,
image classification (Jensen, 1986), identifies spectral
clusters that represent different levels of defoliation
among forest stands, usually within a single date of im-
agery. In most cases, image classification exploits
changes in the color of tree foliage attacked by insects.
This method was used to monitor defoliation by spruce
budworm (Buchheim et al., 1985; Leckie and Ostaff,
1988), hemlock looper (Franklin, 1989), and gypsy
moth (Muchoney and Haack, 1994). Delecting subile
changes in color in hemlock foliage infested by HWA,
however, is diflicult in mixed [orests with varying
amounts ol hemlock, especially in rugged terrain. An-
other method, image diflerencing (Jensen 1986), quan-
tifies defoliation by subtracting reflectance in a Time,
image [rom the rellectance in a co-registered Time,
image. By relating the spectral difference to defoliation
on the ground, different levels of defoliation can be
quantified. This method was used to monitor spruce-fir
decline (Vogelmann and Rock, 1988) and forest defo-
liation by pear thrips (Vogelmann and Rock, 1989),
gypsy moth (Muchoney and Haack, 1994; Nelson,
1983), and HWA in our pilot study (Royle and Lathrop,
1997).

The use of spectral vegetation indices in combination
with image differencing to monitor changes in vegeta-
tion biomass or leat’ area shows great promise. Healthy
green vegetation reflects near infrared (NIR) energy
and absorbs visible red and middle infrared (MIR)
wavelengths of energy. The ratio of NIR/red is posi-
tively correlated with the amount of green vegetation
present and serves as a useful vegetation index in forest-
related studies (Spanner et al., 1990). Numerous veg-
ctation indices have been used in forest defoliation
studies, but the best VIs for quantifying changes in
green biomass have been the ratio-based indices (e.g.,
SR and NDVT). The Vegetation Index Difference (VID)

method quantifies the increase or decrease in a vegeta-
tion index from Time, to Time,. The VID method has
been useful in detecting defoliation because it relates
directly to the green biomass present (Nelson, 1983).
By comparing Landsat TM images before and afrer
HWA infestation, our 1997 study showed a strong rela-
tionship between hemlock defoliation and the VID,
based on the Simple Ratio vegetation index. This VID
approach has been found useful in other insect defo-
liations where a general loss of foliage was not neces-
sarily accompanied by a pronounced spectral change
(Muchoney and Haack, 1994; Nelson, 1983; Vogel-
mann and Rock, 1989).

Research goals: The goal of this study was io improve
the methodology employed in our pilot situdy (Royle
and Lathrop, 1997) to address the challenges posed by
remotely sensed monitoring of forest health (ll%cus%ed
above. A more specific objective was to detect and map
up to five levels ol defoliation in eastern hemlock-
mixed hardwoods forest across the heterogeneous land-
scape of northern New Jersey with high accuracy. An
underlying premise of our methodology is that it effec-
tively quantifies differences in canopy and site from
Time; to Time,, while incorporating variation among
hemlock sites within a Landsat image with the end re-
sult of improving estimates of hemlock forest defolia-
tion.

MATERIALS AND METHODS

Study area: This study was conducted in the High-
lands phwiographir province of norithern New Jersey,
whose topography is characterized by rugged, rolling
hills and broad, discontinuous, p11allel mountain
ridges oriented southwest to northeast. Elevations
range [rom 460 m on the ridge tops to 105 m in the
valleys. Slopes vary [rom gentle (less than 5%) to very
steep (greater than 60%). The mature vegetation of
this temperate forest community consists of the Mixed
Oak forest type of deciduous, broad-leaved species in-
terspersed with stands of the Hemlock-Mixed Hard-
woods forest type (Robichaud and Buell, 1973).

Landsat data and processing: We summarize the meth-
odology for processing the imagery for analysis; addi-
tional details may be found in Royle (2002). Teat-off,
winter scenes of Landsat TM Tmagery of the study area
(Path 14, Row 31, 50% downshift) were atft'lllil‘ed for 8
November 1984 and 22 December 1994. As hemlock
forest is found in hilly to mountainous regions, relief
displacement can be a significant source of error (Royle
and Lathrop, 1997). To help reduce these positional
inaccuracies caused by changes in terrain elevation
across the scene (Lillesand and Kieler, 1994), we used
terrain-corrected imagery. It was purchased from the
United States Geological Survey EROS Data Center,
and rectified to Universal Transverse Mercator projec-
tion, North American Datum 1983 with a rectification
error of less than 1 pixel (30m).
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The 1984 image became the base scene [or image-
processing and change-detection. Not only was it the
pre-infestation data against which all vegetation
changes would be compared, it also had the clearest
atmospheric conditions. To correct for any atmo-
spheric haze present within cach scene, we used the
Dark Object Subtraction method, assuming 1% rcflec-
tance present in the darkest objects (Chavez, 1988,
1989; Teillet and Fedosejevs, 1995). The darkest objects
consisted of deep, clear lakes located in relatively un-
developed, forested areas. Corrections were made (o
bands 1 through 4, but not bands 5 and 7, because the
mid-infrared bands were largely unaffecied by atmo-
spheric conditions in the imagery. The corrected digi-
tal counts (DN) were converted to radiance using pub-
lished coellicienis (Markham and Barker, 1986).

Our initial work showed that rugged terrain could
significantly affect the radiance readings [rom hemlock
stands by depressing radiance on north-facing slopes
and enhancing radiance on south-facing slopes, a com-
mon effect observed in mountainous arcas. We investi-
gated different techniques (topographic normaliza-
tion) designed to correct these effects (Civeo, 1989;
Colby, 1991; Smith et al., 1980). However, we found the
results to vary widely, so we incorporated a site illumi-
nation variable (Shaded Relief; ERDAS Tmagine 8.5) in
our analyses, instead. Shaded Relief quantifies site illu-
mination for a site and varies from (t to 1. It is calculated
from the slope and aspect per pixel and derived from a
digital elevation model (DEM) as well as the solar el-
evation and solar azimuth for the image date. We used
solar data [rom the 1984 imagery because all scenes
were normalized to that scene.

The radiance values were converted to at-canopy re-
flectance using published formulae (Markham and
Barker, 1986). To [urther remove any remaining tem-
poral differences in solar brightness and other factors,
the 1994 scene was normalized to the 1984 base scene
using a sample of 200 pscudo-invariant features (water,
bare soil, sand, and paved surfaces) and the linear
band-wise regression method (Heo and FitzHugh,
2000).

Vegetation indices: Four indices (Table 1) have been
tfound useful in hemlock research (Bonneau et al.,
1999; Morton and Young, 2000; Royle and Tathrop,
1997): the Simple Ratio (SR}, the Normalized Differ-
ence Vegetation Index (NDVI), the Atmospherically
Resistant Vegetation Index (ARVI), and the Modified
Soil Adjusted Vegetation Index (MSAVL,). The NDVI
and SR are derived from the near infrared (NIR, 0.76 to
0.90 pm) and visible red (0.63 to 0.69 pm) wavebands
and are functionally similar (Birth and McVey, 1968;
Rouse et al.,, 1973). Weaknesses include sensitivity to
atmospheric haze and soil “noise™ (Teillet et al., 1997)
and saturation at high canopy cover (McDonald et al,,
1998). The ARVI is similar to NDVI but reduces atmo-
spheric effects by subtracting the visible blue band

TasLe 1.
artalysis.

The four multispectral vegetation indices selected for

Vegetation index Formula
SR SR = NIR/Red
Simple Ratio Where:
NIR is Landsat TM band 4, near infrared
wavelengths
Red is Landsat TM band 3, visible red
wavclengths

NIDWV1

Normalized Dillerence
Vegetation Index

MSAVI,

Second Maodified Soil
Adjusted Vegetation
Index

ARVI

Armmospherically
Resistant vege tation
Index

NDVI = (NIR — Red) /£ (NIR + Red)

MSAVI, = (2NIR + 1 — ((2NIR + 1) -
B(NIR — Red))y 172y /2

ARVI = (NIR

Where:

RB = Red - v (Blue - Red)

Blue is Landsat TM band 1, visible blue
wavelengths

v = 1, unless the aerosol model is known
a priori

RB)/(NIR + RB),

(0.45 to 0.52 pm) from the visible red band before the
NDVI component is calculated (Huete and Liu, 1994;
Kaufman and Tanre, 1992). The MSAVI, is derived also
from NIR and red wavebands, but it employs a correc-
tion factor to reduce sensitivity to soil variation across a
scene (Qi et al, 1994). The four vegelation indices
were calculated for each pixel in the image. The Veg-
etation Index Difference (VID) was calculated per pixel
by subtracting each 1994 vegelation index from the
corresponding 1984 vegetation index per pixel. Positive
VID values represented defoliation; negative VID values
represented growth. Image differencing was performed
on the TM bands (1984 to 1994) for bands 1 to 5, and
7 (TMID), because we evaluated these variables as part
of our analysis. To reduce potential effects of minor
misregistration (Royle and Lathrop, 1997; Townshend
et al,, 1992), we smoothed all TM and VI data using an
algorithm to calculate a 8 x 3 neighborhood mean for
each pixel in the image.

Field data: In the spring and early summer of 1995, we
evaluated hemlock canopy condition for 142, circular
(90-m-diam.) field plots scattered across the study area
and representing a broad range of site characteristics
(slope, elevation, and aspect). This plot size was se-
lected to correspond to a 3 x 3 pixel window in a Land-
sat image. Differentially corrected coordinates obtained
with a hand-held Global Positioning System (GPS) unit
were used to establish the geographic coordinates for
the center of each field plot. Although hemlock defo-
liation is spatially heterogeneous within stands, discrete
levels of defoliation can be recognized in the field. We
defined five levels of defoliation on individual trees:
Healthy (0%), Light (<25%), Moderate (25% to 50%}),
Severe (50% to 75%), and Dead (>75%). We surveyed
the tree canopy throughout the field plot to develop a
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plot-level estimate of defoliation weighted by the
amount ol hemlock canopy cover per deloliation class
(Royle and Lathrop, 1997). Based on the plotwide es-
timate of defoliation and our field notes, we assigned
cach plot to the class that best described the level of
defoliation per field plot.

Data and variables for analysis: The sample units for
analysis consisted of the 142 field plots. The discrete
defoliation class observed in cach field plot was the
dependent variable. Twenty-one independent, continu-
ous variables were selected for analysis: the four vegeta-
tion indices for 1984; the difference in each of the four
vegetation indices from 1984 o 1994 (the VIDS); the
1984 refleciance for each of six Landsat TM bands (1-5
and 7); the difference in refleciance for the six Landsat
TM bands from 1984 1o 1994 (the TMIDs); and Shaded
Reliel. Using the center coordinates ol each [ield plot,
we obtained the values ol each variable per [ield plot
from the imagery.

Diseriminant function analysis: We used canonical
analysis of discriminance (CAD) to discriminate five
levels of defohiation. We tested for violations of the as-
sumptions (McGarigal ct al., 2000) and found that they
were not violated, the lincar function was sufficiently
robust, and transformations were unnecessary. To
evaluate the discriminant function, we examined the
squared canonical correlation (R.?) and classification
accuracy. To assess accuracy, we selected a cross-
validation method in which one observation is withheld
from the modeling; ithe model is then applied (o the
single observation, and the predicted class is compared
with the observed class; this is repeated with each ob-
servation, and the resulis are tallied in a classilication
error matrix (Lachenbruch and Mickey, 1968). We
tested this method against other cross-validation meth-
ods and concluded that bias, il any, in this method is
minimal.

From the resulting cross-validation error matrix, we
performed three tests of classification accuracy. The
first test was the overall classification accuracy for the
five defoliation classes (H, L, M, S, D). Because it is
difficult to distinguish lightly defoliated hemlock from
healthy hemlock (Morton and Young, 2000; Royle and
Lathrop, 1997), we calculated accuracy for a four-class
model (HL, M, §, D) as a second test of accuracy. The
third test was the accuracy for the three worst defolia-
tion classes (M, S, D), because the cost of misclassifica-
tion would be higher for these classes in planned future
analyses. In addition, we tested for significant differ-

ences among the means of the five defoliation classes (4

test) and between the means of adjacent defoliation
classes (Hotelling 1%).

CAD with TM and VI data: To determine which veg-
ctation index best discriminated hemlock defoliation,
we performed CAD on cach VID alone. In addition, we
performed CAD on each VID together with its 1984
vegetation index (VI) to determine if initial VI values

improved the discriminant [unction. The VI that per-
formed best overall (i.e., had the highest canonical cor-
relation and the highest overall classification accuracy)
was sclected for further analysis.

An underlying premise of this study was that explain-
ing variation inherent in hemlock sites across the het-
erogencous study area would improve accuracy. We at-
tempted to do so using additional Landsat TM bands
because different bands are sensitive to water, soil, and
vegetation. To avoid singularity, we excluded TM bands
from which the best vegetation index was derived (NIR
and red). We used siepwise discriminant analysis Lo se-
lect a smaller subset of variables for analysis with the
best vegetation index. The CAD was conducted on this
subset, systematically adding variables in the order se-
lected by stepwise discriminant analysis. It was also con-
ducted on various combinations ol the variables in the
subset. We examined the R(.2 and the three tests of
accuracy of each discriminant function and selected the
“*best’”” model (i.e., the discriminant unction that was
parsimonious, ccologically meaningful, and achieved
high classification accuracy).

Map of 1994 hemlock defoliation: The lincar cocfficients
from the best diseriminant function were applied to the
image data to produce a GIS map depicting different
levels of defoliation across the study area. We used GIS
maps of known hemlock forest stands {Coutros, 1989)
to retain only Highlands hemlock stands in the final,
thematic map of hemlock defoliation classes. Note that
the base map used in this study differs from that used in
our 1997 pilot study. The toial area per defoliation class
was quantilied [rom the resulting GIS data.

RrsurTs

Canonical analysis of discriminance: Table 2 summa-
rizes the canonical correlation and classification accu-
racy of the four vegetation indices and the variables
that discriminated five levels of defoliation with the
highest classification accuracy. In general, there was a
pusitive, linear relationship between the VID (ie., the
difference in the vegetation index from 1984 to 1994)
and the defoliation class for each of the vegetation in-
dices (P < 0.0001), indicating that as hemlock defolia-
tion increased, so did the spectral VID (Fig. 1). How-
ever, the vegetation indices differed in their ability to
discriminate between adjacent classes ot defoliation.
The VIDs for SR, NDVI, and ARVI, for example, could
not discriminate between Healthy and Light defolia-
tion. All three adjacent classes of defoliation from Light
to Dead were discriminated only by the VIDs for NDVI
and ARVI (P < 0.05). Of the four VIDS, NDVI was the
best at discriminating defoliation or hemlock condi-
tion, as indicated by the R.? and the three tests of
classification accuracy (Table 2). The NDVI VID alone
explained 64% of the total variation in the canonical
function explained by differences in group means, fol-
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TABLE 2.
highest accuracy.

Canonical correlation and classification accuracy of the independent variables that discriminated hemlock defoliation with the

% Accuracy

5-class 4-class
Variables RS2 H,L M,S, D' HL, M, S, D MSD

Vegetation Index Difference? (VID), ranked by R

NDVI 0.64%** 34 61 54

ARVI 0.51%*** 28 53 48

MSAVI, 0.40%** 38 46 35

SR 0.33%#* 36 49 37
Each VID with its 1984 VI, ranked by Rf

SR 0.68%#* 52 62 54

NDVI 0.68*#* 51 62 50

MSAVI, 0.60%#* 44 52 43

ARVI 0.58%#* 51 62 48
Other variables, ranked by R *

TMID? 1 0.38%#* 34 48 26

TM 1 for 1984 0.30%#* 34 44 35

TMID 7 0.30%** 25 38 18

Shaded Relief* 0.28:##* 31 39 35

TMID 2 0.26%#* 30 46 24

TMID 5 0.26%** 33 42 26

NDVI for 1984 0.16%** 30 29 36
Discriminant function® 0.81%%* 73 82 78

! The five health classes are Healthy (H), Light (L), Moderate (M), Severe (S), and Dead (D).

2 The Vegetation Index Difference (VID) is the difference in the Vegetation Index (either SR, NDVI, ARVI, or MSAVL,) from 1984 to 1994.

3 TMID is the TM Image Difference, the difference in reflectance from 1984 to 1994 for the respective Landsat TM band.

* Shaded Relief quantifies solar illumination based on landform, solar elevation, and solar azimuth of the image date.

5 The variables in the discriminant function are: the VID for NDVI, the 1984 NDVI, the TMID for Landsat band 1, the 1984 Landsat TM band 1, the TMID for

Landsat TM band 2, the TMID for Landsat TM band 5, and Shaded Relief.
##k p < 0.0001.
R.? is the canonical R-squared.

lowed by the VIDs for ARVI (R.* = 0.51), MSAVI, (R.*
= 0.40), and SR (R.? = 0.33). The NDVI VID discrimi-
nated and classified five classes of hemlock defoliation
with 34% accuracy, four classes with 61% accuracy, and
the three worst defoliation classes (MSD) with 54% ac-
curacy. Although less accurate in discriminating be-
tween Healthy and Light classes, NDVI performed bet-
ter than the other indices in detecting and classifying
unhealthy hemlocks. The performance of the other
VIDs varied before and after Healthy and Light were
aggregated to calculate the four-class accuracy. Note
that canonical correlation was not always indicative of
better classification accuracy.

All the 1984 VIs (not shown) were weakly correlated
with defoliation (r < 0.33), and the ability to discrimi-
nate between adjacent classes was low. The 1984 SR and
NDVI, for example, could discriminate only between
Healthy and Light and between Severe and Dead (P <
0.05). However, the 1984 VI together with its corre-
sponding VID increased classification accuracy for each
of the VIs (Table 2). The SR performed slightly better
than NDVI in the tests of accuracy. For multiple CAD,
we report the R_? of the first canonical function. The
VID for NDVI and for SR, along with their respective
1984 VI, performed best (RCQ = 0.68). The ARVI classi-
fied levels of defoliation slightly better than MSAVI,.

Adding additional Landsat TM bands to the analysis
further increased the ability of the discriminant func-

tion to discriminate five levels of defoliation. The box
plots for the independent variables reveal that some
were nonlinear (Fig. 1). Although each was able to dis-
criminate between certain adjacent classes, only one
could discriminate all adjacent classes: TMID 1, the dif-
ference in the spectral reflectance from 1984 to 1994
for band 1, visible blue. The TM image difference vari-
able (TMID) most highly correlated with defoliation
was TMID 1, followed by 1984 TM 1 (Table 2). The
variables other than vegetation indices selected by step-
wise DA included (ranked by partial correlation, sz):
TMID 1 (visible blue, Rp2 = 0.38), Shaded Relief (site
illumination, R,? = 0.38), TMID 2 (visible green, R ) =
0.32), TMID 5 (mid-infrared, Rp2 =0.19), and 1984 TM
1 (visible blue, Rp2 = 0.14). These five variables, in ad-
dition to the NDVI VID and the 1984 NDVI, were the
subset of variables that discriminated defoliation with
the highest accuracy (Table 2).

Although the image difference variables were partly
derived from the 1984 variables, the correlation matrix
shows that NDVI VID and TMID 1 were weakly corre-
lated with their respective 1984 variables, confirming
that the inclusion of the 1984 variables was neither sin-
gular nor redundant (Table 3). Overall, we did not find
multi-collinearity to be a problem, though some redun-
dancy may have been present among the independent
variables. Although more parsimonious models (four to
five variables) yielded satisfactory levels of accuracy
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Box plots of the four VIDs and independent variables per defoliation class. Adjacent classes discriminated by the discriminant

function (P < 0.05) are marked with an asterisk (*). The defoliation classes are Healthy (H), Light (L), Moderate (M), Severe (S), and Dead

(D).

(i.e., 70% or better for four classes and 60% or better
for MSD), the best discriminant function with seven
variables was 6% to 7% better for four classes, and 13%
to 15% better for the MSD classes than discriminant
functions with four to five variables.

The canonical structure for the best discriminant
function indicates that the first two canonical functions
explained 97.5% of the variation in defoliation classes.
The first canonical function (P<.0001) was most highly
correlated with NDVI VID (r = 0.89), and the second

function (P < .01) was most highly correlated with
Shaded Relief (r=-0.64). Accuracy for the best model
was 73% for five classes (H, L, M, S, D) and 82% for
four classes (HL, M, S, D), with 78% accuracy for the
MSD classes (Table 2). Although all adjacent classes
could be discriminated by the best function (P < 0.01),
there was some confusion between adjacent classes, es-
pecially between Healthy and Light (Table 4).

In 1984 there were approximately 6,809 ha of healthy
hemlock forest stands across the entire Highlands Prov-
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TaBLE 3. The correlation matrix for the variables used in the
discriminant function that discriminated hemlock health with the
highest classification accuracy.

NDVI ™ 1

Variables in the NDVI  for TMID for TMID TMID Shaded

CAD function VID' 1984 Band1 1984 Band 2 Band 5 Relief
NDVI VID 1.00 — — — — — —
NDVI for 1984 -0.22 1.00 — — — — —
TMID Band 1 -0.31 -0.04 1.00 — — — —
TM 1 for 1984 -0.58 -0.04 0.15 1.00 — — —
TMID Band 2 -0.19 -0.17 0.54 -0.02 1.00 — —
TMID Band 5 -0.32 -0.28 0.67 0.22 0.59 1.00 —
Shaded Relief -0.54 0.45 -0.22 0.63 -0.39 -0.31 1.00

“Band” refers to a Landsat Thematic Mapper (TM) spectral band. Band 1
represents visible blue wavelengths, Band 2 represents visible green wave-
lengths, and Band 5 represents mid-infrared wavelengths.

NDVI VID is the Vegetation Index Difference for the NDVI vegetation index,
or the difference in NDVI from 1984 to 1994.

TMID is the Thematic Mapper Image Difference, or the difference in reflec-
tance from 1984 to 1994 for a given Landsat band.

Shaded Relief quantifies solar illumination based on landform and the solar
elevation and the solar azimuth of the 1984 Landsat image date used as the base
scene for analysis.

ince of northern New Jersey. Ten years later nearly half
the hemlock forest stands (i.e., pixels) were defoliated
to some degree by HWA, with 52% remaining in a
Healthy-Light condition, followed by 26% in the Mod-
erate, 16% in the Severe, and 6% in the Dead classes.

DiscussioN

The success of the VID method relates to three issues
involved in accurately classifying hemlock defoliation
across a heterogeneous landscape. First, because hem-
lock canopy cover varies among natural stands, a se-
verely defoliated, dense hemlock stand in 1994 can
spectrally resemble an initially sparse, but healthy, hem-
lock stand elsewhere in the same image. This makes
single-scene image classification methods less effective
for monitoring hemlock forest health in mixed forests.
Although image differencing is promising, there are
additional difficulties to consider. The VID alone with-
out the initial VI is not as effective as the two are to-

TasLE 4.  The classification matrix of the best discriminant func-

tion.
Predicted defoliation (columns)
Observed

defoliation (rows)  Healthy Light Moderate Severe Dead Total
Healthy 16 10 2 0 0 28
Light 4 23 5 0 0 32
Moderate 0 0 21 3 1 25
Severe 0 1 7 24 5 37
Dead 0 0 0 1 19 20
Total 20 34 35 28 25 142

Observed Defoliation is the level of defoliation observed in the field.

Predicted Defoliation is the defoliation class to which a plot was assigned by
the discriminant function.

The diagonals (underlined) indicate complete agreement between the ob-
served and predicted classes.

Overall classification accuracy is calculated as the sum of the diagonals di-
vided by the total number of observations.

gether in classifying hemlock forest health. For ex-
ample, it is possible for two hemlock stands bearing the
same VID value to represent different defoliation
classes; an initially high-cover, 1984 stand that is mod-
erately defoliated by 1994 may have lost the same green
biomass as a low-cover, 1984 stand that is dead by 1994.
Thus, it is not solely the amount of green biomass lost
by any individual stand by Time, that determines a
stand’s decline status but rather the loss of biomass
relative to its initial starting point.

For NDVI, the inclusion of the 1984 VI value incre-
mentally improved discrimination above and beyond
that of the VID alone. The inclusion of the initial VI
helps to normalize for heterogeneity across a range of
initial stand conditions from largely mixed to almost
pure hemlock stands. In this way we avoid the trap of
confusing effects (e.g., foliage loss) from determining
factors (e.g., stand density) in mapping insect defolia-
tion (Radeloff et al., 1999).

In addition to the VI and VID values, the TMID for
the visible blue, visible green, and middle infrared
wavebands stood out, though we are not certain of the
underlying biophysical reasons for the inclusion of
these bands. One possibility is that they help explain for
unaccounted differences in atmospheric conditions
and background understory vegetation and leaf litter.
Another is that these variables together represent a
broader range of wavebands (bands 1 through 5) that
detect levels of defoliation better than NDVI alone
(bands 3 and 4). Bands 3, 4, and 5 are the most useful
bands for detecting coniferous forest (Nelson et al.,
1984). Band 1 (visible blue) may explain additional
atmospheric “‘noise”” to which NDVI is sensitive. Band
2 (visible green) may explain additional variation in the
canopy missed by the NDVI. Band 5 (MIR) has been
found useful in other studies involving forest canopies
because mid-infrared wavelengths are sensitive to mois-
ture content in vegetation. Shaded Relief explains
variation in site illumination and serves as a substitute
for topographic normalization methods, which we
found to be problematic.

We may have reached the limit on the classification
accuracy that can be attained using the data and meth-
ods employed in this study. Distinguishing non-
hemlock evergreens in the understory and canopy, for
example, is virtually impossible without ancillary data
beyond that provided in Landsat imagery.

Discriminant analysis provided a straightforward
method of relating the categorical field estimates of
hemlock health to spectral reflectance with discrimi-
nant functions that could then be applied to predict
the hemlock decline status across the entire study area
with reasonable accuracy. Based on the three tests of
accuracy, NDVI performed best overall, but the results
differed among the other vegetation indices when
Healthy and Light classes were aggregated. These re-
sults were somewhat unexpected in that we assumed
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that either ARVI or MSAVI, would further reduce ex-
traneous factors, resulting in a better model fit. The
ARVI is designed to reduce atmospheric influences,
and the use of atmospherically corrected imagery may
have reduced the effectiveness of ARVI. The MSAVI, is
designed to be less sensitive to differences in back-
ground soils in an agricultural setting. As we were work-
ing with forests that did not have exposed soils present,
though they did have leaf litter in the background, the
MSAVI, may not have been as effective in the VID
method.

We have made a number of improvements to in-
crease the accuracy and reliability of the VID change
detection technique employing Landsat TM time series
imagery to map hemlock defoliation and mortality at
the landscape scale. The improvements outlined in this
study have increased the accuracy of mapping four
classes of defoliation (HL, M, S, D) from 64% in our
initial study (Royle and Lathrop, 1997) to 82% in this
study. We believe the strength of this study to be the
successful incorporation of stand and site heterogene-
ity across a complex landscape and the effective statis-
tical explanation of that heterogeneity using multivari-
ate analyses and a full complement of appropriate,
spectral data.

This study shows that nearly half the hemlock forest
stands of the New Jersey Highlands were affected by
HWA by 1994. Based on the success of this methodol-
ogy, we are now using a time series of vegetation index
images to investigate temporal and spatial patterns
(Royle and Lathrop, 2002) in the infestation and de-
cline process over the past decade and are expanding
our study to the entire Mid-Atlantic region of the
United States. With additional field reference data col-
lected during autumn 2001, we will test the applicability
of this model under different landscape conditions and
different time periods. The remotely sensed hemlock
decline maps we produce will help produce site-specific
management decisions associated with integrated pest
management efforts to counteract the spread of HWA
as well as plan the silvicultural operations needed to
deal with the consequences of hemlock decline and
death.
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