








lowed by the VIDs for ARVI (Rc
2 = 0.51), MSAVI2 (Rc

2

= 0.40), and SR (Rc
2 = 0.33). The NDVI VID discrimi-

nated and classified five classes of hemlock defoliation
with 34% accuracy, four classes with 61% accuracy, and
the three worst defoliation classes (MSD) with 54% ac-
curacy. Although less accurate in discriminating be-
tween Healthy and Light classes, NDVI performed bet-
ter than the other indices in detecting and classifying
unhealthy hemlocks. The performance of the other
VIDs varied before and after Healthy and Light were
aggregated to calculate the four-class accuracy. Note
that canonical correlation was not always indicative of
better classification accuracy.

All the 1984 VIs (not shown) were weakly correlated
with defoliation (r < 0.33), and the ability to discrimi-
nate between adjacent classes was low. The 1984 SR and
NDVI, for example, could discriminate only between
Healthy and Light and between Severe and Dead (P <
0.05). However, the 1984 VI together with its corre-
sponding VID increased classification accuracy for each
of the VIs (Table 2). The SR performed slightly better
than NDVI in the tests of accuracy. For multiple CAD,
we report the Rc

2 of the first canonical function. The
VID for NDVI and for SR, along with their respective
1984 VI, performed best (Rc

2 = 0.68). The ARVI classi-
fied levels of defoliation slightly better than MSAVI2.

Adding additional Landsat TM bands to the analysis
further increased the ability of the discriminant func-

tion to discriminate five levels of defoliation. The box
plots for the independent variables reveal that some
were nonlinear (Fig. 1). Although each was able to dis-
criminate between certain adjacent classes, only one
could discriminate all adjacent classes: TMID 1, the dif-
ference in the spectral reflectance from 1984 to 1994
for band 1, visible blue. The TM image difference vari-
able (TMID) most highly correlated with defoliation
was TMID 1, followed by 1984 TM 1 (Table 2). The
variables other than vegetation indices selected by step-
wise DA included (ranked by partial correlation, Rp

2):
TMID 1 (visible blue, Rp

2 = 0.38), Shaded Relief (site
illumination, Rp

2 = 0.38), TMID 2 (visible green, Rp
2 =

0.32), TMID 5 (mid-infrared, Rp
2 = 0.19), and 1984 TM

1 (visible blue, Rp
2 = 0.14). These five variables, in ad-

dition to the NDVI VID and the 1984 NDVI, were the
subset of variables that discriminated defoliation with
the highest accuracy (Table 2).

Although the image difference variables were partly
derived from the 1984 variables, the correlation matrix
shows that NDVI VID and TMID 1 were weakly corre-
lated with their respective 1984 variables, confirming
that the inclusion of the 1984 variables was neither sin-
gular nor redundant (Table 3). Overall, we did not find
multi-collinearity to be a problem, though some redun-
dancy may have been present among the independent
variables. Although more parsimonious models (four to
five variables) yielded satisfactory levels of accuracy

TABLE 2. Canonical correlation and classification accuracy of the independent variables that discriminated hemlock defoliation with the
highest accuracy.

Variables Rc
2

% Accuracy

5-class
H, L, M, S, D1

4-class
HL, M, S, D MSD

Vegetation Index Difference2 (VID), ranked by Rc
2

NDVI 0.64*** 34 61 54
ARVI 0.51*** 28 53 48
MSAVI2 0.40*** 38 46 35
SR 0.33*** 36 49 37

Each VID with its 1984 VI, ranked by Rc
2

SR 0.68*** 52 62 54
NDVI 0.68*** 51 62 50
MSAVI2 0.60*** 44 52 43
ARVI 0.58*** 51 62 48

Other variables, ranked by Rc
2

TMID3 1 0.38*** 34 48 26
TM 1 for 1984 0.30*** 34 44 35
TMID 7 0.30*** 25 38 18
Shaded Relief4 0.28*** 31 39 35
TMID 2 0.26*** 30 46 24
TMID 5 0.26*** 33 42 26
NDVI for 1984 0.16*** 30 29 36

Discriminant function5 0.81*** 73 82 78

1 The five health classes are Healthy (H), Light (L), Moderate (M), Severe (S), and Dead (D).
2 The Vegetation Index Difference (VID) is the difference in the Vegetation Index (either SR, NDVI, ARVI, or MSAVI2) from 1984 to 1994.
3 TMID is the TM Image Difference, the difference in reflectance from 1984 to 1994 for the respective Landsat TM band.
4 Shaded Relief quantifies solar illumination based on landform, solar elevation, and solar azimuth of the image date.
5 The variables in the discriminant function are: the VID for NDVI, the 1984 NDVI, the TMID for Landsat band 1, the 1984 Landsat TM band 1, the TMID for

Landsat TM band 2, the TMID for Landsat TM band 5, and Shaded Relief.
*** p < 0.0001.
Rc

2 is the canonical R-squared.
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(i.e., 70% or better for four classes and 60% or better
for MSD), the best discriminant function with seven
variables was 6% to 7% better for four classes, and 13%
to 15% better for the MSD classes than discriminant
functions with four to five variables.

The canonical structure for the best discriminant
function indicates that the first two canonical functions
explained 97.5% of the variation in defoliation classes.
The first canonical function (P < .0001) was most highly
correlated with NDVI VID (r = 0.89), and the second

function (P < .01) was most highly correlated with
Shaded Relief (r = −0.64). Accuracy for the best model
was 73% for five classes (H, L, M, S, D) and 82% for
four classes (HL, M, S, D), with 78% accuracy for the
MSD classes (Table 2). Although all adjacent classes
could be discriminated by the best function (P < 0.01),
there was some confusion between adjacent classes, es-
pecially between Healthy and Light (Table 4).

In 1984 there were approximately 6,809 ha of healthy
hemlock forest stands across the entire Highlands Prov-

Fig. 1. Box plots of the four VIDs and independent variables per defoliation class. Adjacent classes discriminated by the discriminant
function (P < 0.05) are marked with an asterisk (*). The defoliation classes are Healthy (H), Light (L), Moderate (M), Severe (S), and Dead
(D).
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ince of northern New Jersey. Ten years later nearly half
the hemlock forest stands (i.e., pixels) were defoliated
to some degree by HWA, with 52% remaining in a
Healthy-Light condition, followed by 26% in the Mod-
erate, 16% in the Severe, and 6% in the Dead classes.

Discussion

The success of the VID method relates to three issues
involved in accurately classifying hemlock defoliation
across a heterogeneous landscape. First, because hem-
lock canopy cover varies among natural stands, a se-
verely defoliated, dense hemlock stand in 1994 can
spectrally resemble an initially sparse, but healthy, hem-
lock stand elsewhere in the same image. This makes
single-scene image classification methods less effective
for monitoring hemlock forest health in mixed forests.
Although image differencing is promising, there are
additional difficulties to consider. The VID alone with-
out the initial VI is not as effective as the two are to-

gether in classifying hemlock forest health. For ex-
ample, it is possible for two hemlock stands bearing the
same VID value to represent different defoliation
classes; an initially high-cover, 1984 stand that is mod-
erately defoliated by 1994 may have lost the same green
biomass as a low-cover, 1984 stand that is dead by 1994.
Thus, it is not solely the amount of green biomass lost
by any individual stand by Time2 that determines a
stand’s decline status but rather the loss of biomass
relative to its initial starting point.

For NDVI, the inclusion of the 1984 VI value incre-
mentally improved discrimination above and beyond
that of the VID alone. The inclusion of the initial VI
helps to normalize for heterogeneity across a range of
initial stand conditions from largely mixed to almost
pure hemlock stands. In this way we avoid the trap of
confusing effects (e.g., foliage loss) from determining
factors (e.g., stand density) in mapping insect defolia-
tion (Radeloff et al., 1999).

In addition to the VI and VID values, the TMID for
the visible blue, visible green, and middle infrared
wavebands stood out, though we are not certain of the
underlying biophysical reasons for the inclusion of
these bands. One possibility is that they help explain for
unaccounted differences in atmospheric conditions
and background understory vegetation and leaf litter.
Another is that these variables together represent a
broader range of wavebands (bands 1 through 5) that
detect levels of defoliation better than NDVI alone
(bands 3 and 4). Bands 3, 4, and 5 are the most useful
bands for detecting coniferous forest (Nelson et al.,
1984). Band 1 (visible blue) may explain additional
atmospheric ‘‘noise’’ to which NDVI is sensitive. Band
2 (visible green) may explain additional variation in the
canopy missed by the NDVI. Band 5 (MIR) has been
found useful in other studies involving forest canopies
because mid-infrared wavelengths are sensitive to mois-
ture content in vegetation. Shaded Relief explains
variation in site illumination and serves as a substitute
for topographic normalization methods, which we
found to be problematic.

We may have reached the limit on the classification
accuracy that can be attained using the data and meth-
ods employed in this study. Distinguishing non-
hemlock evergreens in the understory and canopy, for
example, is virtually impossible without ancillary data
beyond that provided in Landsat imagery.

Discriminant analysis provided a straightforward
method of relating the categorical field estimates of
hemlock health to spectral reflectance with discrimi-
nant functions that could then be applied to predict
the hemlock decline status across the entire study area
with reasonable accuracy. Based on the three tests of
accuracy, NDVI performed best overall, but the results
differed among the other vegetation indices when
Healthy and Light classes were aggregated. These re-
sults were somewhat unexpected in that we assumed

TABLE 3. The correlation matrix for the variables used in the
discriminant function that discriminated hemlock health with the
highest classification accuracy.

Variables in the
CAD function

NDVI
VID1

NDVI
for

1984
TMID
Band 1

TM 1
for

1984
TMID
Band 2

TMID
Band 5

Shaded
Relief

NDVI VID 1.00 — — — — — —
NDVI for 1984 −0.22 1.00 — — — — —
TMID Band 1 −0.31 −0.04 1.00 — — — —
TM 1 for 1984 −0.58 −0.04 0.15 1.00 — — —
TMID Band 2 −0.19 −0.17 0.54 −0.02 1.00 — —
TMID Band 5 −0.32 −0.28 0.67 0.22 0.59 1.00 —
Shaded Relief −0.54 0.45 −0.22 0.63 −0.39 −0.31 1.00

‘‘Band’’ refers to a Landsat Thematic Mapper (TM) spectral band. Band 1
represents visible blue wavelengths, Band 2 represents visible green wave-
lengths, and Band 5 represents mid-infrared wavelengths.

NDVI VID is the Vegetation Index Difference for the NDVI vegetation index,
or the difference in NDVI from 1984 to 1994.

TMID is the Thematic Mapper Image Difference, or the difference in reflec-
tance from 1984 to 1994 for a given Landsat band.

Shaded Relief quantifies solar illumination based on landform and the solar
elevation and the solar azimuth of the 1984 Landsat image date used as the base
scene for analysis.

TABLE 4. The classification matrix of the best discriminant func-
tion.

Observed
defoliation (rows)

Predicted defoliation (columns)

Healthy Light Moderate Severe Dead Total

Healthy 16 10 2 0 0 28
Light 4 23 5 0 0 32
Moderate 0 0 21 3 1 25
Severe 0 1 7 24 5 37
Dead 0 0 0 1 19 20
Total 20 34 35 28 25 142

Observed Defoliation is the level of defoliation observed in the field.
Predicted Defoliation is the defoliation class to which a plot was assigned by

the discriminant function.
The diagonals (underlined) indicate complete agreement between the ob-

served and predicted classes.
Overall classification accuracy is calculated as the sum of the diagonals di-

vided by the total number of observations.
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that either ARVI or MSAVI2 would further reduce ex-
traneous factors, resulting in a better model fit. The
ARVI is designed to reduce atmospheric influences,
and the use of atmospherically corrected imagery may
have reduced the effectiveness of ARVI. The MSAVI2 is
designed to be less sensitive to differences in back-
ground soils in an agricultural setting. As we were work-
ing with forests that did not have exposed soils present,
though they did have leaf litter in the background, the
MSAVI2 may not have been as effective in the VID
method.

We have made a number of improvements to in-
crease the accuracy and reliability of the VID change
detection technique employing Landsat TM time series
imagery to map hemlock defoliation and mortality at
the landscape scale. The improvements outlined in this
study have increased the accuracy of mapping four
classes of defoliation (HL, M, S, D) from 64% in our
initial study (Royle and Lathrop, 1997) to 82% in this
study. We believe the strength of this study to be the
successful incorporation of stand and site heterogene-
ity across a complex landscape and the effective statis-
tical explanation of that heterogeneity using multivari-
ate analyses and a full complement of appropriate,
spectral data.

This study shows that nearly half the hemlock forest
stands of the New Jersey Highlands were affected by
HWA by 1994. Based on the success of this methodol-
ogy, we are now using a time series of vegetation index
images to investigate temporal and spatial patterns
(Royle and Lathrop, 2002) in the infestation and de-
cline process over the past decade and are expanding
our study to the entire Mid-Atlantic region of the
United States. With additional field reference data col-
lected during autumn 2001, we will test the applicability
of this model under different landscape conditions and
different time periods. The remotely sensed hemlock
decline maps we produce will help produce site-specific
management decisions associated with integrated pest
management efforts to counteract the spread of HWA
as well as plan the silvicultural operations needed to
deal with the consequences of hemlock decline and
death.
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