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Abstract: The primary goal of our research is to develop key elements of a precision agriculture program applicable to high-value
woody perennial crops, such as cranberries. These crop systems exhibit tremendous variability in crop yields and quality as imposed
by variations in soil properties (water availability and nutrient deficiency) that lead to crop stress (disease development and weed
competition). Some of the variability present in the growing environment results in persistent yield losses as well as crop-quality
reductions. We are using state-of-the-art methodologies (GIS, GPS, remote sensing) to identify and map spatial variations of the
crop. Through image-processing methods (NDVI and unsupervised classification), approximately 65% of the variation in yield was
described using 4-m multispectral satellite data as a base image.
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The concept of precision agriculture identifies alter-
native approaches to farm management (Anonymous,
1997). Over the past few decades the definition of
‘‘management units’’ has changed from a ‘‘whole-
farm’’ approach to a ‘‘prescribed’’ field-specific and
even site-specific treatments. Use of the Global Posi-
tioning System (GPS) and Geographical Information
System (GIS) to develop georeferenced maps for vari-
ous crop and soil properties provides growers and field
professionals with a new set of management and com-
munication tools (Anderson et al., 1999). Recently,
those state-of-the-art technologies have become more
common in the management of the field crops, such as
soybeans, corn, and wheat (Adamsen et al., 1999; Le-
long et al., 1998; Towner and Servilla, 2000).

Johnson et al. (2000) demonstrated through remote
sensing and GIS how wine grape quality varies across a
vineyard and how growers could capture that variation
in a segmented harvest. The result was a more uniform
product. This approach is underutilized in other peren-
nial crops such as blueberries and cranberries, al-
though some research is being conducted in citrus or-
chards (Craig et al., 2000) and in forestry (Everitt et al.,
1999). Growing perennial crops involves long-term sus-
tainable management of soils, soilborne pathogens, wa-
ter, and nutrient inputs. Production costs are typically
calculated on a per-acre basis, and these base costs are
not greatly influenced by yield per acre. Spatial varia-
tion in water stress, nutrient availability, and pathogen
pressure causes spatial variations in crop response to
grower-controlled inputs (i.e., fertilizers, fungicides)
and in potential yield. Those effects are most likely to
have a persistent cumulative influence on the spatial

distributions of yield in perennial crops. Therefore, sig-
nificant opportunities exist for improving efficiency of
agricultural perennial systems by better understanding
and utilizing existing spatial variation of farm resources
and historical crop data.

In this paper we examine methods of GIS, GPS, and
remote sensing for mapping and analyzing crop loss in
cranberry farming on both a whole-field and within-
field basis. Cranberries are a low-growing, intensively
managed perennial crop indigenous to the sandy wet-
land soils found in the Pine Barrens region of New
Jersey. The berries develop on fruiting uprights along a
network of vegetative horizontally growing shoots
called runners and are harvested from September
through October. Currently, New Jersey has approxi-
mately 1,500 ha of cranberry beds. Yields vary from
5,000 to 60,000 kg/ha nationally and average approxi-
mately 17,000 kg/ha. The value of cranberries fluctu-
ates in a range from $0.22 to $1.32 per kg. At the low
end of this range cranberry production must be main-
tained at a minimum of 23,000 kg/ha to remain prof-
itable. Average cranberry yields in New Jersey increased
from approximately 16,000 kg/ha in 1993 to 20,000
kg/ha in 2000, with yield from some beds reaching
60,000 kg/ha. Variation within a single bed can be as
high as 200-fold, and much of this variation is not yet
quantified. Therefore, great potential exists for cran-
berry production to increase yield through improved
farm management (Brightman, 1998). There is an op-
portunity to invest in precision management for en-
hancing cranberry profitability by increasing yields and
reducing chemical inputs as opposed to acreage expan-
sion. Taking into consideration the perennial nature
and high value of this crop as well as its situation on
wetlands, the implementation of precision agriculture
methodologies for cranberry farms should bring tre-
mendous economic and ecological benefits to produc-
ers, industries, and the public. In this paper we inves-
tigate methods to detect and map crop-limiting factors
through remote sensing and GIS.

Materials and Methods

Study area: Commercial cranberry beds located in the
Pinelands of southern New Jersey were used in this
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study. Cranberries are planted on hydric soils of Atsion
(820 ha), Berryland (196 ha), and Manahawkin (86 ha)
series, which correspond to Aeric Alaquods, Typic Ala-
quods, and Terric Haplosaprists, respectively. Specific
features of these soils are sandy texture; high ground-
water table (0.2-0.45 m in summer); and low pH (3-5),
nitrogen content, and cation exchange capacity
(CEC<10 mg-eq/g). Soil organic content typically in-
creases progressively for the Atsion, Berryland, and
Manahawkin series from 2% to 10%.

Cranberry GIS: Over the past 2 years we have devel-
oped a GIS database for New Jersey cranberry growers.
Fruit delivery data from 1993 to 2000 was provided by
Ocean Spray, Inc., a growers’ cooperative. Data for
each year included information on cranberry cultivar,
amount of delivered and useable berries, TACY (mg of
anthocyanin per 100 grams of fruit), and amount of
unusable fruit. Cranberry bed outlines were digitized
on screen using 1995 USGS 1-meter color infrared digi-
tal aerial photography in ArcView 3.2 (ESRI Inc., Red-
lands, CA) GIS software. The color infrared images,
provided in digital format with 1-m ground resolution,
were sufficiently detailed to easily delineate bed bound-
aries (Barrete et al., 2000). All of the imagery and base
maps are in the UTM coordinate system (NAD 83, zone
18N). Each bed in the database was given a unique
code that integrates the bed identification number and
owner. Data linked to each bed in the GIS include the
total bed yield (barrels) for each growing season from
1993 to 2000 and the cultivar. From the GIS, a relative
yield per hectare was calculated for each bed in the
study area (Table 1). Three varieties (Ben Lear, Early
Black, and Stevens) are most commonly grown in the
area and in the present study comprised 277 beds
grown on approximately 479 ha.

Imagery: An IKONOS I multispectral satellite image
(Space Imaging Inc., Thornton, CO) collected on 13
July 2000 was used as a base image in this study. The
image is composed of 4 bands, i.e. Blue, Green, Red,
and Near Infrared (NIR). The bands range in width
from 65.8 to 95.4 nm and are centered at 480 nm
(Blue), 550 nm (Green), 664 nm (Red), and 805 nm
(NIR). The imagery was ortho-rectified by Space Imag-
ing, Inc and projected in the UTM NAD83 (zone 18N)
coordinate system with 4-m ground resolution.

Image analysis: Two ratios were calculated from the
image data for further analysis. The normalized differ-
ence vegetative index (NDVI) (Jensen, 2000) and the
structurally independent pigment index (SIPI) (Pe-
ñuelas et al., 1995) were used to detect variation in the
surface reflectance of the cranberry beds:

NDVI = �NIR − Red���NIR + Red� ( 1)

SIPI = �NIR − Blue���NIR − Red� ( 2)

where NIR, Red, and Blue are spectral reflectance of
the corresponding bands. These indices were calcu-
lated using the software package IMAGINE 8.4 (ERDAS,
Inc., Atlanta, GA). An unsupervised classification using
the Iterative Self-Organizing Data Analysis (Tou and
Gonzalez, 1974) algorithm is performed on the color-
IR imagery, and each of the index files to cluster the
digital reflectance numbers into 20 statistically based
classes. Image pixels are clustered based on similarity of
their spectral reflectance or indices. This method uses
no a priori knowledge about spectral signatures of the
features on the image to determine classes. The infor-
mation required as input to this classification scheme
includes a number of clusters or classes, a convergence
threshold, maximum percent of pixels left unchanged
after each iteration, and maximum number of itera-
tions run. All pixels in an image are assigned to a class.

The results of the unsupervised classification were
then opened as a layer in the cranberry GIS in ArcView
3.2 with the Image Analyst Module 1.1 (ESRI, Redlands,
CA) installed. A total of three unsupervised classifica-
tions were examined (i.e., classifications of NDVI, SIPI,
and the raw imagery). The number of pixels for each of
the 20 classes in a particular bed is extracted from the
image. From this, the percentage of each class within
each bed for the whole farm is computed. A correlation
analysis between total individual bed yield at harvest for
each of the three cultivars and the area of each pixel
class in a bed is done using COSTAT ver. 5.034 (Co-
Hort Software, Inc.) to determine significant relation-
ships between the spectral data and yield. Pixel classes
are identified in this manner as having either signifi-
cantly positive, significantly negative, or no correlation
with bed yield. These classes are then mapped as a
georeferenced layer in the cranberry GIS.

TABLE 1. Data summary from cranberry GIS.

Property 1993 1994 1995 1996 1997 1998 1999 2000

Total harvested area (ha) 929 964 1,008 1,005 1,050 1,076 964 885
Number of beds 471 499 509 515 537 535 504 475
Average bed size (ha) 1.98 1.94 1.98 1.94 1.94 2.02 1.90 1.86
Maximum bed size (ha) 13.03 13.03 13.03 13.03 13.03 13.03 13.03 13.03
Minimum bed size (ha) 0.16 0.16 0.16 0.16 0.12 0.12 0.12 0.12
Number of growers 19 19 20 19 20 20 19 15
Average yield (ton/ha) 16.5 22.7 17.3 17.3 21.7 19.2 24.9 20.1
Maximum yield (ton/ha) 41.2 59.1 40.3 43.3 48.5 45.9 63.2 52.5
Minimum yield (ton/ha) 0.03 1.03 0.02 0.20 0.10 0.12 0.12 1.62
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The results were verified by selecting specific beds
and ground-truthing the patterns produced in the
analyses. This was done using a variety of field methods
including visual observations, berry counting, plant
density measurements, pathogen isolations, elevation
mapping, soil texture analysis, and soil moisture map-
ping. All sampling locations were georeferenced with
GPS (Trimble Pathfinder Pro XR2, Trimble Navigation
Limited), and corresponding maps were created using
geostatistical techniques of inverse-distance weighting
and kriging (Gotway et al., 1996; Isaaks and Srivastava,
1989) with GS+ (Gamma Design Software, MI).

Results

For all cultivars there was a high correlation between
yields from sequential years for the same beds. The
relationship between yields in 1998 and 1999 for all
beds included in the cranberry GIS shows a high cor-
relation (Fig. 1). Correlation coefficients for the 2000
yield with yields of preceding years are significant going
back to 1993 (i.e., 0.740, 0.815, 0.722, 0.710, 0.628,
0.636, and 0.740 for 1999, 1998, 1997, 1996, 1995, 1994,
and 1993, respectively).

To more accurately capture cranberry yield trends
over time and space, yield values were normalized for
each cultivar. The individual bed yield for a given year
is divided by the average yield for the specific cultivar

for that specific year. In this way beds with different
yielding potentials were compared in a single yield
map. The normalized yields were projected as data lay-
ers across 8 years (Fig. 2), and the yield trend was cal-
culated from the data as a regression line over time. A
negative slope indicates a decline in yield for a particu-
lar bed (shown in blue), positive slope indicates an
increase in yield (shown in red), and no change in
yields is shown in green. The results of this analysis were
then projected onto a map showing the distribution of
yield trends (Fig. 3).

The analysis of the imagery involved several steps.
First, the whole image plate provided by Space Imag-
ing, Inc. was included into an unsupervised classifica-
tion. The image comprised not only areas occupied by
cranberry bogs but also roads, forests, and water reser-
voirs. The unsupervised classifications set for 20 classes
were run for the raw image, a Normalized Difference
Vegetation Index (NDVI), or Structural Independent
Pigment Index (SIPI), and the area occupied by each
pixel class in each cranberry bed was calculated. The
correlation between the area of each pixel class and
total bed yields was generally low and not significant
(>0.05). As a result, the analyses were run again but a
mask was developed so that only areas under cranberry
beds were included in the classification. The masking
improved the results; however, the correlations still
were not sufficient and a subjective inspection of the
classes revealed very little information (data not
shown). Masks (areas of interest) were developed for
each individual cultivar so that three cultivars (Early
Black, Stevens, and Ben Lear) could be examined sepa-
rately. The results were greatly improved (Table 2),
with several classes showing strong correlations with
yield (negative or positive). As evident from Table 2,
each cultivar demonstrates correlations with slightly dif-
ferent classes. Thus, Stevens and Early Black cultivars
show strong and significant correlations with high
classes of NDVI (classes 16-20). Correlation of Ben Lear
with the same classes is also high but not significant,
probably because of small sampling size. However, Ben

Fig. 1. A relationship between total yields in 1998 and 1999. Data
from all yielding beds included in Cranberry GIS are combined.

Fig. 2. Patterns of production across a range of cranberry beds over an 8-year period. Yields were standardized by first calculating the yearly
average for each cultivar and then dividing bed yield by the cultivar average. Color palette represents statistical deviation from the cultivar
average for that season (see legend for Fig. 3).
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Lear shows high and significant negative correlations
with the classes of low NDVI (classes 1-8). The unsu-
pervised classifications of raw imagery and SIPI index
were processed in the same way as NDVI and yielded
similar results.

Pixel class data also were subjected to a multiple step-
wise regression, which helped to increase correlation
with cranberry yield (r2 became 0.741, 0.711, and 0.425
for Stevens, Ben Lear, and Early Black, respectively). A
strong relationship was found between the observed

yields for the cultivar Stevens and the yields predicted
based on multiple regression from classes 1, 6, 10, 11,
16, 17, 18, and 19. Thus, using satellite multi-band im-
agery through unsupervised classification of NDVI up
to 74% variation in the yield can be explained for
Stevens and Ben Lear cultivars. Only about 42% of yield
variation was explained for Early Back cultivar, which
might be due to several reasons: (i) larger sampling size
for this cultivar; (ii) beds with this cultivar tend to be
the oldest planted and often exhibit a biannual bearing
pattern; and (iii) this cultivar may contain significant
genetic diversity, whereas Stevens and Ben Lear show
lower levels of genetic diversity.

The results of the correlation analysis (Fig. 4) for the
relationships between the unsupervised classification
and cranberry yields were visualized as maps using Are-
View (Fig. 5A, B). Figure 5A shows results of the unsu-
pervised classification for a group of beds where each of
the 20 classes is represented by a distinct color shade.
Then every class was assigned in one of the three
groups, namely having significantly positive, negative,
or no significant correlation with yield based on the
information from Table 2 for each cultivar. Those three
groups are colored differently in Figure 5B.

Yield maps, derived from the remotely sensed data,
were verified for some beds with berry counting close to
harvest. Figure 6 shows the contour of a 2000 yield map
developed by kriging the data from 216 sampling loca-
tions superimposed on a map derived by unsupervised
classification of the same-year multispectral satellite im-
agery. A generally good correspondence of the areas
with low yield to pixels with the classes negatively cor-
related with yield can be noted. However, unsupervised
classification of the remotely sensed data provides more
detail maps than one can obtain even from very dense
ground sampling. A correlation between remotely
sensed and ground-sampled data is usually decreased
by error of geographical co-registration of the imagery
and sampling locations, which combines GPS error and

Fig. 3. Yield trends over 1993-2000 period calculated from the
yield data presented in Fig. 2. Beds colored in blue represent decreas-
ing yields; yields from the beds colored green are stable or un-
changed over 8 years.

Fig. 4. A relationship between cranberry yields observed in the
field (for 79 Stevens’ beds) and predicted by multiple stepwise re-
gression of the data derived with unsupervised classification of NDVI
from multi-band satellite imagery (IKONOS I).

TABLE 2. Correlation coefficients between bed yields (1999–2000
average) and % area of the individual classes derived with unsuper-
vised classification of NDVI from IKONAS multispectral imagery
(2000).

Class #
Stevens
n = 53

Ben Lear
n = 28

Early Black
n = 157

1 −0.23 0.50* −0.36*
2 −0.23 −0.40* −0.37*
3 −0.44* −0.43* −0.33*
4 −0.41* −0.49* −0.36*
5 −0.54* −0.59* −0.39*
6 −0.59* −0.52* −0.42*
7 −0.63* −0.48* −0.47*
8 −0.66* −0.42* −0.45*
9 −0.71* −0.33 −0.47*

10 −0.80* −0.29 −0.48*
11 −0.73* −0.10 −0.47*
12 −0.52* −0.08 −0.38*
13 −0.30* −0.10 −0.21*
14 −0.12 0.06 0.13
15 0.16 0.17 0.39*
16 0.48* 0.30 0.53*
17 0.68* 0.32 0.54*
18 0.76* 0.33 0.48*
19 0.68* 0.36 0.43*
20 0.60* 0.25 0.30*
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image-processing error (Salvador, 1999). Besides, maps
developed from the ground-sampled point data have an
error due to biased sampling locations.

Discussion

The availability of detailed and accurate yield data
that can be related to specific fields or beds has pro-
vided the opportunity to develop an agricultural GIS
that can be used to track yield trends. In the case of
cranberry, we have found that yields show a high cor-
relation between years. This high correlation suggests
that in cranberries most of the beds exhibit constant
rankings through the years, with slight fluctuations due
to variation in management inputs, bud set, and
weather conditions. When examined separately, the
three cultivars examined in this study differed in yield
potential and yielding pattern. For example, Early
Black shows a biennial bearing pattern, with yields from
a same bed changing almost two-fold in consecutive
years. Nevertheless, for such beds high correlation ex-
ists between yields in alternate years. Based on the find-
ing that the ranking of beds is constant, the analysis of
historical data may be useful in targeting beds for re-
mediation or replanting.

We suspect that areas within a bed that are producing
poorly are likely to recur at the same places and possi-
bly increase in size. Thus, yield maps as well as maps of
yield trends could be used to identify problem beds.
Diagnostic methods also need to be developed to iden-
tify the factors limiting yield. Very often these yield-
limiting factors are not readily apparent, which makes it
difficult to locate low-yielding areas of a bed without the
remote sensing and GIS tolls described here.

The combination of detailed yield records with re-
motely sensing data has provided the opportunity to
detect and map yield variation within a cranberry bed.

Using this approach, crop losses that are not readily
visible to the naked eye (such as chronic injury from
Phytophthora root rot, water stress, or nutrient defi-
ciency) can be located (Pozdnyakova et al., 2002). The
map E.I.C. 2002 presented in Figure 3 helps identify
beds where the ranking has either changed (increased
or decreased) or remained the same. For example, two
beds in the center show a declining yield (colored blue
in Fig. 3). Using the classified remote sensing data (Fig.
5B, large areas of these beds were found to be in de-
cline. Thus, one method identifies a problem bed and
the second method shows the distribution of yield loss
within the bed. Each type of disease, nutrient defi-
ciency, or drainage problem does not necessarily have a
unique spectral fingerprint; therefore, ground-based
diagnostics are necessary. In practice, scouting tech-
niques that use handheld computers with georefer-
enced maps and GPS will be used to guide the scout to
problem areas and provide a medium for reporting to
the grower.

Different methods were used to process the image
data. Ratio-based methods, such as NDVI and SIPI,
work well because variations in radiance that may occur
across the image will be minimized. NDVI worked very
well in this analysis; however, other methods may be
superior (Huete, 1988; Stoms and Hargrove, 2000).
This type of analysis is limited by the spectral and spa-
tial characteristics of the imagery being used. For
example, multispectral imagery obtained from the
IKONOS satellite contains four broad spectral bands
with a ground resolution of 4 m. Other platforms, such
as airborne hyperspectral imagery contain greater num-
bers of spectral bands with reduced bandwidth. In the
future, additional images will be taken throughout the
season to determine the optimum number of images
needed and the optimum timing in terms of crop phe-
nology.

Ultimately, this technique will be used not only to
visualize the yield potential within the beds but also to
monitor yield changes within beds over time through
image change analysis (Kadmon and Harari-Kremer,

Fig. 5. Distribution of yield potential within cranberry beds. A)
Unsupervised classification of multispectral IKONOS I imagery. B)
Pixels colored red positively correlated with yield, blue are negatively
correlated with yield, and green shown no significant correlation.
Figure demonstrates where yield losses occurred.

Fig. 6. Contour yield (ton/ha) map (2000) kriged from the re-
sults of berry counting on 216 locations. Color map is developed from
unsupervised classification of IKONOS I imagery (see caption for
Fig. 5).
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1999). This approach will provide the technical under-
pinning to create a bed-management tool that also can
be used as an annual report card for monitoring prog-
ress in various treatment regimes.

Crop yield models and canopy-specific weather data
will be combined with the remotely sensed data to pro-
vide accurate yield predictions (Hartkamp et al., 1999).
Management plans will be developed under a GIS and
implemented using GPS-guided scouts and machinery
(Fleischer et al., 1999). Ultimately, growers will be able
to access historical and current yield maps derived from
remotely sensed data. These yield maps combined with
treatment maps will be a viable tool for day-to-day cran-
berry management and provide a means for evaluating
crop management techniques through crop change de-
tection.
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