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A Theoretical Model of the Winter Survival Dynamics 
of Meloidogyne spp. Eggs and Juveniles 

M. j .  JEGER AND j .  L. STARR 1 

Abstract: A theoretical model of  the winter survival dynamics of  Meloidagyne spp. was developed 
by considering the roles of  egg hatching and juvenile mortality and the initial populations of eggs 
and juveniles at the onset of  winter. Two distinct patterns of juvenile dynamics appear which depend 
upon the numerical values of  the model parameters. The  model predicts whether eggs or juveniles 
are the major component of overwintering nematode populations at any time prior to planting. 
The  model could be elaborated to include egg viability and differential mortality of  eggs but at 
some cost in ease of  mathematical analysis. A general procedure for fitting the proposed model to 
experimental or observational data is outlined. 
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Mathematical models serve many pur- 
poses in population ecology, including the 
explanation, prediction, optimization, and 
descr ip t ion  of  biological  p h e n o m e n a .  
Models vary according to their structural 
complexity and mathematical sophistica- 
tion as well as to their applications. Models 
used as research tools serve largely as aids 
to calculation or as standards of  compari- 
son for experimental and observational 
data. For such applications it is desirable 
that essential features of  the biological 
phenomenon be retained but  in as simple 
a form as possible to allow for mathemat- 
ical analysis (2). In this guise it is not im- 
portant  that models should incorporate 
every known influence of  the physical or 
biological environment; rather, the calcu- 
lations made with the model are used to 
make comparative statements about the 
environments in which the experiments 
were done or the observations made. 

Starr and Jeger  (7) reported data on the 
winter survival dynamics of  populations of  
the plant-parasitic nematodes Meloidogyne 
incognita and M. arenaria at several sites in 
Texas. A qualitative model of  the popu- 
lation dynamics emerged. The  problem was 
to translate the qualitative model into 
quantitative relationships that could be 
used as a research tool in describing nema- 
tode population dynamics. Various models 
have been proposed to study nematode 
population dynamics since the review of  
Seinhorst (6). These include relatively 
complex models that simulate entire life 
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cycles of  nematodes (3) and can be used to 
evaluate management decisions (4), models 
that determine dynamic action thresholds 
for  m a n a g e m e n t  appl icat ions (1), and 
models that relate more limited aspects of  
epidemiology to environment. None of  
these models, however, was appropriate for 
our purposes. Accordingly, we present here 
a theoretical model of  the winter survival 
dynamics of  Meloidogyne spp. populations 
that can be used to explore the potential 
contribution of  two different components 
of  total population size (in the fall) to the 
population size at the beginning of  the next 
growing season. The  model has been used 
to analyze the specific data of  Starr and 
Jeger  (7). 

MATHEMATICAL ANALYSIS AND RESULTS 

Suppose that, at harvest, a population of  
Meloidogyne sp. causing disease in an annual 
crop consists of  adults, unhatched eggs (E), 
and second-stage juveniles (J). Second-stage 
juveniles will not develop further and adults 
of  Meloidogyne spp. will not survive in the 
absence of  a susceptible crop. Suppose that 
a time t - - 0  can be chosen such that no 
further eggs are laid, that eggs hatch at a 
constant rate proportional to egg popula- 
tion size, that all laid eggs are viable, and 
that there is no mortality of  eggs. Then  

dE/d t  = -hE,  (1) 

which is an equation for exponential de- 
crease, with h the rate of  hatching. Equa- 
tion 1 is solved to give E, the egg popula- 
tion size at time t as 

E = Eoexp(-ht) (2) 

where E0 is the fall egg population. 
An equation for the population dynam- 
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ics of  second-stage juveniles can then  be 
derived. Suppose that  the rate of  popula- 
t ion change is given by the increases f rom 
hatch  o f  eggs minus the losses due to mor- 
tality f rom whatever  source, and that  im- 
migrat ion and emigrat ion are negligible or  
counter-balancing.  T h e n  

d J / d t  = hE - m j ,  (3) 

which is an equat ion linked to equat ion 1 
with m the constant  rate of  mortali ty.  T h e  
solved form of  E is known f rom equat ion 
2 and can be substi tuted into equat ion 3. 
Upon r ea r r angemen t  this gives 

d J / d t  + mJ = hEo exp(-h t ) ,  (4) 

which is a first-order nonhomogeneous  lin- 
ear differential  equat ion with (for m ¢ h) 
the solution 

J = (Jo - a ) e x p ( - m t )  + a exp( -h t )  (5) 

where  J0 is the  fall second-stage juvenile  
population,  and A = hEo/(m - h). 

I f  m = h, i.e., the mortal i ty rate and 
hatching rate are equal, then  the solution 
to equat ion 4 is 

J = (Jo + hEot)exp(-mt) .  (6) 

T h e  form of  equat ion 5 is complex and 
depends upon the relative values o f  E0, J0, 
h, and m (each of  which is specified as a 
positive constant). T h e  number  o f  eggs 
hatching decreases exponentially,  but  so 
long as hE > m J, the juvenile  populat ion 
increases. When  hE < m j ,  the juvenile  pop- 
ulation decreases and approaches zero 
asymptotically. T h e  point  in t ime at which 
the juvenile  populat ion is at a max imum is 
obtained by sett ing equat ion 3 to zero, sub- 
sti tuting in equat ion 2 and  5 (or 6) to give 

hEoexp( -h t )  = m[(]0 - a ) e x p ( - m t )  
+ A exp(-ht)] ,  

and solving for t. Following this p rocedure  
gives 

t = ln[(m/h)(1 - Jo /A ) ] / (m  - h) (7) 

where  m 4= h. I f  m = h, the value o f  t is 
given by 

t = (1 - Jo/Eo)/h .  (8) 

In the case o f  equat ion 7, the max imum 
occurs at a positive value o f  t if, and  only 
if, hEo > mJo. This  result  applies irrespec- 
tive o f  whether  h < m, or  h > m. In the 
case of  equat ion 8, the equivalent  condi- 
t ion is given by J0 < E0. 

T h e  total nematode  populat ion at any 
t ime t is given by the sum of  equations 2 
and 5 (or 6). T h e  total populat ion dynamics 
are given by 

d(E + J ) / d t  = d E / d t  + d J / d t  = - m J ,  (9) 

which is negative for all values of  t. T h e  
total populat ion decreases monotonical ly  
f rom an initial size E0 + J0 and asymptot- 
ically approaches zero. T h e  quest ion now 
arises as to whether  the egg or  juveni le  
populat ion is the larger component  o f  the 
total populat ion dur ing  winter  survival. 
This  can be analyzed in several ways: the 
simplest is to look for values of  t such that  
the two components  are equal in size (i.e., 
with E = J )  and to examine paramete r  
combinat ions on ei ther  side o f  the equality. 

Setting equat ion 2 equal to equat ion 5 
gives 

(Eo - A ) e x p ( - h t )  = (Jo - A)exp(-mt) .  
(10) 

Trivially, if E0 =Jo, then  the equality holds 
at t = 0 and as t --, ~ .  T h e  existence of  a 
nontrivial  positive value of  t such that  E = 
J is dependen t  upon the relative values o f  
h and m. In particular,  if: 

(i) m < h, then  a positive value of  t ex- 
ists only if  J0 < E0; 

(ii) h < m < 2h, then  again we require  
J0 < Eo; 

(iii) m = 2h, and if J0 = E0, then  J = E 
for all values of  t; 

(iv) 2h < m, then  a positive value of  t 
exists only if J0 > Eo. 

Setting equat ion 2 equal to equat ion 6, 
in the case where m = h, gives 

E0 =J0  + hEot (11) 

which when rear ranged  is identical to 
equat ion 8. Hence a positive value o f  t ex- 
ists such that  J = E only if  J0 < E0. At this 
t ime J is also at a maximum.  

Values for E and.]" genera ted  over a 100- 
day period are shown in Figure 1 A - D  for 
differing parameter  combinations.  In each 
case the juvenile  populat ion commences  at 
a lower level than  the egg population.  Both 
populations are scaled such that  J0 + E0 = 
1. Where  h > m (Fig. 1 A), hEo is necessarily 
greater  than  mJo, and the number  of  ju- 
veniles increases to soon exceed the num- 
ber  o f  eggs and reaches a max imum value. 
T h e  number  o f  juveniles then  decreases 
but  always exceeds the n u mb e r  o f  eggs. 
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FIG. 1. Numbers of  eggs (E) and juveniles (]), withJo + Eo = 1, for parameter combinations: A)Jo < Eo 
and h < m. B)J0 < Eo and h = m. C)J0 < E0 and h < m < 2h. D)Jo < E0 and m > 2h. In A-C,  hEo > mJo and 
the juvenile population increases initially; in D, hEo < mJo and the juvenile population decreases throughout.  

Clearly, the later the maximum is reached, 
the more pronounced the survival of  ju- 
veniles compared to eggs. Where h = m 
(Fig. 1B), the number of juveniles reaches 
a maximum at the same time that the two 
populations are of  equal size. Where h < 
m < 2h but hEo > mJo (Fig. 1C), the num- 
ber of  juveniles increases and, in the ex- 
ample shown, reaches a maximum before 
exceeding the number of  eggs. Finally, 
where hEo < mJo, the number of  juveniles 
decreases from the start and in the ex- 
ample shown (Fig. 1D), never exceeds the 
number of eggs. Curves for parameter 
combinations in which J0 > E0 (again,J0 + 
E0 = !) can also be generated. As given in 

condition (iv) above, if m > 2h there will 
be a crossover point at which J = E. Oth- 
erwise J > E for all t. 

The  basic model can also be modified to 
incorporate additional suppositions con- 
cerning overwintering. For example, sup- 
pose that of the initial egg population only 
a proportion (p) is viable and capable of  
hatching. The  population size of  nonviable 
eggs is then given by (1 - p)Eo, and 

d E / d t  = - h [ E  - (1 - p)E0] (12) 

which is soluble as 

E = E0 {1 -- p[1 -- exp(-ht)]}. (13) 

The  difference between this equation and 
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equation 2 is that the egg population now 
approaches (1 - p)Eo rather than zero. As 
a further example, suppose that egg mor- 
tality occurs at a sufficiently high rate (l) 
compared to hatching. Then 

dE~dr = - (h  + l)E (14) 

with the solution 

E = E0exp[-(h + l)t] (15) 

and describes a faster rate of  egg depletion 
than equation 2, dependent  upon the rel- 
ative magnitude of  mortality. Equation 13 
or 15 may be used instead of  equation 2 to 
obtain new formulations of  equations 4 -  
1 1. Differential mortality and viability of  
eggs can both be incorporated into the ba- 
sic model of  egg winter survival but at some 
increase in complexity. 

APPLICATIONS 

These equations can be used to obtain 
estimates of  parameters related to winter 
survival of  Meloidogyne spp. Interpretation 
of  the numerical values obtained should of  
course make allowance for the appropri- 
ateness of  the suppositions stated to the 
particular application. In some cases it may 
be wise to avoid descriptive labels, such as 
hatching or mortality rate, for the rate pa- 
rameters. 

Equation 2 can be fitted by a linear 
regression of  In (egg population size) against 
time to give least squares estimates of  h and 
E0. There  is no general means of  linear- 
izing equation 5, and alternative methods 
of  estimation must be sought. Several sta- 
tistical packages are available for maxi- 
mum likelihood estimation of  parameters 
(5), but  may not generally be available; 
however, nonlinear curve fitting may be 
done using packages such as SPSS or SAS. 
The  quantity and quality of  data often do 
not merit the use of  such sophisticated 
techniques. In many cases a simple graph- 
ical technique may suffice to obtain the pa- 
rameter  estimates, especially in prelimi- 
nary studies and at a low level of  replication 
or sampling intensity. 

Equation 7 gives the time at which the 
juvenile population is at a maximum. If the 
data show such a trend, and if this time can 
be estimated with reasonable confidence, 
then an estimate of  m can be made by in- 
serting the known values of  h (obtained by 

linearization of  equation 2) and the ratio 
of  initial juvenile:egg populations into 
equation 7, and iterating until a conver- 
gent estimate of  m is obtained. This was 
essentially the procedure used in our anal- 
ysis of  the winter population survival dy- 
namics of  M. incognita (7). 

The  model developed also allows a gen- 
eral analysis of  the relative importance of  
the initial egg and juvenile populations in 
the fall and of  hatching and mortality rates. 
If  the juvenile population is smaller than 
the egg population in the fall, unless the 
mortality rate is much higher than the 
hatching rate the juvenile population will 
eventually exceed the egg population. The  
important consideration here is the mag- 
nitude of  both rates and the length of  time 
from harvest to planting. There  is little 
published information on rates of  egg 
hatching and second-stage juvenile mor- 
tality, largely because the means to calcu- 
late them, dynamically, have not been 
available. Hence few generalizations can 
be made. However,  the model presented 
makes it feasible to take estimates of  nema- 
tode egg and juvenile populations at har- 
vest and to project likely population levels 
at planting once information on ' the  rates 
of  population changes over time becomes 
available. 
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