Effects of <I>Php</I> Gene-Associated versus Induced Resistance to Tobacco Cyst Nematode in Flue-Cured Tobacco

Authors

  • Venkatesan Parkunan
  • Charles S. Johnson
  • Jon D. Eisenback

Keywords:

biological control, management, induced resistance

Abstract

Effects of the systemic acquired resistance (SAR)-inducing compound acibenzolar-S-methyl (ASM) and the plant-growth promoting rhizobacterial mixture Bacillus subtilis A13 and B. amyloliquefaciens IN937a (GB99+GB122) were assessed on the reproduction of a tobacco cyst nematode (TCN- Globodera tabacum solanacearum) under greenhouse conditions. Two sets of two independent experiments were conducted, each involving soil or root sampling. Soil sample experiments included flue-cured tobacco cultivars with (Php+: NC71 and NC102) and without (Php-: K326 and K346) a gene (Php) suppressing TCN parasitism. Root sample experiments examined TCN root parasitism of NC71 and K326. Cultivars possessing the Php gene (Php+) were compared with Php- cultivars to assess the effects of resistance mediated via Php gene vs. induced resistance to TCN. GB99+GB122 consistently reduced nematode reproductive ratio on both Php+ and Php- cultivars, but similar effects of ASM across Php- cultivars were less consistent. In addition, ASM application resulted in leaf yellowing and reduced root weight. GB99+GB122 consistently reduced nematode development in roots of both Php+ and Php- cultivars, while similar effects of ASM were frequently less consistent. The results of this study indicate that GB99+GB122 consistently reduced TCN reproduction in all flue-cured tobacco cultivars tested, while the effects of ASM were only consistent in Php+ cultivars. Under most circumstances, GB99+GB122 suppressed nematode reproduction more consistently than ASM compared to the untreated control.

Downloads

Published

2009-12-15

Issue

Section

Articles