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Abstract: The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge
(Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest
complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa
to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M.
incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-
product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In
July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of
the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges
and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita.
These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be
used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low.
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perennial weed, Poisson regression, predictive modeling, purple nutsedge, southern root-knot nematode, yellow nutsedge.

Southern root-knot nematode (Meloidogyne incognita
(Kofoid & White) Chitwood), yellow nutsedge (Cyperus
esculentus L., hereafter referred to as ‘YNS’) and purple
nutsedge (Cyperus rotundus L., hereafter referred to as
‘PNS’) occur simultaneously in many crops grown
throughout the southern and western regions of the
US. Previous research (Bird and Hogger, 1973; Hogger
and Bird, 1976; Schroeder et al., 1993) has identified
relationships between M. incognita and common weed
species, particularly YNS and PNS, that occur in sandy
soils used to produce cotton and chile pepper (Capsi-
cum annuum L., hereafter referred to as ‘chile’). Yellow
nutsedge, purple nutsedge and M. incognita are largely
dependent on passive dissemination and are well
adapted to a mutually beneficial coexistence that sus-
tains and enhances the pest complex (Schroeder et al.,
1994; Thomas et al., 1997; Schroeder et al., 2004; Tho-
mas et al., 2004; Schroeder et al., 2005; Thomas et al.,
2005). Management that targets the pests individually
has not been successful or sustainable due to these ben-
eficial interactions (Schroeder et al., 1994, 2004; Tho-
mas et al., 2005). Successful management requires a
comprehensive strategy. Crop rotation with a nondor-
mant, M. incognita-resistant alfalfa, which has aggressive
growth and can compete with nutsedge for light and
other resources, can provide simultaneous suppression
of all three pests, eliminate the need for 1,3-dichloro-
propene fumigation in the subsequent crop, and pro-

vide an economical rotation option for New Mexico
chile growers (Fiore, 2004).

Field nematode counts are frequently highly skewed
and usually non-Normally distributed, so statistical tech-
niques which assume Normality and constant variance
of the response variable are not appropriate in fitting
analyses of variance or regression models (i.e., linear
models) (Goodell and Ferris, 1980). There are two
common practices to solve the problem of non-
Normality and/or non-constant variance. First, the
older method is that of transformation of the data
(Neter et al., 1983). For example, stability of variance
and symmetry of the probability distribution can often
be obtained by a transformation of the form log (x + c)
on observed data x, where c is a constant (Proctor and
Marks, 1975). However, sometimes the transformation
that best produces Normality may be different from the
transformation that best produces constant variance
(McCullagh and Nelder, 1989). Moreover, statistical re-
sults obtained on the transformed scale are not neces-
sarily applicable to the original scale of measurement
and hence are not easily interpreted (Finney, 1941; Pat-
terson, 1966). For example, the second author of this
paper has seen cases where means of logged data and
the corresponding means of the original data are in a
different order.

The second, more modern approach is the tech-
nique of Generalized Linear Models (McCullagh and
Nelder, 1989; Littell et al., 2002), which directly uses a
probability distribution that is more appropriate than
the Normal for a given set of data. For example, impor-
tant non-Normal probability distributions for count
data include the Poisson and the Negative Binomial
(McCullagh and Nelder, 1989). Most nematode field
data show an aggregated pattern and hence follow a
Negative Binomial distribution, where the variance is
larger than the mean (Ferris, 1984; McSorley, 1998).
This is the case of over-dispersion, which frequently
happens when population counts are high and likely
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skewed (Bliss and Fisher, 1953; Onsager, 1981). A Pois-
son distribution is suitable for counts when the variance
equals the mean. This situation frequently happens
when population counts are consistently low with no
high counts and hence are not over-dispersed (Bliss
and Fisher, 1953; Onsager, 1981). Onsager (1981) hy-
pothesized that in an integrated pest management sys-
tem the Poisson might be a more appropriate probabil-
ity distribution to model counts than the Negative Bi-
nomial because of low population counts.

The Generalized Linear Models procedure typically
uses maximum likelihood estimation, applied to prob-
ability distributions (like the Poisson or Negative Bino-
mial) to fit analysis of variance or regression models to
some known function (called the “link function”) of
the distribution mean (McCullagh and Nelder, 1989).
Unlike values generated by transforming the data and
then fitting a model using Normal distribution, the pre-
dicted values from the fitted Generalized Linear Model
can be correctly “inverted” or transformed back into
the original scale of measurement by the “inverse link
function” (McCullagh and Nelder, 1989), and results
between the two scales are consistent. Note also that a
good model constructed with an appropriate distribu-
tion can sometimes resolve a problem of over-disper-
sion due to model misspecification of the true predic-
tive relationship.

Given the beneficial relationships between nutsedges
and M. incognita, we hypothesized that the location of
the nutsedge populations in an alfalfa field predicts
occurrence of greater J2 populations and probable ar-
eas of nematode resurgence in subsequent crops. Ad-
ditional management of the nutsedges in a crop follow-
ing alfalfa may prolong the suppression of M. incognita.
The objective of this work was to evaluate quadratic
polynomial regression models for prediction of the
number of M. incognita J2 in soil samples as a function
of yellow and purple nutsedge counts, squares of nut-
sedge counts and the cross-product between nutsedge
counts.

MATERIALS AND METHODS

Plot conditions: A 2-yr study was initiated in September
2004 at the Leyendecker Plant Science Research Cen-
ter, New Mexico State University, near Las Cruces, NM,
on an Anthony-Vinton fine sandy loam soil (coarse-
loamy, mixed [calcareous], thermic Typic Torrifluvent;
sandy, mixed, thermic Typic Torrifluvent) (79% sand,
12% silt, 9% clay; 0.8% organic matter; pH 8.1). Envi-
ronmental conditions were monitored by a Campbell
CR-10 Measurement and Control Module (Campbell
Scientific Inc., Logan, UT) (Table 1).

The field was uniformly cropped with oats in 2004
prior to initiating the experiment. During field
preparation, fertilizer was applied at 280 kg 11–52–0
(N-P-K)/ha. The herbicide benefin at 1.34 kg a.i./ha

was applied as a preplant incorporated treatment for
grass and broadleaf weed control. The M. incognita J2
population in fall 2004 averaged 63/100 cm3 soil, which
is about 25 times the damage threshold for chile (Tho-
mas et al., 1995) and is considered a heavy infestation.
Yellow and purple nutsedge populations were dense
and evenly distributed throughout the field.

In September 2004, the field was prepared and
planted with nondormant alfalfa (Medicago sativa,
‘Mecca 2’), which contains approx. 60% African (M.
incognita-resistant) parentage (I. M. Ray, NMSU, pers.
com.) at a seeding rate of 18 kg/ha. Once the alfalfa
was established, the field was flood-irrigated from Feb-
ruary through September on a monthly schedule. A
final irrigation was applied once in the late fall each
year; the fields were not irrigated again until the
monthly schedule resumed in February. Alfalfa weevil
(Hypera postica) was controlled as needed throughout
the experiment using foliar applications of 0.03 kg a.i.
Lambda-cyhalothrin/ha. Alfalfa was harvested six times
from April through early November in 2005 and 2006.
This alfalfa stand was managed for 2 yr from September
2004 through October 2006 according to production
practices common in the Rio Grande valley (I. M. Ray,

TABLE 1. Soil temperature and precipitation from an alfalfa field
infested with M. incognita and yellow and purple nutsedge in Doña
Ana County, NM.

Alfalfa
growing
season

Soil temperature (°C)
No. of

d > 10°Ca
Monthly cumulative
precipitation (mm)Maximum Minimum

2004
Sept. 37.35 7.89 30 53.09
Oct. 31.72 2.51 31 25.40
Nov. 17.14 2.47 20 38.10
Dec. 10.37 0.15 1 7.62

2005
Jan. 13.17 2.42 10 19.05
Feb. 14.17 1.57 22 9.94
Mar. 19.36 5.64 30 10.16
Apr. 21.08 8.70 30 7.11
May 29.73 11.55 13b 13.97
June 38.78 16.39 23b 0.51
July 38.77 20.97 31 14.99
Aug. 36.22 15.75 31 28.19
Sept. 35.88 20.87 16b 37.08
Oct. 25.81 12.89 28 41.40
Nov. 20.28 3.32 28 0.00
Dec. 12.43 1.19 8 0.00

2006
Jan. 10.00 2.79 0 0.76
Feb. 15.87 3.93 16 5.33
Mar. 17.24 7.46 30 0.00
Apr. 36.12 10.53 30 0.25
May 41.07 11.69 31 2.79
June 43.97 18.38 30 2.54
July 28.85 20.48 12b 52.58
Aug. 35.42 22.94 20b 91.95
Sept. 28.79 15.84 30 84.33
Oct. 24.18 0.14 31 48.51

a Daily maximum soil temperature >10°C.
b Data not available for entire month.
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NMSU, pers. com.) of southern New Mexico. Although
such alfalfa fields are typically maintained for at least 3
yr, previous research suggested that suppression of the
M. incognita-nutsedge pest complex occurred by the
end of the second growing season (Fiore, 2004). There-
fore, 2 yr in the alfalfa rotation were considered suffi-
cient to address the above hypotheses.

Data collection: A 55- × 100-m section of the 1 ha alfalfa
field that showed historically uniform irrigation prop-
erties and crop growth was chosen for intensive data
collection. This section was partitioned into a grid with
a total of 1,375 plots of size 2- × 2-m and was sampled in
May, July and September in both 2005 and 2006. The
goal of this sampling strategy was to determine both the
density and distribution of the three pest species during
the alfalfa rotation. The soil samples were paired with
the nutsedge plants (if present) to determine whether
the nutsedge and nematode populations were associ-
ated in the field.

At each sample date, 80 2- × 2-m plots were randomly
selected out of the 1,375 plots. No plots were sampled
twice in a year. Eighty was the maximum number of
plots that could be sampled at any one date, given lo-
gistical constraints on personnel and time of sample
processing. All samples were obtained from a 0.25- ×
1-m quadrat placed in the center of a selected 2- × 2-m
plot. Data at each sample date included yellow and
purple nutsedge plant counts and M. incognita J2
counts recovered from soil. Nematode populations
were estimated by compositing 10 50-cm3 soil cores col-
lected near nutsedge plants (if present) or at random
within the 0.25- × 1-m quadrat, if no nutsedge plants
were present. Nematodes were extracted from the 500
cm3 of soil by elutriation, during which the effluent
from one-fifth of the drain tubes on the sample splitter
was collected (equivalent to J2 per 100 cm3 soil) (Byrd
et al., 1976) and processed using centrifugal flotation
(Jenkins, 1964). Juveniles were counted from 10% of
the resulting aqueous suspension (equivalent to J2 per
10 cm3 soil) using a chambered counting slide. Instead
of extrapolating to J2 per 100 cm3 soil, the conven-
tional means of reporting nematode data, J2 counts per
10 cm3 soil were analyzed directly to meet the require-
ments of the Poisson distribution.

Statistical analysis: The objective of this work was to
determine if there was a relationship between M. incog-
nita J2 counts and the plant predictors, yellow nutsedge
and/or purple nutsedge counts, the yellow nutsedge by
purple nutsedge cross-product and/or the squares of
the nutsedge counts. Meloidogyne incognita J2 counts are
discrete non-negative integers, which often have a
skewed frequency distribution and which are often
modeled by the Poisson distribution (Bliss and Fisher,
1953; Littell et al., 2002) or the Negative Binomial (Fer-
ris, 1984; McSorley, 1998). Here the Poisson distribu-
tion is briefly discussed.

The Poisson distribution has the following “probabil-

ity distribution function” (hereafter referred to as
‘PDF’) or equivalently “likelihood function”:

P�y� =
exp�−���y

y!
, (1)

where y is a count measured on an experimental unit,
y = 0, 1, 2, . . . ,

y! is “y factorial,” defined as y! = y(y − 1)(y − 2) . . .
(2)(1),

µ > 0 is the population mean count of y,
exp( ) is the exponential function on the base of the

natural logarithm, equivalent to e().

In addition, the theoretical mean of the Poisson PDF µ
and the theoretical variance �2 are equal.

A graph of the theoretical Poisson PDF (eqn. 1), with
y = counts on the horizontal axis and nP(y) = expected
number of experimental units on the vertical axis,
shows a right-skewed unimodal shape. For example, the
theoretical Poisson frequencies graphed in Figure 1
come from a PDF with population mean count of M.
incognita J2 µ = 1:

P�y� =
exp�−1�1y

y!
.

Therefore, the probability of an experimental unit
from this specific Poisson distribution having a M. in-
cognita J2 count of zero is:

P�y = 0� =
exp�−1�10

0!
= 0.3679,

FIG. 1. Theoretical Poisson frequency distribution with µ = 1 and
n = 80 experimental units. Horizontal axis is y = count measured on
each experimental unit. Vertical axis is nP(y) = expected number of
experimental units with a count of y, where P(y) is the probability
of y.
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and therefore nP(y = 0) = (80)(0.3679) = 29.432 out of
80 experimental units are expected to have a zero J2
count.

Poisson models are an example of Generalized Lin-
ear Models (McCullagh and Nelder, 1989), which are
commonly based on PDF from the exponential family.
The exponential family has the following general PDF:

P�y; �, �� = exp�y��� − b���

a���
− c�y, ���, (2)

where y is an observation measured on an experimental
unit,

� is the “canonical parameter” which is some function
of µ, the mean count,

b(�) is a function of �,
a(�) is some function of the parameter � which is

called the “dispersion parameter,”
c(y, �) is some function of y and � only, not of � or µ.

Therefore, rewriting the Poisson PDF (eqn. 1) in the
form of the exponential family PDF (eqn. 2), we obtain:

P�y; �, 1� = exp�y�ln���� −�

1
− ln�y!��, (3)

where � = ln(µ), so that the natural log function of µ is
the “canonical link,”

b��� = exp��� = �,

a��� = � = 1,

c�y, �� = −ln�y!�.

The assumption a(�) = � = 1 is true if the data are, in
fact, generated from a theoretical Poisson distribution.
If � > 1, then the count data are over-dispersed (i.e., the
count data are aggregated so that the variance of y is
larger than the mean of y), and the Poisson PDF is not
appropriate for the data. A goodness-of-fit test dis-
cussed below provides an evaluation of this assumption.

In Generalized Linear Models, maximum likelihood
is used to fit a linear (i.e., additive) model on the ca-
nonical parameter �, which is related to the mean of
the distribution through the non-linear link-function.
This linear model can be either an analysis of variance
model or a regression model. In this paper, model se-
lection and diagnostics were performed on the specific
polynomial Poisson regression model:

� = ln���

= b0 + b1�YNS� + b2�PNS� + b3�YNS�2 + b4�PNS�2

+ b5�YNS × PNS�. (4)

This model is fitted on the natural log-scale, but can be
transformed to the count scale by the formula:

� = exp���

= exp�b0 + b1�YNS� + b2�PNS� + b3�YNS�2 + b4�PNS�2

+ b5�YNS × PNS��. (5)

Note that equation (4) is a linear model for �, but
equation (5) is a non-linear model for µ = exp(�).

Approximate �2-tests of hypotheses and confidence
limits can be calculated on � (and equivalently on µ)
using large-sample theory, either by the Likelihood Ra-
tio method or by Wald Statistics (Littell et al., 2002; SAS
Institute, Cary, NC). Confidence limits on � are expo-
nentiated to obtain the confidence limits on µ.

A goodness-of-fit test is recommended after fitting a
particular model to evaluate the discrepancy between
the data and the fitted model. This is especially impor-
tant when using a one-parameter PDF like the Poisson,
for which over-dispersion may be a problem. Two im-
portant measures of discrepancy are the Pearson �2 and
the deviance. The deviance criterion, which is based on
the Likelihood Ratio principle, is recommended by Mc-
Cullagh and Nelder (1989) to evaluate the goodness-
of-fit of a model with p predictors in comparison to the
“exact fit” model where the number of predictors is
equal to the number of observations (McCullagh and
Nelder, 1989). The general form of deviance is:

2�ln�LExact� − ln�LFitted�� � ��n−p�
2 , (6)

where LExact is the likelihood function of the “exact fit”
model with the number of model parameters equal to
n, number of observations, and LFitted is the likelihood
function of the fitted model with p < n model param-
eters. Specifically, the Poisson deviance has the form
(McCullagh and Nelder, 1989):

2���y ln�y�µ̂� − �y − µ̂��� � ��n−p�
2 , (7)

where µ̂ is the estimated value from equation (5). A
rule-of-thumb is that good model fit occurs when the
deviance divided by the degrees of freedom is “close” to
one (McCullagh and Nelder, 1989). This is because if a
model with p parameters describes a data set of n ob-
servations very well, then the value of the deviance is
expected to be close to the expected value of the �2

distribution, which is the degrees of freedom, n − p. In
a formal approximate �2-test, a critical value for a speci-
fied significance level � and n − p degrees of freedom
can be used to measure the size of the deviance. The
model fits the data well if the deviance is smaller than
the �2 critical value (McCullagh and Nelder, 1989; Dob-
son, 1990). Otherwise, the model does not fit the data.

Assuming the Poisson is appropriate, a large devi-
ance can occur from fitting a wrong or incomplete
model for µ (e.g., important predictors are omitted or
the functional form is mis-specified), or if there are
influential observations or outliers. In addition, over-
dispersion can occur because of standard nematode
counting techniques, such as use of chambered count-
ing slides, in which nematodes are counted in a 1 ml
aliquot from the 10 ml nematode suspension recovered
from a 100 cm3 soil sample, then multiplied by 10 to
extrapolate to 100 cm3 soil, with the result that the
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extrapolated counts are 0, 10, 20, . . . , rather than
counts of 0, 1, 2, . . . , as required theoretically for the
Poisson. Poisson models should, therefore, be fitted on
actual counts, rather than extrapolated counts. Finally,
another possible cause of a large deviance is if the vari-
ance of the data is larger than the mean of the data, i.e.,
the over-dispersion problem. Among the several poten-
tial reasons for over-dispersion, probably the most rel-
evant to this study is clustering in the nematode popu-
lation (McCullagh and Nelder, 1989).

Uncorrected over-dispersion will result in smaller es-
timates of standard errors, a higher Type I error rate,
and narrower confidence intervals than should be the
case theoretically. To solve the discrepancy problem
caused by clumping population, models based on the
Negative Binomial distribution (Young and Young,
1998) or other distributions may be necessary (Littell et
al., 2002). Note that the Negative Binomial distribution
converges to the Poisson as the positive exponent pa-
rameter k, the measure of aggregation, approaches
positive infinity (Bliss and Fisher, 1953; Noe and Camp-
bell, 1985).

An alternative solution to the problem of over-
dispersion, called “rescaling,” is to keep the Poisson
distribution but to correct the over-dispersion by modi-
fying the estimated standard errors and test statistics.
This modification is done by adjusting the assumed
variance by a dispersion parameter �*, so that the ac-
tual variance becomes �*µ instead of µ. Estimated stan-
dard errors and test statistics are adjusted by a “scale
parameter,” √�̂*, which is estimated by the square root
of the deviance divided by its degrees of freedom. In
this case, the Poisson PDF or likelihood function is
modified to become a “quasi-likelihood function”
(Wedderburn, 1974). Similar to maximum likelihood
estimation, maximizing the quasi-likelihood results in
the same point estimates, but with larger standard er-
rors, which are the original standard errors obtained
from the original Poisson model but multiplied by √�̂*.
In addition, confidence intervals are wider, and the
chance of making a Type I error is reduced (McCullagh
and Nelder, 1989; Littell et al., 2002). The approach
using the quasi-likelihood method has high efficiency if
over-dispersion is modest (Cox, 1983).

For the nutsedge and M. incognita J2 counts, the SAS
GENMOD procedure (Littel et al., 2002; SAS Institute,
Cary, NC) was used to estimate and test the regression
parameters of the Poisson regression model (eqn. 5)
using maximum likelihood estimation and Type 3 like-
lihood ratio �2 (Littell et al., 2002). The Poisson distri-
bution with the log link-function was specified by DIST
and LINK options, respectively, in the MODEL state-
ment of the procedure. Nonsignificant predictors were
deleted, and the models were refitted. When there
was possible over-dispersion (i.e., deviance approxi-
mate �2-test was significant), rescaling was done using
the DSCALE option in the GENMOD procedure

MODEL statement. Models fitted with and without the
DSCALE option were compared for significance of re-
gression parameters. If models fitted with and without
DSCALE were equivalent, then the models fitted with
the DSCALE option were reported. Otherwise, the
models both with and without the DSCALE option were
reported. All tests were done at a significance level of
� = 0.10. After final models were obtained, bivariate
graphs of fitted models were prepared using the SAS
GPLOT procedure, and tri-variate graphs were pre-
pared by the SAS GCONTOUR or G3D procedures
(SAS Institute, Cary, NC). Data were analyzed sepa-
rately for every sample date in each of the two alfalfa
rotation years.

RESULTS

Preliminary modeling: As expected, M. incognita J2
counts in the sampled quadrats were not Normally dis-
tributed (e.g., Fig. 2A,B) and, indeed, visually resemble
the Poisson distribution (e.g., Fig. 1). Therefore, Gen-
eralized Linear Models with the Poisson probability dis-
tribution with the log link-function were used to fit
polynomial regression models on actual J2 counts (i.e.,
based on 10 cm3 soil) (Table 2). Deviance approximate
�2-test statistics were greater than the critical �2 values
for all six fitted regression models in 2005 and 2006,
indicating a modest (Cox, 1983) over-dispersion prob-
lem with the Poisson distribution. To solve the problem
of over-dispersion, we chose the rescaling approach,
rather than fitting a different probability distribution.
Recall from earlier discussion that, in the rescaling ap-
proach, regression coefficient estimates are the same
from the original Poisson model but have larger stan-
dard errors and tests of hypothesis are less powerful in
the rescaled Poisson model, thus resulting in a some-
what conservative approach. Rescaled Poisson polyno-
mial regression models were then fitted, and original
and rescaled models were compared. Rescaled and
original models were the same with respect to statistical
significance of polynomial regression coefficients for all
sample dates except July and September 2005. For
these two dates, models differed only in the significance
of the YNS × PNS cross-product term, which was signifi-
cant in the original model but not in the rescaled
model. Thus, rescaled Poisson models were not sub-
stantially different from the original models. Rescaled
Poisson models for all dates plus original Poisson mod-
els for July and September 2005 are presented for com-
parison purposes (Table 2).

Fitted models: Results for final models are summarized
in Table 2 and presented as follows in order of increas-
ing complexity. In May and July 2006, none of the nut-
sedge predictors was significant, resulting in intercept-
only models (Table 2). In May 2006, the mean number
of M. incognita J2 was exp(−0.3930) = 0.68/10 cm3 soil
with 90% lower and upper confidence limits of
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TABLE 2. Poisson regression models with log link-function of M. incognita J2 counts from an alfalfa field infested with yellow and purple
nutsedge in Doña Ana County, NM.

Sample datesc Intercept

Estimated predictor coefficients (b̂i)
a,b

Deviance/df

Mean estimates and 90% confidence limitse

YNSd PNSd (YNS)2 (PNS)2 YNS × PNS Lower Mean Upper

2005
May, rescaled 0.5893* — 0.5099* — — — 2.1410
July, original −0.6309* 0.0890* 0.1266* — — −0.0148† 1.4760
July, rescaled −0.6309* 0.0890* 0.1266† — — −0.0148NS 1.4760
Sept, original −0.7295* 0.3879* 0.1604* — — −0.1184* 1.6666
Sept, rescaled −0.7295* 0.3879* 0.1604† — — −0.1184NS 1.6666

2006
May, rescaled −0.3930* — — — — — 1.5708 −0.6873 −0.3930 −0.1250
July, rescaled −0.5978* — — — — — 1.2471 −0.8881 −0.5978 −0.3331
Sept, rescaled −1.2639* — 0.2617* — — — 1.2155

a Reported as natural log-scale fitted model: ln(µ̂) = b̂0 + b̂1(YNS) + b̂2(PNS) + b̂3(YNS)2 + b̂4(PNS)2 + b̂5(YNS × PNS). Meloidogyne incognita J2 counts are calculated
per 10 cm3 soil sample.

b Regression coefficient observed significance level was P � 0.05 = (*), P � 0.10 = (†) or P > 0.10 = (NS).
c Original models were fitted using the original Poisson distribution; rescaled models were fitted using the Poisson distribution with rescaling to correct for

over-dispersion problems.
d YNS = yellow nutsedge (Cyperus esculentus) counts. PNS = purple nutsedge (Cyperus rotundus) counts.
e If none of the predictors were significant, the predictive model was an intercept-only model: ln(µ̂) = b̂0. The 90% lower and upper confidence limits of the

predicted mean are reported.

FIG. 2. Observed frequency distribution in July 2005 (A, C, E) and July 2006 (B, D, F) of M. incognita J2 counts, yellow nutsedge (YNS) and
purple nutsedge (PNS), respectively, of n = 80 quadrats of size 0.25 m2, from an alfalfa field infested with nutsedges in Doña Ana County, NM.
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exp(−0.6873) = 0.50 and exp(−0.1250) = 0.88 J2/10
cm3 soil, respectively. Similarly, in July 2006, an inter-
cept-only model indicated that the mean number of J2
was exp(−0.5978) = 0.55/10 cm3 soil with 90% lower
and upper confidence limits of exp(−0.8881) = 0.41
and exp(−0.3331) = 0.72 J2/10 cm3 soil. Yellow and
purple nutsedge counts were especially low in May 2006
(data not presented), with only four out of 80 quadrats
containing YNS plants, one quadrat containing PNS
plants, and no quadrat containing both. We note how-
ever that three of the five quadrats (60%) with either
YNS or PNS also contained M. incognita J2, in compari-
son with M. incognita J2 occurring in only 28 out of 75
quadrats (37.3%) with no nutsedge plants. As a com-
parison, in July 2006, nutsedge populations had in-
creased over May 2006 (Fig. 2D,F), with 27 quadrats out
of 80 containing YNS plants, nine containing PNS
plants, and 26 containing both. In this case, however, of
the 62 quadrats containing one or both nutsedge spe-
cies, 22 (35%) also contained M. incognita J2, while of
the 18 quadrats with no nutsedges, 10 (44%) contained
no M. incognita J2.

In May 2005 and September 2006, which were the
beginning and the end of the alfalfa rotation, respec-
tively, the only significant predictor of M. incognita J2
counts was PNS count per 0.25 m2 quadrat on both
sample dates. Both predictive relationships were posi-
tive (Table 2; Fig. 3A,B). Recall that the fitted model on
the natural log scale is a straight line (eqn. 4), while on
the count scale, the predictive relationship is an expo-
nential curve (eqn. 5; Fig. 3A,B). The width of confi-
dence limits increases with increasing predicted J2
mean because of the nature of the Poisson distribution
where mean equals variance. The May 2005 predictive
curve is higher than the curve of September 2006 with
respect to the same number of PNS counts, with no
overlap in the area bounded by the lower and upper

90% confidence limits. Thus, nematode counts were
higher overall and also increased more rapidly with in-
creasing PNS at the beginning of the first growing sea-
son than at the end of the second growing season. In
May 2005 (data not presented), only five out of 80
quadrats contained YNS plants, seven contained PNS
plants and two contained both (data not presented).
However, eight of the nine quadrats (89%) with plants
of the significant predictor PNS also contained M. in-
cognita J2, as compared to only 51 out of the 71 quadrats
without PNS (71.8%) but containing M. incognita J2. In
September 2006 (data not presented), 22 out of 80
quadrats contained YNS plants, with one quadrat con-
taining the maximum of four YNS plants, 11 out of 80
quadrats contained PNS plants, with two quadrats con-
taining the maximum of three PNS plants, and 26 quad-
rats containing both YNS and PNS, with one quadrat
containing the maximum of three YNS and seven PNS
plants. Of the 37 quadrats containing plants of the sig-
nificant predictor PNS, 10 (27%) also contained M.
incognita J2, while of the 43 quadrats without PNS, only
eight (18.6%) contained M. incognita J2.

In both July and September 2005, both YNS and PNS
counts were significant positive predictors of M. incog-
nita J2 counts with P � 0.10, with the negative YNS ×
PNS cross-product term being significant in the original
Poisson models but not significant in the more conser-
vative rescaled Poisson models (Table 2). Both original
and rescaled Poisson models are reported for these two
dates. In particular, in July 2005 (Fig. 2C,E), of quadrats
with one or both nutsedge species, 36 contained no M.
incognita J2, while 40 contained M. incognita J2. In com-
parison, of the four quadrats containing neither nut-
sedge species, three also had no M. incognita J2. In Sep-
tember 2005 (data not presented), of quadrats contain-
ing one or both nutsedge species, 37 contained no M.
incognita J2, and 29 contained M. incognita J2. Of the 14

FIG. 3. Predicted M. incognita J2 counts (solid line) and 90% confidence upper and lower limits (dashed line) for May 2005 (A) with
predicted model µ̂ = exp{0.5893 + 0.5099(PNS)} and September 2006 (B) with predicted model µ̂ = exp{−1.2639 + 0.2617(PNS)}, from an
alfalfa field infested with nutsedges in Doña Ana County, NM. Horizontal axis is purple nutsedge (PNS) counts per 0.25 m2. Vertical axis is
the predicted number of M. incognita J2 counts per 10 cm3 soil.
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quadrats without nutsedge, nine also contained no M.
incognita J2.

For the fitted Poisson regression models (Table 2),
recall that point estimates of regression coefficients
were preserved from original Poisson models to re-
scaled models, with the only differences being larger
standard errors of regression coefficients and wider
confidence intervals for rescaled models, and thus
larger P-values compare to the original model. The de-
cision to keep the nonsignificant cross-product in the
model will be discussed later. From a geometric stand-
point, the cross-product in the predictive model pro-
duces a surface with a twist instead of a flat plane in a
three-dimensional space (Fig. 4A,B). The predicted
model showed a lower M. incognita J2 count when both
YNS and PNS counts were small and when both were
large. On the other hand, a high M. incognita popula-
tion was related to increased counts of either YNS or
PNS, while counts of the other nutsedge species re-
mained low. The predictive relationship was consistent
from July to September in 2005.

The reliability of the predicted values for the July and
September 2005 models can be assessed by examining
the width of their confidence intervals for the mean M.
incognita J2 count: the narrower the width, the better
the prediction that can be obtained. Figure 5A and B
shows plots of the widths of confidence intervals (upper
limit minus lower limit) at each observed data point for
July and September 2005, respectively. A higher vertical
bar represents a wider range between upper and lower
confidence limits on the M. incognita J2 at given values
of YNS and PNS counts. Note that, in both graphs,
confidence interval widths were increasing as the esti-
mated mean M. incognita J2 was increasing, that is, as
the YNS and PNS counts increased. This occurs natu-
rally because of the nature of the Poisson distribution
(i.e., the variance increases as the mean increases) but
may also occur because of the low number of quadrats
with very high (i.e., > 10) YNS and/or PNS counts. For
example, Figure 2C shows that, in July 2005, 16 out of
80 quadrats had YNS plant counts of zero, but 56 quad-
rats had counts between one and 10, while only eight

FIG. 4. Contour plots of M. incognita J2 counts (labeled curves) vs. yellow nutsedge (YNS) and purple nutsedge (PNS) counts for July 2005
(A) with predicted model µ̂ = exp[−0.6309 + 0.0890(YNS) + 0.1266(PNS) − 0.0148(YNS × PNS)] and September 2005 (B) with predicted model
µ̂ = exp[−0.7295 + 0.3879(YNS) + 0.1604(PNS) − 0.1184(YNS × PNS)], from an alfalfa field infested with nutsedges in Doña Ana County, NM.

FIG. 5. Three-dimensional graphs showing 90% confidence interval widths (upper minus lower) on predicted M. incognita J2 counts vs.
yellow nutsedge (YNS) and purple nutsedge (PNS) counts for July 2005 (A) with predicted model µ̂ = exp{−0.6309 + 0.0890(YNS) +
0.1266(PNS) − 0.0148(YNS × PNS)} and September 2005 (B) with predicted model µ̂ = exp[−0.7295 + 0.3879(YNS) + 0.1604(PNS) −
0.1184(YNS × PNS)}, from an alfalfa field infested with nutsedges in Doña Ana County, NM.
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quadrats had counts over 10. Similarly, Figure 2E shows
that 31 quadrats had no PNS, but 47 quadrats had
counts between one and 10, while only two had PNS
counts over 10. Given both the width of the confidence
interval (Fig. 5A) and the numbers of quadrats with
counts of zero to 10 (Fig. 2C, E), the July 2005 model
appears reliable in that range of nutsedge values where
the majority of this data occurred. September 2005 had
48 quadrats with no YNS, with remaining quadrats hav-
ing YNS counts of four or fewer, and also had 20 quad-
rats with PNS counts of zero, with remaining quadrats
having counts of eight or fewer. Therefore, the model
for September 2005 may be reliable (Fig. 5B) over a
smaller range of nutsedge accounts than the July 2005
model, where YNS and PNS counts are both four or
fewer.

In summary, nutsedge as a stand-alone predictor of
M. incognita J2 counts was significant with a positive
regression coefficient in all of the predictive models.
On the other hand, the YNS × PNS cross-product was
significant with a negative regression coefficient in the
original July and September 2005 models. A positive
predictor implies a monotone increasing relationship
between a predictor and the predicted variable. In this
study, a one-unit count increase in the nutsedge pre-
dictor implies a change equal to the slope coefficient in
the natural log function of the predicted number of M.
incognita J2 for the Poisson Generalized Linear Model
(eqn. 4). Based on the natural log link-function, the
predicted M. incognita J2 count was calculated by expo-
nentiating the predicted value obtained from the log-
scale model. For example, for the regression model of
May 2005 where PNS was the only significant predictor,
if no PNS is observed, then the natural log of predicted
M. incognita J2 count (from eqn. 4) is ln(µ̂) = 0.5893 +
0.5099(0) = 0.5893. If a single PNS plant is observed,
then the link-function value is ln(µ̂) = 0.5893 +
0.5099(1) = 1.0992. On the log-scale, M. incognita J2
counts increase linearly by the regression coefficient of
PNS in the model. Equivalently, on the count-scale, at a
PNS count of zero, the predicted J2 count (from eqn.
5) will be µ̂ = exp{0.5893 + 0.5099(0)} = 1.8027. For a
PNS count of one, the predicted J2 count is µ̂ =
exp{0.5893 + 0.5099(1)} = 3.0018. Thus, the increment
of the predicted J2 on the count scale is not constant;
instead, it is a result of exponentiating a value obtained
from the log-scale model. Hence, the fitted Poisson re-
gression models indicate J2 counts increase exponen-
tially with increasing nutsedges counts.

DISCUSSION

Previous research evaluating the influence of alfalfa
on the M. incognita-nutsedge pest complex showed that
YNS population density was greatest in June, while PNS
density was highest from July through September
(Fiore, 2004). Overall, both M. incognita and nutsedge

populations declined from 2005 to 2006 as a result of
competition from the M. incognita-resistant alfalfa, con-
sistent with previous research (Fiore, 2004).

At the beginning of the growing season in the first
year of the alfalfa rotation (May 2005), when the field
was heavily infested with all three pests but the seasonal
populations were just developing, PNS count was a
more important predictor for M. incognita J2 count
than was YNS count. Previous greenhouse studies have
also shown that PNS is a more consistent host than YNS
for M. incognita J2 (Schroeder et al., 1999). However,
YNS did become important as the growing season pro-
gressed.

In July and September 2005, when the nutsedges
were at their growing peak in the first year of the rota-
tion (Fiore, 2004), the two predictive models were con-
sistent. Both YNS and PNS plant counts were positive
significant predictors of M. incognita J2 count. The
YNS × PNS cross-product term was a significant negative
predictor in the original Poisson models, but was not
significant in the more conservative rescaled models.
From a statistical standpoint, maintaining the cross-
product term in the rescaled model is not reasonable,
because it is not significant. On the other hand, the
original models with the cross-product term suggested a
biologically competitive interaction between YNS and
PNS, and this interaction may have an effect on pre-
dicting M. incognita J2 counts. Therefore, rescaled mod-
els with the YNS × PNS cross-product were reported.
Further research with a larger sample size is desired. By
increasing sample size, a higher number of quadrats
which contain a large number of nutsedges (i.e., >10) is
expected, thus filling the area where there were not
many observations in the current study and perhaps
confirming the significance of each potential predictor.
This study suggests that the predictability of M. incog-
nita J2 counts by nutsedge counts is more reliable when
both YNS and PNS counts are relatively small, as was
evident in the region where the confidence limit width
was fairly narrow. Such regions occurred where YNS �
12 plants/0.25 m2 quadrat and PNS � 7 plants/0.25 m2

quadrat in July 2005 and where YNS � 3 plants/0.25 m2

quadrat and PNS � 4 plants/0.25 m2 quadrat in Sep-
tember 2005.

In May and July 2006, the predictive relationship was
not significant. Neither YNS nor PNS was a significant
predictor of M. incognita J2 counts, and therefore fitted
models were intercept-only models, in which the mean
J2 count was predicted by exp(b̂0). One reason for the
lack of a predictive relationship might be that the num-
ber of nutsedge per quadrat was greatly reduced after
one year of the alfalfa rotation and that these data,
especially in May, were at the beginning of the growing
season. Another reason may be due to the small sample
size: the logistically affordable size of 80 quadrats at
each sample date in the current study may have pre-
vented any predictive relationship from being detected.
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Finally, in September 2006, at the end of the second
growing season of the weed-suppressing alfalfa, both
YNS and PNS started to reemerge. The more consistent
M. incognita host, PNS (Schroeder et al., 1999), again
became a significant positive predictor of J2 counts, as
in the beginning of the alfalfa rotation in May 2005.
From the practical standpoint of the efficacy of the two-
year alfalfa rotation in controlling M. incognita J2, the
majority of predicted M. incognita J2 counts in Septem-
ber 2006 were low but still above 0.24/10 cm3 soil, the
economic threshold for pre-plant populations that are
damaging to chile (Thomas et al., 1995). At the lowest
point of the curve, where PNS count was zero, the pre-
dicted M. incognita J2 mean was 0.28/10 cm3 soil, and
the 90% confidence interval was between 0.18 and 0.43
J2/10 cm3 soil, a range which contains the economic
threshold. However, destruction of the alfalfa stand,
tillage operations and winter mortality would be ex-
pected to reduce J2 levels further. As PNS counts in-
creased, the predicted number of M. incognita J2 also
increased. This indicates that surviving PNS tubers
which also protect M. incognita from 1,3-dichloro-
propene (Thomas et al., 2004) may be the primary
source of M. incognita resurgence the following year.
Hence, these results suggest that the three-year alfalfa
rotation suggested by Fiore (2004) is necessary to re-
duce M. incognita J2 below the economic threshold.

In conclusion, the results of the Poisson regression
models suggest that nutsedge counts in a field infested
with the M. incognita-nutsedge pest complex can be
used as a visual predictor of M. incognita J2 populations,
unless the number of nutsedge plants �1 plant/0.25
m2 quadrat over the study area.
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