Effects of Switchgrass (Panicum virgatum) Rotations with Peanut (Arachis hypogaea L.) on Nematode Populations and Soil Microflora
Keywords:
arachis hypogaea l, aspergillus, microbial community, microbial diversity, nematode, panicum virgatum, peanut, rhizosphere ecology, root-knot nematode, sclerotium rolfsii, southern blight, switchgrassAbstract
A 3-year field rotation study was conducted to assess the potential of switchgrass (Panicum virgatum) to suppress root-knot nematodes (Meloidogyne arenaria), southern blight (Sclerotium rolfsii), and aflatoxigenic fungi (Aspergillus sp.) in peanut (Arachis hypogaea L.) and to assess shifts in microbial populations following crop rotation. Switchgrass did not support populations of root-knot nematodes but supported high populations of nonparasitic nematodes. Peanut with no nematicide applied and following 2 years of switchgrass had the same nematode populations as continuous peanut plus nematicide. Neither previous crop nor nematicide significantly reduced the incidence of pods infected with Aspergillus. However, pod invasion by A. flavus was highest in plots previously planted with peanut and not treated with nematicide. Peanut with nematicide applied at planting following 2 years of switchgrass had significantly less incidence of southern blight than either continuous peanut without nematicide application or peanut without nematicide following 2 years of cotton. Peanut yield did not differ among rotations in either sample year. Effects of crop rotation on the microbial community structure associated with peanut were examined using indices for diversity, richness, and similarity derived from culture-based analyses. Continuous peanut supported a distinctly different rhizosphere bacterial microflora compared to peanut following 1 year of switchgrass, or continuous switchgrass. Richness and diversity indices for continuous peanut rhizosphere and geocarposphere were not consistently different from peanut following switchgrass, but always differed in the specific genera present. These shifts in community structure were associated with changes in parasitic nematode populations.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).