In-situ Hybridization to Messenger RNA in Heterodera glycines
Abstract
A method is presented for in-situ hybridization to mRNA in second-stage juveniles (J2) of the soybean cyst nematode Heterodera glycines. The protocol was developed using a digoxigenin-labeled RNA probe transcribed from cDNA of a cellulase gene that was known to be expressed in the subventral esophageal glands of H. glycines. Formaldehyde-fixed J2 were cut into sections with a vibrating razor blade to make the inside of the nematodes accessible for probing. These nematode fragments then were hybridized in suspension with riboprobe, and labeled with an alkaline phosphatase-conjugated antibody to digoxigenin. Staining with nitroblue tetrazolium and bromo-chloro-indolyl phosphate revealed a highly specific hybridization signal to mRNA within the cytoplasm of the subventral gland cells, using this specific antisense probe. This in-situ hybridization protocol will be useful for the characterization and identification of esophageal gland secretion genes in plant-parasitic nematodes, among other applications. Key words: cellulase gene, digoxigenin RNA probe, esophageal gland, Heterodera glycines, in-situ hybridization, nematode.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).