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Sequential Decision Rules for Managing Nematodes with 
Crop Rotations 

O. R. BURT 1 AND H. FERRIS 2 

Abstract: A dynamic model of nematode populations under  a crop rotation that includes both host 
and nonhost  crops is developed and used to conceptualize the problem of economic control. The  
steady state of the dynamic system is used to devise an approximately optimal decision policy, which 
is then applied to cyst nematode (Heterodera schachtii) control in a rotation of  sugarbeet with nonhost  
crops. Long-run economic returns from this approximately optimal decision rule are compared with 
results from solution of the exact dynamic optimization model. The  simple decision rule based on the 
steady state provides long-run average returns that are similar to the fully optimal solution. For 
sugarbeet and H. schachtii, the simplified rule can be calculated by maximizing a relatively simple 
algebraic expression with respect to the number  of years in the sequence of nonhost  crops. Maxi- 
mization is easy because only integers are of interest and the number  of years in nonhost  crops is 
typically small. Solution of this problem indirectly yields an approximation to the optimal dynamic 
economic threshold density of nematodes in the soil. The  decision rule requires knowledge of annual  
nematode population change under  host and nonhost  crops, and the relationship between crop yield 
and nematode population density. 
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The concept of  an economic threshold 
population at which a pest management 
practice becomes marginally profitable is 
well defined and easily understood for di- 
rect control measures (usually pesticides) if 
consequences of  the action are irrelevant 
for future control actions, either with re- 
spect to the present crop or subsequent 
crops. Therefore,  the term, as traditionally 
defined (12), is intrinsically a static concept 
used in its simplest form where the time of 
pesticide application is predetermined,  
only one possible application level is con- 
sidered, and the decision is based on the 
estimated pest population at the specified 
time of application. An early generaliza- 
tion was to choose both the critical popu- 
lation level for application jointly with the 
time for application (10). Talpaz and 
Borosh (17) extended the model further 
by introducing multiple application times 
and rates within the same season; they also 
provided for a setup cost of application in 
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addition to the cost of pesticide. However, 
severe restrictions were placed on the set 
of alternative pest population control mea- 
sures to reduce the optimization problem 
to only two variables. Nevertheless, these 
generalizations still require that there are 
no dynamic effects from pest control mea- 
sures this year on subsequent years, and 
tacitly assume no measurement error on 
the pest population. 

The application of economic threshold 
concepts to soil-dwelling plant-parasitic 
nematodes involves some unique consider- 
ations. The pest populat ion is already 
present in the field in measurable quanti- 
ties at the time the crop is planted, and 
there is a relationship (defined with varied 
precision) between the number of nema- 
todes present and expected crop damage. 
Also, the management decision is usually 
made before time of planting (8). Year-to- 
year dependencies in nematode popula- 
tion levels at a given location can be of 
great importance; that is, the number of 
nematodes of a given species that will be 
present in the soil next year is determined 
by management decisions that are made to 
avoid crop damage this year. At best then, 
as recognized in the literature (4,8), appli- 
cation of the static concept of economic 
threshold is of limited usefulness. How- 
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ever, such a short-run criterion can be in- 
formative, and Ferris (4) defined an an- 
nual profit function for a model where the 
nematode population and control variable 
were continuous, and then derived the 
necessary conditions for profit to be a 
maximum. These results could be useful as 
a short-run approximation when using a 
chemical control where it is thought that 
multiyear effects of  the control on the pest 
population are relatively small. 

Ferris (4) extended the economic trade- 
off  equation represented by the necessary 
conditions in the static maximization prob- 
lem for the case where a crop rotation, in- 
stead of a nematicide, is used to control 
nematodes. His sequential decision rule 
for choosing a crop uses as a demarcation 
point the nematode population where re- 
turns from the host and nonhost crops are 
equal, which we denote N*. In its most rig- 
orous interpretation, if the population is 
less than or equal to N*, the host crop is 
planted; if greater than N*, the nonhost 
crop is planted. I f  this rule could be ap- 
plied on a continuous-time basis for con- 
trol of the nematode population (i.e., at 
fractions of  a year), the population would 
be shifted to a point where returns in the 
host and nonhost crops were equal. Then 
the relatively high return of  the host crop 
in the absence of high nematode densities 
would be reduced to equal that of  the non- 
host crop---clearly an uneconomic result 
because the primary purpose for having 
the host crop in the rotation would be 
gone. In the discrete choice situation, the 
population is moved so that it is lower than 
the obviously uneconomic continuous vari- 
able solution. The logical contradiction of 
the requirement that nonhost crops should 
be grown longer than indicated by the de- 
cision rule, in order to reduce the nema- 
tode population below N* and permit a 
surplus to be realized from the relatively 
high return host crop, is problematic. This 
static model cannot be used to quantify the 
optimal dynamic economic threshold that 
would be characterized by a smaller popu- 
lation than N* obtained by Ferris' rule. A 

conceptual framework is needed to choose 
the rotation for which the present value of 
profits from a given acreage is maximized. 

T H E O R Y  

Dynamic behavior of nematode populations: 
The simplest cropping sequence for man- 
agement  of  nematode  damage  is one 
in which the host crop is grown for only 
1 year, after which nonhost  crops are 
planted for 1 or more consecutive years, 
and then the host crop is again planted for 
a single year. An example would be sugar- 
beet when the soil is infested with cyst 
nematodes (Heterodera schachtii) in a mild 
climate such as the Sacramento Valley in 
California. The following notation is intro- 
duced: 

P = a quantitative measure of  pest 
density in the soil measured at 
planting time for the host crop 
(commonly denoted Pi in the 
literature) 

s = the proportion of the pathogen 
that survives during a year of 
nonhost crop 

Rat = annual returns from the 
nonhost crops, where t denotes 
the consecutive year after the 
host crop 

M = the number of years that 
nonhost crops are grown in 
succession 

Rh(P ) = returns from the host crop if P 
is the pathogen density at 
planting. 

Slope of the function Rh(P ) is negative be- 
cause the pathogen depresses crop yield. It 
is frequently obtained via the relationship 
y = (m + (1 - m)ZCP-T)), where y is yield 
expressed as a proportion of the expected 
yield in the absence of nematodes, m is the 
minimum yield attainable at high nema- 
tode levels, z is a regression coefficient 
< 1.0, and T is the tolerance level or nema- 
tode population level below which there 
is no reduction in yield (3,4,8,15). Rh(P ) 
is obtained by subtract ing product ion  
costs from the crop value of y. If  a nonhost 
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crop is planted in year t, the popu|ation 
dynamics are described by 

Pt+1 = sPt, (1) 

and for a year t in which the host crop is 
planted, 

Pt+~ = g(Pt), (2) 

where  the funct ion g(P) measures net 
growth in the nematode population den- 
sity for the full year. The function g(P) is 
expected to be concave from below with 
positive slope, except at high population 
densities where the slope might be nega- 
tive (16). Successive substitution into Eq. 
[1], starting with P0 to calculate P1, dem- 
onstrates that after M years PM = sMP0 • 

A rotation cycle is defined as the (M + 
l)-year period that begins with the host 
crop and is followed by M years of  nonhost 
crops. Letting n denote a particular rota- 
tion cycle that begins with planting the 
host crop under  a population density P(n), 
the population is transformed into g(P(n)) 
dur ing that year according to Eq. [2]. 
Then during the M years in the nonhost 
crop sequence that follow, the population 
is transformed further according to Eq. [1] 
to yield a general recursive relationship 
among the rotation cycles, 

P(n+ 1) = sMg(P(n)). (3) 

The relationship in Eq. [3] is a first-order 
difference equation, where M is simply a 
parameter in the general functional form 
of  the r ight-hand side. Samuelson (14) 
summarizes the mathematical properties 
of  this type of  equation. For a concave 
functional form that assumes only positive 
values, the steady state is approached  
asymptotically from any arbitrary initial 
condition. In this application, that initial 
condition is the nematode density at the 
time the host crop is planted, and the as- 
sociated steady state is denoted PM(*). It is 
important  to recognize that the steady- 
state nematode density is independent of 
the initial condition, say P0, and PM(*) can 
be found by solving the equation, 

PM(*) = sMg(PM(*)), (4) 

which is Eq. [3] with the same variable on 
both sides. 

The nematode population is at the level 
PM(*) at only a single point in the rotation 
cycle, viz., planting time for the host crop, 
and there exists an associated steady state 
for each of  the other M points within the 
rotation cycle, one for each year in the se- 
quence of  nonhost crops in the rotation. 
With the process in steady state, the pop- 
ulat ion is t r an s fo rmed  f rom PM(*) to 
g(PM(*)) during the year that the host crop 
is grown, and after a subsequent period of  
t years in nonhost crops, the population 
would be stg(PM(*)), t = 1, 2 , . .  M. The 
host crop is planted at the beginning of  
year M + 1 and PM(*) is reproduced via Eq. 
[3], thus completing the steady-state cycle. 
Consequently, the population dynamics in- 
volve an entire schedule of  M + 1 popula- 
tion measures throughout the rotation cy- 
cle, and it is this schedule that converges 
to a steady state, starting from an initial 
nematode density at any particular year 
within the cycle. In the above example, the 
year that the host crop is planted has been 
used in the discussion as the reference 
point for beginning a new cycle. 

From the above discussion and notation, 
the steady-state value PM(*) is unique to a 
specific number of  years in the nonhost 
crop sequence of  the rotation, i.e., M years. 
The correspondence between PM(*) and M 
exists in the steady state, but  starting from 
an arbitrary state of  the process, it can be 
controlled by focusing on ei ther  M or 
PM(*)" Using M is intuitively appealing in 
that the fixed rotation over time is initiated 
as quickly as the existing cropping history 
will permit. In contrast, the steady-state 
value of P is used as a threshold such that 
the host crop is planted whenever P is less 
than or equal to PM(*). Although either 
method of  control  will yield the same 
steady state, the time paths in general will 
be different when starting from an arbi- 
trary level of P. While the transition path 
using M will always have cycles of  fixed 
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length regardless of the initial value of  P, 
that will not necessarily be the case when 
using PM(*) as a decision variable. A deci- 
sion rule based on PM(*) is preferable be- 
cause it focuses on the object of control, 
viz., the nematode population at the time 
the host crop is planted. 

The  dynamic behavior  of  nematode  
population density cycles when PM(*) is 
used to determine when to plant the host 
crop is illustrated in Fig. 1, which was con- 
structed from data (3,11) in an application 
presented later. The bars indicate popula- 
tion densities of  H. schachtii at planting 
time for the sugarbeets regardless of what 
crop is planted in a given year. The initial 
density before planting sugarbeets is 10 
eggs/100 g soil (hardly perceptible as the 
first bar of  the graph); then the population 
increases to 1,170 and slowly erodes to 150 
during the next 5 years of  nonhost crops 
(annual survival rate s = 0.667). The sec- 
ond cycle has a peak density of  3,220 at 
planting time the year after the sugarbeet 
crop and then erodes to 190 during 7 years 
of  nonhost crops. Convergent population 
densities for the year before the host crop 

is planted and the year after are 210 and 
3,610, respectively. Convergence of  the 
entire schedule of  M + 1 population mea- 
sures is illustrated by scanning the graph 
in Fig. 1 from left to right. 

A simplified decision framework is pro- 
posed that uses the number  of  years in 
nonhost crops, M, as the choice variable 
and indirectly determines the steady-state 
value PM(*) defined above for the differ- 
ence equation in Eq. [3]. But crop planting 
intervals constitute a discontinuous time 
scale, so this model is limited to an integer 
choice variable, M, with no direct attention 
given to the currently observed pest den- 
sity, P, which is a continuous variable. 
However, results from the steady-state op- 
timization with respect  to M are rein- 
terpreted to allow a sequential decision 
framework using PM(*) as the dynamic 
economic threshold for planting the host 
crop. Empirical evidence presented later 
demonstrates that using the integer choice 
variable provides an excellent approxima- 
tion of  full-fledged dynamic optimization. 
A flexible decision rule using PM(*) as an 
economic threshold is particularly advan- 
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FIG. 1. Population density cycles ofHeterodera schachtii where the host crop (sugarbeet) is grown for a single 

year and followed by consecutive years in nonhost  crops until the nematode population density falls below 225 
eggs/100 g soil, at which time the host crop is planted again, thus starting a new sequence of host and nonhost  
crops and a new population cycle. Note that the first population cycle occurred in 7 years and the remainder  
in 8 years. 
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tageous when year-to-year changes in pop- 
ulation densities are recognized as a ran- 
dom variable subject to climatic variations. 

A simple pedagogical decision model: We be- 
gin with the criterion of maximization of av- 
erage annual returns from the rotation cycle. 
This simplified criterion does not consider 
the impor tance  of  compound  interest  
on cash flows of  the business. A more 
complex economic criterion, further de- 
veloped later, would maximize a weighted 
average of  returns where the weights in- 
volve the interest rate and distance in time 
from when the returns are received. The 
simpler criterion can be used to derive an 
economic trade-off equation that builds in- 
tuition for the more general case. The fo- 
cus is on the rotation that would be ap- 
proached when an optimal decision rule is 
applied sequentially from an arbitrary ini- 
tial condition. This steady-state decision 
rule is obtained by maximizing 

F(M,P) = [Ral  + Ra2 + . . .  + RaM 

+ Rh(P)]/(M + 1) (5) 

with respect to P and M, subject to the con- 
straint 

P = sMg(p), (6) 

which is essentially Eq. [4] to force the 
steady state. The solution values for P and 
M satisfy the definition of PM(*) in the no- 
tation defined above. Numerical solution is 
fairly simple in that an integer is chosen 
for M and then Eq. [6] is solved for the one 
unknown, P. This value is then substituted 
into Eq. [5] to compute the criterion func- 
tion, F(M,P). The maximum can be ob- 
tained by a direct search on M and tabula- 
tion of the values of  F(M,P). This search 
yields the dual values, M and PM(*), which 
are associated with the constrained maxi- 
mization problem in Eqs. [5] and [6]. As 
explained later, it is PM(*) that is of pri- 
mary importance for making practical eco- 
nomic decisions if nematode density can be 
estimated in the field with sufficient accu- 
racy at a nominal cost. 

Ferris (7) suggests that a double-log- 
linear model adequately describes both 

nematode multiplication rates during the 
growing season and overwinter survivor- 
ship, although an exception might be nec- 
essary for large initial nematode popula- 
tions in sugarbeets to allow for an interval 
where the response function has negative 
slope (3). Embedding the overwinter sur- 
vivorship function in the argument of the 
seasonal multiplication rate function pro- 
vides the annual population function g(.) 
in Eq. [6] with the same form. Letting a 
and b be parameters with a > 0 and 0 < b 
< 1, gives the explicit function 

g(P) = aP b. (7) 

The steady-state equation [6], is P = s M 
(apb), can be solved explicitly for P as a 
function of M to get 

P = (asM) 1/(l-u) = cd  M. (8) 

The two parameters c and d are a and s, 
respectively, taken to the power 1/(1 - b). 
This explicit expression for P in Eq. [8] 
simplifies numerical computation of  the 
criterion function for a given value of M 
because P in the right side of Eq. [5] can be 
replaced with cd M. Since 0 < b < 1, it fol- 
lows that d < s. Thus d reflects the overall 
annual impact that an extension of  the 
nonhost crop period has on the steady- 
state nematode population, which includes 
the reduction phase (nonhost crop) and in- 
crement phase (host crop). The functional 
form in Eq. [8] implies that if PM(*) is the 
steady state associated with M years in the 
nonhost crop, then for a cycle of M + 1 
years 

PM+l(*) = cdM+I = d(cd M) = dPM(*). 
(9) 

To obtain a short-run decision rule that 
can be applied as an approximately opti- 
mal rule in an operational setting where 
the year-to-year population dynamics in- 
volve random elements, we derive an in- 
equality for  practical applicat ion.  Al- 
though it might be impossible to obtain an 
explicit solution for P as a function of  M in 
Eq. [6] for some functional forms, the 
function always exists conceptually, and it 
is denoted f(M). An example of f(M) is Eq. 
[8] for the special functional form of g(P) 
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in Eq. [7]. Substitution of f(M) for P in 
F(M,P) in Eq. [5] gives an equation in the 
single variable M, which we denote h(M). 
For a function that has more than one local 
maximum, the following condition is nec- 
essary for a local maximum: h ( M - 1 )  ~< 
h(M) I> h(M + 1). Under the assumption 
that h(M) is unimodal, M maximizes h(M) 
if the following inequalities hold, 

h(M) /> h(M + 1) a n d h ( t ) ~ < h ( t + l ) , t  = 
1 , 2 , . . M -  1. 

Starting with h(M)/> h(M + 1), multiplying 
both sides by M + 2, and making a few 
algebraic manipulations yields 

Rh(f(M + 1)) - Rh(f(M)) + Ra,M+ I 
[Ral  -k- Ra2 -k- . . .  q- RaM 
+ Rh(f(M))]/(M + 1). (10) 

Note that the right side of the inequality in 
Eq. [ 10] is the maximized value of the cri- 
terion function in Eq. [5] and the left side 
is the increment in returns that would be 
realized by delaying the planting of  the 
host crop 1 more year. The first two terms 
on the left measure the value of yield en- 
hancement from a 1-year delay in planting 
the host crop, and the third term Ra,M+ 1 is 
the direct return from the nonhost crop. 

Letting g(P) take the special functional 
form in Eq. [7], f(M+ 1) in Eq. [10] can be 
replaced by an explicit expression in P. I f  P 
is the nematode population this year (M), 
then using Eq. [9] we see that the popula- 
tion next year (M + 1) after another year of  
nonhost crops is dP. It is convenient to use 
this notation for the general case and re- 
write Eq. [10] for practical interpretation 
as 

Rh(dPe) - Rh(Pe) + Ra,k+ 1 
~< [Ral + Ra2 + . . .  + RaM 

+ Rh(f(M))]/(M + 1), (11) 

where P~ on the left denotes the estimated 
or measured population density at plant- 
ing time for the host crop and k is the 
number of years that the nonhost crops 
have already been grown without inter- 
ruption; while f(M) on the right side de- 
notes the steady-state population density 
associated with the optimal long-run rota- 

tion length denoted M. If  the inequality is 
met, the host crop is grown; if not, the 
nonhost crop sequence is continued. With 
this interpretation, we can think of  the 
right side of Eq. [11] as optimized average 
annual returns under  long-run average 
conditions and a steady state for the nema- 
tode population. But the left side is viewed 
as a measure of  the short-run benefits 
from a delay in planting the host crop for 
1 more year, where the net return mea- 
sures reflect a best practical estimate of the 
field population density of nematodes, and 
could also be adjusted for relative crop 
prices that are expected for the two crops 
this year compared to next. This rudimen- 
tary decision rule is relatively simple and 
can be explained to managers because its 
structure is that of comparative marginal 
analysis that appeals to intuition. 

From Eqs. [5] and [6], a generalization 
of the model can be formulated to accom- 
modate 2 or more consecutive years in the 
host crop. The second year in the host crop 
would have a return equal to Rh(g(P)), 
which would be an added term in Eq. [5]. 
The steady-state equation [6] would be 
changed to P = sMg(g(P)) because growth 
in the nematode population would need to 
reflect two consecutive years of applying 
the growth function g(.) to the starting 
population P. For the case where g(P) is 
given by Eq. [7], P = sUa(apb) b and the 
explicit solution for P yields a 2-year ver- 
sion of  Eq. [8], i.e., P = a 1/~l-b)(sl/~l-b2))M. 
The search on M for the maximum steady- 
state solution would compare the maxi- 
mized values of F(M,P) under  the 1- and 
2-year regimes for the host crop, a dou- 
bling of the computations but still a very 
simple task, particularly if the specific 
functional form of Eq. [7] is used since it 
gives P explicitly in terms of  M. 

An economic model with discounting: The 
logical framework and notation are the 
same as above except that cash flows associ- 
ated with the crops are discounted to a common 
point in time to account for the time value of 
money, i.e., the fact that cash can be in- 
vested at compound interest or used to pay 
off  debt and save interest payments. I f  r is 
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the annual interest rate, then (1 + r) is the 
compounding factor and w denotes its in- 
verse, 1/(1 + r), which is called the discount 
factor. The average annual measure of re- 
turns in Eq. [5] is replaced by a weighted 
average where the weights are 1/(1 + r) t = 
w t, for distance t in the future. The sum of 
these weights for t = 1, 2 , . .  n is [ 1 - (1 + 
r)-n]/r. Therefore,  the weighted average 
return (annuity) from an M + 1 year rota- 
tion comparable to Eq. [5] is given by 

[RalW + Ra2 w2 + . . .  + RaM wM 

r 
+ Rh(P)wM+I] 1 -- (1 + r) -(M+I) ' 

(12) 

where the discrete time periods are de- 
fined so that annual returns are received at 
the end of the year. The second equation 
that works with Eq. [12] to provide P as a 
function of  M is again Eq. [6] as in the 
simple unweighted returns case (Eq. [5]). 
The  opt imal  length  steady-state con- 
strained rotation is obtained by searching 
for the maximum annuity over integer val- 
ues of  M by first computing P from Eq. [6] 
for given M, and then computing Eq. [ 12]. 
Of  course, the computations are simplified 
by using Eq. [7] as a special case for Eq. [6] 
because P in Eq. [12] can be replaced by 
cd M from Eq. [8]. In the general notation 
of  the last section, P in Eq. [12] is equal to 
f(M). 

An inequality analogous to Eq. [10] can 
be derived by comparable but more te- 
dious algebraic manipulations, but these 
are relegated to Appendix A. Since Eq. 
[11] is a form that is more intuitively ap- 
plied as a sequential decision rule, its ana- 
logue with discounting is presented, 

[Rh(dPe) - (1 + r)Rh(Pe)] + (1 + r)Ra,k+l 
[RalW + Ra2 w2 + . . -  + RaM WM 

r 
+ Rh(f(M))wM+I] 1 -- (1 + r) -(M+I) 

(13) 

The population density of the nematode in 
the field at planting time for the host crop, 
determined by sampling, is Pe, and the eco- 

nomic t rade-off  associated with the in- 
equality is focused on the point in time 1 
year hence. The right side measures the 
reward from planting the host crop, while 
the left side measures the reward from 
planting the nonhost  crop instead and 
waiting until next year to reconsider plant- 
ing the host crop. The right side of Eq. [13] 
is the constant return per year that would 
be equal in present value to the infinite 
stream of  irregular returns associated with 
an optimal rotation beginning immediately 
after the host crop has been grown. The 
values of M and P are those for the optimal 
steady-state rotation and must satisfy Eq. 
[6]. In the square brackets on the left side 
of Eq. [13] is the positive difference in re- 
turns from the host crop when the nonhost 
crop sequence is grown 1 more year, and 
the returns from the shorter rotation are 
compounded forward 1 year to account 
for those returns being received 1 year 
earlier. Returns for the nonhost crop in its 
(k+ 1)-year in succession are also com- 
pounded forward 1 year for the same rea- 
son. 

The smallest value of  M such that Eq. 
[13] holds is a necessary condition for the 
expression in Eq. [12] to be a maximum, 
provided it is unimodal with respect to M, 
a condition that should be verified in ap- 
plications. The steps in applying Eq. [13] 
would be to first calculate the right side for 
M = 1, 2 . . . .  M . . . .  where Mma x is a prac- 
tical upper bound for the optimal value 
M*, which maximizes Eq. [ 12] with respect 
to M. This would determine the optimal 
rotation in a nonrandom environment, but 
random fluctuations in the rate of  decline 
in P under  nonhost crops, and the rate of 
growth of P during the year in a host crop, 
make it advantageous to use the inequality 
in Eq. [13]. The decision agent should 
think of  the right side as a predicted value 
of future annual returns, while the left 
side is a dynamic measure of estimated im- 
mediate returns in light of  current evi- 
dence on the level of the nematode popu- 
lation. The immediate return is couched in 
a marginal framework for comparison to 
expected long-run average returns.  A1- 
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though not explicitly taken into account in 
the discussion, there is also the uncertainty 
of  the parameters and functional form of 
the technical relationships that quantita- 
tively describe the dynamics of the nema- 
tode population under  both host and non- 
host crops. This is an added reason for 
field sample measures of the nematode 
population density at planting time for the 
host crop. 

The economic model with discounting 
can be generalized to allow 2 or more years 
in the host crop. For the necessary adjust- 
ments, refer to the discussion of the model 
without discounting in the previous sec- 
tion. So far the stream of returns from the 
nonhost crops has been taken as given, but 
often there is considerable flexibility with- 
out compromising good agronomic prac- 
tices. Where technical constraints are no 
problem, economic considerations can be 
used to optimize the sequence of crops. 
When one of  the nonhost crops is a peren- 
nial like alfalfa hay that has first an increas- 
ing and then decreasing annual re turn 
from a new stand, this crop should be 
placed in the sequence where it will be in- 
volved in the marginal decision of  how 
long to stay in nonhost crops before re- 
planting the host crop. This is so because it 
allows optimal choice of the length of the 
alfalfa stand jointly with optimization of 
the period in all nonhost crops, but the 
analyst must allow for shortening the rota- 
tion by either terminating the alfalfa stand 
a year early or deleting an annual crop 
from the sequence ahead of the alfalfa. 
However, a preliminary analysis of  the 
economic viability of alfalfa in the rotation 
should be done by choosing stand length 
to maximize weighted average net returns 
from alfalfa; if this is not competitive with 
some other crops that could be equally ef- 
fective in the rotation, then alfalfa should 
not be grown. The overall economic prin- 
ciple is to choose the sequence to maximize 
amortized present value of returns from 
any given length of  the sequence in non- 
host crops, with appropriate recognition to 
the economic value of synergistic relation- 

ships among the crops in any particular 
sequence. 

Averages of net returns calculated for 
perennial crops should be weighted aver- 
ages that employ the discount factor. Since 
these calculations are projected budgets 
into the future, the discount rate should be 
the real rate as opposed to the nominal 
rate. Assuming no risk of default by the 
borrower, the nominal rate is the sum of 
two components: (a) the real rate that 
tends to be rather constant around 4% to 
5%, and (b) the expected rate of inflation 
that is subject to much uncertainty. The 
latter component is necessary in commer- 
cial contracts, which are in nominal dol- 
lars, because loans are paid back with dol- 
lars that have less purchasing power than 
those that were lent. But in crop budget- 
ing, we are using dollars with constant pur- 
chasing power, thus the reason for using 
the lower real discount rate. Consequently, 
the interest rate r introduced above should 
be interpreted as the real rate. 

A fully dynamic economic model: A more 
general economic decision framework is 
provided by focusing on the sequentially 
observed nematode density, P, instead of 
the period in nonhost crops, M, as the de- 
cision variable. In the simple case where 
returns are the same for each year of  the- 
nonhos t  crop, the cur ren t ly  observed 
nematode population density summarizes 
the entire history of the process for eco- 
nomic decision purposes, i.e., any other 
detail would be redundant.  (More general 
cases will be discussed in the application 
below.) Under this fully dynamic economic 
criterion, a decision rule is defined that 
specifies whether the host or nonhost crop 
is planted after observing a value of  P (1). 
This rule indirectly controls lengths of the 
rotation cycles and, starting from an initial 
value P0, a sequence of  integers  M1, 
M 2 . . . .  would be implied instead of a sin- 
gle value of M as in the above discussion. 
The focus is entirely on pest population 
density, P, and convergence is with respect 
to this continuous variable instead of the 
integer M. Intuitively, convergence takes 
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place because we are working with an infi- 
nite planning horizon, and at the end of 
each year after observing a given value of 
P, the optimization problem is exactly the 
same for that given value of P because 
none of the functional relationships are 
specified to depend on time per se. 

Using a sequential optimization model 
that derives a decision rule as a function of 
P, the associated steady state can involve 
two or more cycles of host and nonhost 
crops of  different lengths, thus forming 
the overall aggregate steady-state cycle. 
For example, the latter could be comprised 
of  M 1 and M 2 years of nonhost crops with 
the intervening host crop after each, mak- 
ing an aggregate cycle of M 1 + M 2 4- 2 
years. This phenomenon occurs because P 
is continuous while M must be an integer. 
Therefore, the above steady-state method- 
ology might not find the overall best criti- 
cal value for P because the steady state is 
limited to a single cycle through the host 
and nonhost crops. 

RESULTS 

Necessary empirical measures for appli- 
cation of the economic model to actual 
management decisions for H. schachtii and 
sugarbeet are not readily available, but 
enough information is available in the lit- 
erature to provide examples of results that 
can be expected in practice. The discount 
rate is assumed to be 5%. Specific quanti- 
tative measures at a given location are 
needed for s in Eq. [1]; the function g(P) in 
Eq. [2] (e.g., the parameters a and b in Eq. 
[7]); the return function Rh(P), which tra- 
ditionally involves a Seinhorst-type yield 
function with a damage tolerance level 
(3,15); and finally, returns from the non- 
host crop sequence. 

The biological relationships summarized 
by Eqs. [1] and [2], and sugarbeet yield re- 
sponse to population levels of  the sugar- 
beet cyst nematode that determines Rh(P), 
are based on Cooke and Thomason (3); 
gross margins  (returns above variable 
costs) for nonhost crops are taken from 

Malarin (11). The former are for the Im- 
perial Valley and the latter the Sacramento 
Valley in California, so they are not com- 
patible, but results are calculated for a 
range of parameters in the relationships 
involving population dynamics to evaluate 
the sensitivity of results. Warmer soil tem- 
peratures in the Imperial  Valley allow 
more generations of nematodes during the 
year of sugarbeet (affecting g[P]) and a 
more rapid decline in viable eggs during 
years of nonhost crops (affecting s); the 
warmer temperatures could also affect the 
sugarbeet yield response function, and 
thus Rh(P ). It is easy to provide results for 
various values of  s, but g(P) was more 
problematic. 

The  empirically est imated equations 
are: 

Rh(P ) = 1,188(.99886) P-l°° 
- 627, P > 100, (14) 

Rh(P ) = 561, P ~< 100, 

g(P) = 501.4P °'36s9. (15) 

Subtraction of 100 from P in Rh(P ) in Eq. 
[14] implies a tolerance level (T) equal to 
100, where P is number  of eggs/100 g 
of soil. The coefficient, 1,188, is the prod- 
uct of maximum yield (27 tons/acre) and 
price($44/ton), and 627 is variable costs of 
production per acre. A total of four non- 
host crops were considered in various 
models with the following estimated gross 
margins per acre: alfalfa $210, corn $383, 
tomatoes $746, and wheat $279 (11). 

The parameters in Eq. [15] for g(P) were 
estimated with the three observations con- 
tained in Table 2 in Cooke and Thomason 
(3), where each data point is an aggregate 
over several plots. A weighted linear re- 
gression in logarithms of the variables that 
accounted for the relative number of plots 
was used. This gave relatively little weight 
to the third observation with largest initial 
population, which exhibited negative mar- 
ginal response.  This  func t iona l  fo rm 
forces a monotone increasing function. As 
an alternative parameterization, the third 
observation was deleted with the result, 
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g(P) = 266.0P -5324. Both of these equa- 
tions predict rather large populations the 
next year for quite small values of  P, if one 
were considering application to the Sacra- 
mento Valley. Therefore, the above for- 
mula in Eq. [15] was modified by dividing 
the constant term by 2 to give 

g(P) = 250.7P °3689 (16) 

for the Sacramento Valley. Values of s 
from 0.50 to 0.75 were used. 

Note that the steady-state equation [6] is 
the special case in Eq. [7] for the above 
specification, and the explicit expression 
for P in Eq. [8] is 

P = 6,332s 1"5845M, (17) 

when applied to Eq. [16]. A great deal can 
be learned about the proximity of the eco- 
nomically optimal rotation length by sim- 
ply tabulating the values of P for given 
values of M in Eq. [17], as was done to 
construct Table 1. The smallest rotation 
length for which the population density 
drops below the tolerance level of 100 is 
footnoted, thus showing the important ef- 
fect that s has on likely economic rotations. 
The first row of  Table 1 where M = 1 
gives the density at the beginning of  
the first year after sugarbeets have been 
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grown when the cropping system is in 
steady state. 

Results for the steady-state economic model: 
Results of  applying the economic model 
represented by Eqs. [12] and [13] when re- 
turns from nonhost crops are constant at 
$210 (an average for alfalfa) are given in 
Table 2, columns 4 and 5, with the nema- 
tode rate of survival, s, equal to 0.667. The 
maximum annual equivalent returns are 
$247, which is attained with 6 years in non- 
host crops. The fifth column in the table 
labeled Delta(M) is the left side of  Eq. [ 13], 
which is a measure of  marginal returns 
from delaying the planting of sugarbeets 1 
more year. Notice that this value exceeds 
the annuity (weighted average returns) 
when M < 6 and is less than the annuity 
when M 1> 6, which is the necessary condi- 
tion for M = 6 to yield maximum returns. 
Results in columns 6 and 7 are for the 
same situation except returns in nonhost 
crops are $470 and the optimal period in 
nonhost crops is 7 years. 

Results for an irregular stream of re- 
turns from nonhost crops that average 
$470 are given in columns 8 and 9 with all 
other parameters the same. (The sequence 
is tomato, corn, and wheat.) In this case the 
optimum is 7 years in nonhost crops, and 
examination of the last column for Del- 

TABLE 1. Steady-state  popula t ion  densi t ies  o f  Heterodera schachtii (PM(*)) in relat ion to a n n u a l  p ropor t iona l  
survival  (s) d u r i n g  a n o n h o s t  c rop and  the  n u m b e r  o f  years that  n o n h o s t  crops are  g rown  in succession (M), 
der ived  f r o m  the  mode l  P = (asM) 1/(l-b) where  a and  b are  pa rame te r s  descr ib ing a n n u a l  changes  in the  
n e m a t o d e  popu la t ion  (Eq. [8]). 

Steady-state densities of Heterodera schachtii (PM(*), eggs/100 g soil) 

Annual proportional survival during nonhost crop (s) 
Years 
(M) 0.500 0.600 0.667 0.700 0.750 

1 2,111 2,819 3,331 3,598 4,014 
2 704 1,255 1,752 2,045 2,545 
3 235 558 921 1,162 1,613 
4 78 a 249 485 660 1,023 
5 26 111 255 375 648 
6 9 49 a 134 213 411 
7 3 22 71 a 121 260 
8 1 10 37 69 a 165 
9 4 20 39 105 

10 2 10 22 66 a 

Smallest M for which egg density is below the tolerance level (T) of 100 eggs/100 g soil. 



TABLE 2. Weighted average returns determined by a steady-state search, using the model represented by Eqs. [12] and [13], for the number of  
years necessary in crops that are nonhosts to Heterodera schachtii and have constant net returns (A and B), or differing net returns, e.g., tomato, corn, 
and wheat (C). Annual proportional survival (s) under a nonhost crop assumed to be 0.667. 

Net returns from nonhost crops 

A B C 
$210 $470 $746, 383, 279.. 

Annuity Delta(M) Annuity Delta(M) Annuity Delta(M) 
Years (M) Density (/100g) Host returns ($) ($) ($) ($) ($) ($) ($) 

g~ 

~q 
1 3,333 -597  - 184 401 - 5 1  674 91 582 
2 1,755 - 4 4 7  2 527 179 800 247 600 
3 924 - 163 124 529 323 802 329 1,092 
4 486 138 197 443 410 716 467 625 
5 256 367 233 350 455 623 490 422 
6 135 515 247 a 241 476 514 482 804 
7 71 561 247 192 480 a 465 515 a 374 ~'3 
8 37 561 242 192 478 465 503 265 
9 20 561 238 192 477 465 484 755 "~ 

10 10 561 235 192 476 465 503 374 

a Maximum returns wi~ respectto number ofyearsin nonhostcrops. 
o 

° °  

O~ 

t 
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ta(M) shows that the inequality in Eq. [13] 
holds locally at M = 7, but  then  there  is 
a no the r  local m a x i m u m  at M = 10. This  
result  demons t ra tes  why it is impor tan t  to 
establish the ne i g h b o r hood  o f  the absolute 
m a x i m u m  of  the cri ter ion funct ion before  
using the adapt ive p rocedures  out l ined in 
the pa r a g r a ph  following Eq. [13], where  
the focus is on  using an est imated value of  
P as supplementa l  in format ion  for  a final 
decision at plant ing time. 

Results for dynamic economic models: A 
c o m p a r i s o n  o f  results  f r o m  the steady- 
state economic  model  can be made  with 
those f r o m  dynamic  sequential  decision 
models  to evaluate the risk o f  using the 
s imple r  mode l .  Dynamic  p r o g r a m m i n g  
(DP) is the most  appropr ia te  optimization 
model  for  this type o f  p rob lem because re- 
sults can be c o m p u t e d  for  an arbitrarily 
long p lanning  horizon,  and some of  the 
decisions involve discrete choices instead 
o f  cont inuous  variables (1). An impor tan t  
c o m p o n e n t  o f  these models  is the concept  
o f  state variables. A sufficient set o f  state 
variables complete ly  summarizes the his- 
tory o f  the decision process at a point  in 
time, and  an optimal  decision rule exists 
that is a funct ion  o f  these state variables 
only. T h e  model  has a recursive s t ructure  
such that  the state variables are linked in 
adjacent  t ime periods by a system of  equa- 
tions equal  in n u m b e r  to the state vari- 
ables, and  the a rguments  o f  the functions 
in these state equations are the state and 
decision variables. 

a. Constant annual returns from nonhost 
crops: T h e  simplest case o f  nematode  con- 
trol  is where  an average re tu rn  is used for  
the nonhos t  crop,  popula t ion  density is the 
only state variable, and  there  are only two 
decision alternatives (plant e i ther  the host 
or  nonhos t  crop). T h e  recursive equat ion 
o f  DP is 

v . + I ( P  ) = Max[Rh(P ) + WVn(g(P)), 
R a + WVn(SP)], (18) 

where  the new notat ion is def ined  as fol- 
lows: 

vn(P) 

Ra 

Max 

= present  value o f  net  re turns  
f rom an n-stage process u n d e r  
an optimal decision rule  when  
the initial state is P 

= constant re turns  f rom the 
nonhos t  crop 

= the maximizat ion ope ra to r  over  
the two expressions in brackets. 

T h e  dynamic link that  connects the two ad- 
jacent  stages is the two funct ions embed-  
ded in vn(. ) u n d e r  the two choices avail- 
able; note  that  these are the r igh t -hand  
sides o f  the d i f fe rence  equations [1] and  
[2]. Numerical  solution is accomplished by 
assigning zero to vo(P ) and then  recursively 
solving Eq. [18] for  vn(P ), n = 1,2 . . . . .  
fo r  discrete  values o f  P; in this s imple 
problem, the count ing integers were used 
to measure  n u m b e r  o f  eggs per  100 g o f  
soil. Intuitively, the solution would seem to 
be s t ructured so that, at small values o f  P, 
the decision is to plant the host c rop  and 
then  af ter  some threshold is reached,  the 
opt imal  decision would be to p lant  the 
nonhost  crop. This is the case, and the en- 
tire decision rule is character ized by that  
single switching point. 

Results f rom computat ions  u n d e r  a va- 
riety o f  parametr ic  situations, where  Mod- 
els 1 and 2 use d i f fe ren t  constants for  net  
annual  growth (g(P)) o f  the n em a to d e  pop-  
ulation u n d e r  sugarbeet,  250.7 (Eq. [16] 
for  the Sacramento Valley) and 501.4 (Eq. 
[ 15] for  the Imperia l  Valley), respectively, 
are  given in Tab le  3. Co n s id e r i n g  this 
magni tude  o f  d i f fe rence  in the coefficients 
on the nematode  growth funct ions for  sug- 
arbeet  (a factor of  two), economic  thresh-  
olds in the dynamic  opt imizat ion model  
are surprisingly close between Models 1 
and 2, and would appea r  to have a small 
effect  on the present  value o f  r e tu rns  if 
they w e r e  in terchanged.  T h e  thresholds  
for  the steady-state model  are much  more  
erratic and deviate considerably f rom the 
dynamically optimal values because only a 
few discrete values can be chosen for  P, 
viz., the indirectly chosen steady-state val- 
ues associated with M as it assumes one  o f  
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TABLE 3. Threshold population densities ofHeterodera schachtii (PM(*), eggs/100 g soil) at which sugarbeets 
are planted following the optimal decision rules predicted by (i) dynamic optimization and (ii) a steady-state 
model. Annual  re turns of nonhost  crops of $210 and $470, and a range of annual  survival proportions (s) were 
used. Thresholds  are for the Sacramento Valley (Model 1) and the Imperial Valley (Model 2) in California. 

Dynamic optimization model Steady-state model 

Model 1 Model 2 Model 1 Model 2 

s $210 $470 $210 $470 $210 $470 $210 $470 

0.500 156 114 150 110 78 78 78 78 
0.600 129 105 125 105 111 111 66 66 
0.667 127 108 120 100 135 71 111 59 
0.700 123 104 120 100 121 69 117 67 
0.750 123 104 120 105 105 105 126 80 

the counting integers, 1, 2 . . . .  Mma x. This 
limitation is apparently the reason for so 
few distinct threshold values appearing in 
Table 3 for the steady-state model. The 
most extreme case is where s = 0.5 and all 
the thresholds are 78 eggs/100 g soil. In 
comparing the thresholds for the steady- 
state model, no exceptions are observed 
with respect to the threshold associated 
with the lower-return nonhost crops at 
least equaling that for the higher-return 
ones. Relatively low-valued nonhost crops 
would, in general, tend to increase the eco- 
nomic threshold on P at which sugarbeet is 
planted in order to plant the high-valued 
host crop more frequently. 

Economic returns from the DP models 
were compared with the corresponding 
steady-state models by using amortized 
present value of  returns, i.e., average an- 
nual returns weighted properly by the in- 
terest rate, but such comparisons are diffi- 
cult because the present value of returns is 
dependent  on the initial condition used, 
i.e., the initial state, P. The initial condition 
was calibrated to results from the steady- 
state model by recognizing that the nema- 
tode density at which the host crop is 
planted is transformed via g(P) to the ini- 
tial density at which the first nonhost crop 
is planted. For example, in Table 2 with 
returns of $210, P is equal to 135 at the 
time the host crop is planted, and this 
value is transformed to 1,531 by substitu- 
tion into Eq. [16], which is the appropriate 
value to use as an initial condition for the 

DP decision rule. Using this initial condi- 
tion, the decision rule is applied sequen- 
tially until it is clear that the annuity calcu- 
lated from present values of returns has 
converged to its limit for an infinite plan- 
ning horizon. Then this value is compared 
with the annuity from the steady-state cal- 
culations, such as given in Table 2 for s = 
0.667. In this example, the annuities are 
$248.25 and $247.44 under  the optimal 
and steady-state derived decision rules, re- 
spectively. Surprisingly, the annuities are 
identical to the penny for s equal to 0.60, 
0.70, and 0.75 when nonhost returns are 
$210. 

Similar results held for annual nonhost 
returns of $470, the greatest differences 
across s being less than a dollar. A compar- 
ison of the threshold densities between the 
dynamic and steady-state models in Table 
3 for Model 1 shows them to be close for 
either level of annual returns in nonhost 
crops, especially when considering the 
small impact that these differences would 
have on sugarbeet yields in Eq. [14]. Even 
the greatest difference in the table for s = 
0.50 is 156 versus 78, which would trans- 
late into 1 year more or less in nonhost 
crops with s so small. 

Steady states under  the optimal eco- 
nomic decision rules did not always take 
the simple form of a single cycle repeated 
indefinitely as in the steady-state models. 
Frequently, the total cycle would involve 
two or more subcycles embedded in the 
overall one. This phenomenon apparently 

I 
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emanates from the possibility it provides 
for using the continuous variable P to com- 
pensate for the integer restriction on M. 
For example, with s and nonhost returns 
equal to 0.75 and $470, respectively, the 
steady state is comprised of four subcycles 
of length 9, 9, 10, and 9. The optimal 
threshold density of  H. schachtii is 104 
eggs/100 g soil, and the levels of P at the 
beginning of  the year that sugarbeet is 
planted are 100, 103, 78, and 94, while the 
resulting complete rotation takes 41 years. 

b. Irregular annual returns from nonhost 
crops: A more complex DP model is re- 
quired to deal with nonhost crops follow- 
ing an irregular pattern of returns such as 
the case reported in Table 2 from the 
steady-state decision rule. This is so be- 
cause an additional state variable is re- 
quired to identify the particular nonhost 
crop planted in the previous stage of the 
process, otherwise R a would be undefined 
in Eq. [18] because it is no longer a con- 
stant independent  of  stages. The DP re- 
cursion formula for this case is given in 
Appendix B. 

Since each nonhost  crop planted the 
previous year in combinat ion with H. 
schachtii egg density P defines a separate 
state in the decision model, the decision 
rule is characterized by three inequalities 
in P. For example when s = 0.667, sugar- 
beet is planted according to the following 
rule: 

after tomato 

after corn 

after wheat 

0 ~< P ~< 216 

0 ~< P ~< 14 and 

93 ~< P ~< 109 

n e v e r .  

ing sugarbeet after corn in the above rule 
do not occur under  the optimal policy. 
Since the decision rule involves returns 
from the  last nonhost crop as well as those 
from the host crop at the current nema- 
tode density, the optimal policy will never 
include sugarbeet after wheat, which has 
the lowest value of the nonhost crops re- 
quired in the rotation. 

The same method as in the simpler DP 
model was used to make comparisons with 
the steady-state model. The initial value of 
P was chosen to mimic the steady-state 
model. Using the above decision rule with 
s = 0.667, the two annuities under  the op- 
timal versus steady-state rules were within 
a penny of each other. The greatest im- 
provement using the DP decision rule was 
with s = 0.60, where the effective part 
of  the rule is to plant sugarbeet  after  
tomato if P ~< 185. This improved returns 
by about 1%. 

Accuracy of the steady-state approxima- 
tion also was explored with g(P) from the 
originally fitted equation in [15] as well as 
the one using all three data points (3); both 
project what appear to be ra ther  large 
population values. The steady-state ap- 
proximation procedures gave excellent re- 
sults that were comparable to those re- 
ported above. Both of these alternative es- 
timates of g(P) predict populations levels 
of H. schachtii about twice those predicted 
by the primary model, when the initial 
value is in the range of  the economic 
thresholds. The magnitude of  this larger 
population prediction on the optimal rota- 
tion is inversely related to the size of  s, e.g., 
with s = 0.50, the rotation would be re- 
duced by 1 year. 

The  gap between 14 and 93 after corn 
when sugarbeet is not planted seems coun- 
terintuitive, but under  an optimal decision 
rule there can be many states that are not 
experienced after starting from an arbi- 
trary initial condition. Under this decision 
rule and the particular initial conditions 
used for illustrative calculations of long- 
run returns, sugarbeet is planted only af- 
ter tomato because the intervals for plant- 

DISCUSSION 

These exploratory empirical results gave 
strong evidence that the steady-state ap- 
proximation procedure will provide excel- 
lent practical decision rules that use dy- 
namic economic thresholds. The most ef- 
fective way to use these results depends on 
the reliability with which the actual popu- 
lation density of H. schachtii, P, can be es- 
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timated in the field at planting time for 
sugarbeet. I f  an accurate estimate can be 
obta ined  at a nominal  cost, then  the 
steady-state density P* that maximizes 
profits should be treated as the critical 
point below which the host crop is planted. 
But if the uncertainty is great and(or) the 
cost is high in this measurement problem, 
the steady-state estimate of the optimal pe- 
riod in nonhost crops, M, should be used 
as additional information. If  measurement 
of  P were sufficiently unreliable, number 
of  years since the host crop has been 
planted would be a better predictor of P 
than attempts to measure it directly, espe- 
cially when used in conjunction with the 
level of  crop loss in the most recently har- 
vested host crop because this is an indica- 
tor of  the beginning nematode density at 
the start of  the period in nonhost crops. 

If  P can be estimated with sufficient ac- 
curacy, the economic trade-off equation in 
Eq. [13] could be used to great advantage 
as an aid in sequentially evaluating the pest 
population. The manager would be in a 
position to subjectively evaluate the weight 
that should be applied to the uncertain 
field measurement  on P versus the un- 
equivocal measure of  years since the host 
crop has been planted.  T h e r e  would 
appear  to be an oppor tuni ty  to apply 
Bayesian decision theory to this situation, 
which would directly treat the uncertainty 
in the field estimation of P at planting 
time, but that opportunity is left for later 
research. 

Annual returns in relation to length of 
rotation indicate that an error in the direc- 
tion of  too long a rotation is less costly than 
for a rotation too short. The costs become 
more asymmetric as the optimal rotation 
length increases because the host crop has 
less influence on average returns, and so 
an extra year in nonhost crops is less costly. 
Relatively large nonhos t  crop re turns  
make the costs of  too long a rotation less 
important because planting the nonhost 
crop is less of  a sacrifice, but the penalty 
for too short a rotation has two dimensions 
in that sugarbeet yields are lowered and 
sugarbeets are planted more frequently. 

Three quantitative relationships are re- 
quired to use the steady-state model of  
nematode populations: (a) the host crop 
yield function Rh(P ), (b) the difference 
equation measuring population growth 
during the year in the host crop, and (c) 
the difference equation measuring popu- 
lation decline dur ing years in nonhost  
crops. The latter two are the most chal- 
lenging for empirical estimation because 
time series data are required, making the 
experiments subject to the year-to-year 
variations in climate and soil conditions 
(5-7). 

The difficulty of measuring populations 
in field experiments with sufficient accu- 
racy to permit precise statistical estimation 
is a serious problem. Statistical estimation 
bias in parameter estimators in regression 
models when the independent variable is 
measured with error is well known (18). I f  
the nematode decline funct ion is ade- 
quately described by the difference equa- 
tion [1], it can be transformed to a function 
of time per se to avoid problems with mea- 
surement error in Pt on the right-hand 
side. This is essentially what Roberts et al. 
(13) did, although the unequal time inter- 
vals in the data would have required that 
this be done anyway. I f  the functional 
form of the growth function for g(p) in Eq. 
[7] is appropriate, the problem with mea- 
surement errors in the r ight-hand side 
variable is made easier because the equa- 
tion is linear in logarithms, and can be es- 
timated by well-known methods for linear 
models if information is available on the 
size of the measurement error in Pt relative 
to the total statistical error in the equation 
(18). Total statistical error is the sum of 
measurement error and the unexplained 
variation that would exist for the regres- 
sion equation if there were no measure- 
ment error. 

It is an over-simplification to conclude 
that the problem of measurement error in 
population densities could be avoided in 
the economic analysis by working directly 
with nematode densities as a function of 
time, as done by Ferris and Greco (9). Pop- 
ulation densities as a function of time per 
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se are of  limited use in decision models 
because these functions do not provide a 
structured recursive model for time-dated 
values of  populat ion density, which is 
needed for the steady-state approximation 
developed here, DP, or other systematic 
dynamic optimization models such as clas- 
sical control theory (2). A linear first-order 
difference equation, such as the homoge- 
neous case in Eq. [1], has a unique explicit 
functional form in time that would track 
the associated variable P, given one initial 
condition for it. The form of this equation 
is cs t, where c is determined by an initial 
condition for P. The functional form used 
by Ferris and Greco (9) is at b, which may or 
may not be the time domain solution to a 
nonlinear first-order difference equation. 
The authors used it with other empirical 
measures to evaluate many alternative 
3-year crop sequences with respect to 
economic returns and terminal nematode 
densities. Their results provided consider- 
able information on the economics of var- 
ious crop rotation sequences but did not 
have the benefit of a formal sequential 
model. 

When the entire research process is con- 
sidered (conceptualization, experimental 
design, estimation of quantitative relation- 
ships, and economic analysis for applica- 
tion), there is considerable advantage in a 
formal recursive dynamic model of the bi- 
ological system. The formal structure clar- 
ifies the interaction of  components and 
their changes through time, as well as re- 
vealing critically needed data. It also fo- 
cuses attention on the nature of the exper- 
iments required to provide the data, and 
whether it is feasible to pursue some of the 
quantification problems. 

APPENDIX A: Derivation of M 

The inequality in Eq. [13] that gives the 
necessary conditions for M to be the eco- 
nomically optimal period in nonhost crops 
is derived below. Since r in the numerator 
of the fraction in Eq. [12] is merely a mul- 
tiplicative constant on the criterion to be 
maximized, we can replace it with unity to 

simplify the algebra. Therefore, the task is 
to find the necessary conditions for 

[A-I] wil~ai + wM+IRh(f(M)) 

(1 - w M + I ) ,  

a maximum, which measures the present 
value of returns over an infinite planning 
horizon. 

If  M is to be the optimal integer that 
maximizes Eq. [A-I], then choose the 
smallest M that satisfies 

WiRai + wlVl+lRh(f(M)) 

(1 - W M + I )  

E wiRai + wM+2Rh(f(M + 1)) 
I . . .  

(1 - wM+2). 

Multiply by (1 - wM+I)(1 -- w M+2) to get 

(l -- W M+2) wiRai + wM+IRh(f(M)) 

i > ( 1 -  wM+I) I ~ l  wiRai 

i=l 

+ wM+2Rh(f(M+ 1))]. 

We have 

M 
E wiRai 
i=1 

on both sides of the above inequality, so 
these terms vanish, and the remainder can 
be written as 

M 
--wM+2 E wiRai 

i=l 
+ (1 - wM+Z)wM+IRh(f(M)) 
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M+I  

w M + I R a , M  +1 --  w M + I  E wiRai + (1 

i=1 

- wM+I)wM+ZRh(f(M + 1)). 

T h e n  divide this by w M + 2, 

M 

- E wiRai + (1 - wU+2)(1 + r)Rh(f(M)) 
i=1 

M + I  

>I (1 + r ) R a , M + l  - -  (1 + r) E wiRai 
i=1 

+ (1 - wM+I)Rh(f(M + 1)). 

T h e  first te rm on the left side, 

M 

-- E wiRai' 
i=l 

has a matching term on the right side, and 
thus vanishes. We can then write the in- 
equality as 

[r + (1 - wM+I)]Rh(f(M)) t> (1 + r)Ra,M+ 1 

M 

- (1 + r ) w M + I R a , M + I  - r E wiRai 
i=1 

+ (1 - wM+l)Rh(f(M + 1)). 

Dividing by 1 - w M+I and transposing 
terms, we obtain 

[A-2] Rh(f(M + 1)) - Rh(f(M)) 

+ (1 + r)Ra,M+l <~ 1 --  W M+I  

M 

[Rh(f(M)) + E w*Rai]. 
i=1 

This is one useful version of  the necessary 
conditions for M, the economically optimal 
period in nonhos t  crops, but  a more intu- 
itive form can be derived. 

First, note that 1/(1 - w ~) = 1 + wn/(1 
-- wn), which is applied to the above term, 

r 
1 - ~ M + I  R h ( f ( M ) )  = 

r 
rRh(f(M)) + 1 - ~ / + l  wM+IRh(f(M)) • 

T h e n  the term rRh(f(M)) is t ransposed to 
the left side of  the equation to yield the 
revised necessary condition, 

[A-3] [Rh(f(M + 1)) - (I + r)Rhf(M))] 

r 
+ (1 + r)Ra,M+l ~< 1 -- (1 + r) -(M+D 

wiRai + wM+lRh(f(M)) , 

which is Eq. [13] in the text before f(M) 
and f(M + 1) were replaced with corre- 
sponding levels of  the nematode  popula- 
tion, Pe and dP e, respectively. 

APPENDIX B: SUMMARY OF THE D Y N A M I C  

P R O G R A M M I N G  M O D E L .  

This appendix summarizes the essential 
aspects  o f  the  d y n a m i c  p r o g r a m m i n g  
model used in the application in the text. 

State Variables: 

P = nematode  density 

L -- subscript of  last crop grown 
(last year's crop) 

L Crop Name 

1 tomato 
2 corn 
3 wheat 
4 sugarbeet (host crop) 

DP Recursion Structure: 

vn+l(P, 1) = Max[Rh(P ) + wvn(g(P ), 4), 
Ra(2 ) + WVn(SP, 2)] 

vn+l(P, 2) = Max[Rh(P) + wvn(g(P), 4), 
Ra(3 ) + wv,(sP, 3)] 

Vn+l(P, 3) = Max[Rh(P ) + wv~(g(P), 4), 
Ra(1 ) + wvn(sP, 1)] 

Vn+l(P, 4) = Ra(1 ) + wv~(sP, 1) 

The  simplification for state (P, 4) occurs 
because planting the host crop would im- 
ply 2 consecutive years o f  the host crop. 
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