A Centrifugation Method for Attaching Endospores of *Pasteuria* spp. to Nematodes¹

T. E. HEWLETT AND D. W. DICKSON²

Abstract: Attachment of relatively low numbers of endospores from two isolates of Pasteuria spp. to several species of nematodes was consistently achieved in 2–5 minutes with a centrifugation technique. The rate of attachment of Pasteuria penetrans at 10⁴ endospores/0.1 ml/tube to second-stage juveniles (J2) of Meloidogyne javanica, M. incognita race 1, M. incognita race 3, and M. arenaria races 1 and 2 in two tests averaged 4.4, 5.2, 0.1, 0.3, and 0 endospores per J2, respectively. The rate of attachment Pasteuria sp. at 10³ endospores/0.1 ml/tube to individuals of Hoplolaimus galeatus, Belono-laimus longicaudatus, M. arenaria race 1, M. javanica, and M. incognita race 1 in two tests averaged 0.8, 0.04, 0, 0, and 0 endospores per nematode, respectively. The rate of attachment of P. penetrans to M. javanica at 10³, 10⁴, or 10⁵ endospores/0.1 ml/tube from two tests averaged 1.0, 5.7, and 28.3 endospores per J2, respectively. All of the J2 had endospores attached following centrifugation in tubes with 10⁴ and 10⁵ endospores/0.1 ml/tube.

Key words: bacterium, biological control, centrifugation, endospore, Meloidogyne arenaria, M. incognita, M. javanica, method, nematode, Pasteuria penetrans, Pasteuria sp.

Pasteuria spp., endospore-forming bacterial parasites of nematodes, have been demonstrated as effective biological control agents of plant-parasitic nematodes in greenhouse and microplot experiments (5-8,13) and from field observations (3,9,11). Endospore-host attachment studies are the first step in establishing host ranges of Pasteuria spp. and determining their efficacy. Researchers conducting such studies have relied on nematode movement through soil (6), water (7), or agar (14), each laden with endospores, or agitation of nematode-endospore-water suspensions (2,4,8,12). The time needed for attachment with these techniques ranged from 1 hour to several days and usually required densities of 10³ endospores per nematode or greater.

To date, most studies on *Pasteuria* spp. have been conducted with endospores obtained from female cadavers of the endoparasitic nematodes, *Meloidogyne* spp. Large numbers of endospores are relatively easy to collect because each cadaver may contain up to 2.5 million endospores. *Pasteuria* spp. that are pathogenic to ectoparasitic nematodes, however, are more difficult to study because collecting endospores from their cadavers is labor intensive. In this case, endospore-filled cadavers must be extracted from the soil and hand picked. They yield approximately 2,000 endospores per nematode (pers. obs.).

The purpose of this paper is to report on a fast and effective method of attaching relatively low numbers of endospores to nematodes by centrifugation.

MATERIALS AND METHODS

Nematode populations: The nematodes used in this study originated from greenhouse isolates maintained at the University of Florida, Gainesville. Meloidogyne spp. were cultured on tomato (Lycopersicon esculentum cv. Rutgers). Eggs of Meloidogyne spp. were extracted from roots treated with 0.5% sodium hypochlorite (10) and caught on a 25-µm-pore sieve, rinsed, and placed on a Baermann funnel (1). Secondstage juveniles (I2) hatched from these eggs were no more than 3 days old when used in the experiment. Belonolaimus longicaudatus and Hoplolaimus galeatus were cultured on Bermudagrass (Cynodon dactylon cv. Tiftgreen) and extracted by Baermann funnel.

Bacterial cultures: Pasteuria penetrans P-100 was isolated from a Meloidogyne spp. population collected in Pasco County. The isolate was cultured in the greenhouse on

Received for publication 8 March 1993.

¹ Florida Agricultural Experiment Station Journal Series No. R-03184.

² Senior Biologist and Professor, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0620.

Meloidogyne javanica growing on tomato roots. To obtain endospores, air-dried galls were crushed with a mortar and pestle in 10 ml tap water. Endospores were separated from root debris by passing them through a 25-µm-pore sieve.

Pasteuria sp. H-1 originated from a population of H. galeatus on Bermudagrass in Alachua County. Endospores of H-1 were extracted from hand-picked, endosporefilled cadavers of H. galeatus collected from Bermudagrass. These cadavers were crushed in 2 ml water with a tissue grinder previously treated with a water repellant (Repel-Silane, LKB, Bromma, Sweden). For both isolates, the endospore concentrations were determined with a hemacytometer counting chamber.

Host-range studies: Host range of P. penetrans P-100 was determined using 0.1 ml of a 10⁵/ml endospore-water suspension, and 0.1 ml of a 2,000 J2/ml water suspension of Meloidogyne arenaria, M. incognita, and M. javanica. These were placed in 0.25-ml previously silanized microfuge tubes and centrifuged at 9,500g for 2 minutes using a Beckman microfuge (Beckman, Palo Alto, CA). Nematodes were removed from the tubes with a pipette and placed on glass slides for observation. Twenty individuals per combination were observed. Numbers of nematodes with endospores attached and the number of endospores attached per nematode were counted. Except for M. arenaria race 2, this test was conducted simultaneously on M. javanica, M. arenaria race 1, or M. incognita races 1 and 3.

Host ranges of *Pasteuria* sp. H-1 were determined as described above, but with suspensions of 10^4 endospores/ml, 1,000 mixed-life stages of *B. longicaudatus* or *H. galeatus*, and 2,000 J2/ml of *Meloidogyne arenaria*, *M. incognita*, or *M. javanica*.

Spore density and attachment studies: The rate of attachment of P-100 to *M. javanica* was tested with treatments of 10^3 , 10^4 , or 10^5 endospores/0.1 ml/tube with the technique described.

All above mentioned treatments were replicated five times, and experiments were repeated.

RESULTS AND DISCUSSION

Meloidogyne javanica and M. incognita race 1 had the highest percentage of J2 with P-100 endospores attached, averaging 95 and 82% for M. javanica, and 100 and 96% with M. incognita race 1 in Tests 1 and 2, respectively (Table 1). These nematodes also had the highest number of endospores attached per J2. Attachment to M. incognita race 3 and M. arenaria race 1 was relatively low. Endospores of P-100 did not attach to M. arenaria race 2 in either test.

Endospore attachment of isolate H-1 was greatest on *H. galeatus*. Thirty percent and 39% of the nematodes in Tests 1 and 2, respectively, had endospores attached (Table 2). The rate of attachment was poor on *B. longicaudatus*. Only 2% and 6% of the nematodes in Tests 1 and 2, respectively, had endospores attached. No attachment occurred on the three *Meloidogyne* spp. tested.

The rate of attachment of endospores to nematodes increased approximately five to six times for each 10-fold increase in numbers of endospores used (Table 3). An average of 55 and 67% of the J2 had endospores attached in Tests 1 and 2, respectively, when endospore densities were 10^3 . All J2 had endospores attached at densities of 10^4 and 10^5 .

The most common technique used for evaluating the attachment of endospores

TABLE 1. Average number of endospores of Pasteuria penetrans P-100 attached to 20 second-stage juveniles (J2) of five Meloidogyne spp., and average percentage of J2 with endospores attached, after centrifugation with 200 J2 and 10^4 endospores/0.1 ml/tube.

Nematode	Test 1		Test 2	
	Number	%	Number	%
M. javanica M. incognita	6.1 ± 2.2	95	2.6 ± 0.76	82
race 1 M. incognita	7.0 ± 1.2	100	3.4 ± 0.5	96
race 3 M. arenaria	0.1 ± 0.1	4	0.1 ± 0.3	3
race 1 M. arenaria	0.1 ± 0.1	8	0.4 ± 0.3	8
race 2	0	0	0	0

Data are means ± SD of five replicates.

Nematode	Test 1		Test 2	
	Number	%	Number	%
H. galeatus	0.6 ± 0.4	30	1.0 ± 0.2	39
B. longicaudatus	0.02 ± 0.03	2	0.06 ± 0.04	6
M. arenaria race 1	0	0	0	0
M. javanica	0	0	0	0
M. incognita race 1	0	0	0	0

TABLE 2. Average number of endospores of *Pasteuria* spp. H-1 attached to 20 specimens each of five nematode species and average percentage with endospores attached, following centrifugation with 10³ endospores/0.1 ml/tube and 100 *Hoplolaimus galeatus* or *Belonolaimus longicaudatus* (mixed life stages) or 200 second-stage juveniles of *Meloidogyne* spp. per centrifuge tube.

Data are means \pm SD of five replicates.

on nematodes has been by agitating endospore-nematode-water suspensions. This procedure may take ≥ 1 hour, and 100% attachment is difficult to achieve. Our centrifugation method requires only 2 minutes for completion, and the rate of endospore attachment to nematodes can be controlled by adjusting the density of endospores in the suspension. Attachment of endospores to large numbers of nematodes is possible by using larger centrifuge tubes. We have obtained 100% attachment on 3×10^4 J2 of M. javanica with 5×10^5 endospores of isolate P-100 in a 15-ml conical centrifuge tube (5,550g, 5 minutes). Other tube sizes or centrifugation speeds (g) have not been evaluated. This technique is an improved method of attaching endospores to nematodes, thereby providing a more reliable means of studying the host ranges of Pasteuria spp. We routinely use Meloidogyne J2 that each have 5-15 endospores attached following the centrifugation technique as inoculum for the

TABLE 3. Average number of endospores of *Pasteuria penetrans* attached to 20 second-stage juveniles (J2) of *Meloidogyne javanica* and average percentage of J2 with endospores attached following centrifugation with 200 J2 and 10^3 , 10^4 , or 10^5 endospores/0.1 ml/tube.

Endospore number	Test 1		Test 2	
	Number	%	Number	%
103	0.8 ± 0.3	55	1.1 ± 0.4	67
104	4.8 ± 0.4	100	6.6 ± 1.1	100
10^{5}	22.8 ± 1.0	100	33.8 ± 3.4	100

Data are means ± SD of five replicates.

buildup of *Pasteuria* sp. endospores. This technique also allows for studies of *Pasteuria* spp. collected from nematode species that yield relatively few endospores per cadaver.

LITERATURE CITED

1. Baermann, G. 1917. Eine einfache methode zum auffinden con ankylostomen (Nematoden) larven in erdproben. Geneeskuding Tijdschrift voor Nederlandsch-Indie 57:131–137.

2. Bird, A. F. 1986. The influence of the actinomycete, *Pasteuria penetrans*, on the host-parasite relationship of the plant-parasitic nematode, *Meloidogyne javanica*. Parasitology 93:571-580.

3. Bird, A. F., and P. G. Brisbane. 1988. The influence of *Pasteuria penetrans* in field soils on the reproduction of root-knot nematodes. Revue de Nématologie 11:75–81.

4. Bird, A. F., P. G. Brisbane, S. G. McClure, and R. W. L. Kimber. 1990. Studies of the properties of the spores of some populations of *Pasteuria penetrans*. Journal of Invertebrate Pathology 55:169–178.

5. Brown, S. M., J. L. Kepner, and G. C. Smart, Jr. 1985. Increased crop yields following application of *Bacillus penetrans* to field plots infested with *Meloidogyne incognita*. Soil Biology and Biochemistry 17:483– 486.

6. Brown, S. M., and G. C. Smart, Jr. 1985. Root penetration by *Meloidogyne incognita* juveniles infected with *Bacillus penetrans*. Journal of Nematology 17: 123–126.

7. Channer, A. G., and S. R. Gowen. 1988. Preliminary studies on the potential of *Pasteuria penetrans* to control *Meloidogyne* species. Proceedings of Brighton Crop Protection Conference, Pests and Diseases. Surrey, England: The British Crop Protection Council.

8. Davies, K. G., B. R. Kerry, and C. A. Flynn. 1988. Observations on the pathogenicity of *Pasteuria penetrans*, a parasite of root-knot nematodes. Annals of Applied Biology 112:491–501.

9. Dickson, D. W., D. J. Mitchell, T. E. Hewlett, M. Oostendorp, and M. F. Kannwischer-Mitchell. 1991.

Nematode-suppressive soil from a peanut field. Journal of Nematology 23:526 (Abstr.).

10. McClure, M. A., T. H. Kruk, and I. Misaghi. 1973. A method for obtaining quantities of clean *Meloidogyne* eggs. Journal of Nematology 5:230.

11. Minton, N. A., and R. M. Sayre. 1989. Suppressive influence of *Pasteuria penetrans* in Georgia soils on reproduction of *Meloidogyne arenaria*. Journal of Nematology 21:574–575 (Abstr.).

12. Oostendorp, M., D. W. Dickson, and D. J. Mitchell. 1990. Host range and ecology of isolates of

Pasteuria spp. from the southeastern United States. Journal of Nematology 22:525-531.

13. Oostendorp, M., D. W. Dickson, and D. J. Mitchell. 1991. Population development of *Pasteuria* penetrans on *Meloidogyne arenaria*. Journal of Nematology 23:58–64.

14. Verdejo, S., and B. A. Jaffee. 1988. Reproduction of *Pasteuria penetrans* in a tissue-culture system containing *Meloidogyne javanica* and *Agrobacterium rhizogenes*-transformed roots. Phytopathology 8: 1284–1286.