Response of Resistant Soybean Plant Introductions to Meloidogyne incognita in Field Microplots


  • M. Herman
  • R. S. Hussey
  • H. R. Boerma


The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars. Key words: Glycine max, Meloidogyne incognita, population density, resistance, root-knot nematode, root penetration, soybean, yield response,