Susceptibility of Soybean Cultivars and Lines to Pratylenchus hexincisus¹

M. E. ZIRAKPARVAR²

Abstract: Population increase of Pratylenchus hexincisus on 41 soybean cultivars (maturity groups I-VI) and lines was tested under greenhouse conditions. After 3 months, P. hexincisus was recovered from the roots of all plants tested. Final populations of P. hexincisus per pot were larger than the initial population in 13 cultivars. Pathogenicity of P. hexincisus on five soybean cultivars representing maturity groups (I-V) was demonstrated under greenhouse conditions. An inoculum of 5,000 P. hexincisus/plant significantly decreased the root and shoot biomass of all five soybean cultivars after 3 months. Key words: lesion nematode, resistant cultivar, ecology, pathogenicity. Journal of Nematology 14(2):217-220. 1982.

Pratylenchus hexincisus (Taylor and Jenkins) is associated with corn (Zea mays L.) and soybean (Glycine max L.) in the North Central states of the USA (3,6,7,9, 10). Resistant cultivars are important for control of plant parasitic nematodes in pest management systems. Large differences in susceptibility of some soybean cultivars to lesion nematode (Pratylenchus spp.) occur (1,5,8). The pathogenicity of P. hexincisus on Corsoy soybeans has been demonstrated (11); however, little is known about the susceptibility of other cultivars. Field tests usually are confounded by other parasitic organisms, including other nematode species. The objectives of the research were to determine the susceptibility of various soybean cultivars to P. hexincisus and to determine its pathogenicity on five soybean cultivars under controlled conditions.

MATERIALS AND METHODS

The *P. hexincisus* used in all tests originally was obtained from field corn in Iowa and was increased on corn and tomato in the greenhouse. Steam-sterilized sandy soil (86% sand, 11% silt, 3% clay, 2.5% organic matter, pH 7.0) was used in all tests. All plants were fertilized with N-P-K (6-10-4) at 6 g/15-cm-d clay pot 1 month after planting.

Host susceptibility tests: Forty-one soybean cultivars and lines representing maturity groups I-VI (Table 1) were tested for susceptibility to P. hexincisus under greenhouse conditions. The designs were randomized blocks with five replications, each consisting of one plant growing in a 15-cm-d clay pot. Two tests consisting of 16 and 25 soybean varieties were conducted from 15 October 1979 to 17 January 1980 and from 18 March to 21 June 1980, respectively. Seeds were germinated in petri dishes, and one seedling was planted 2.5 cm deep in the center of each pot. Fifteen milliliters of water containing $3,000 \pm 100$ nematodes were pipetted into a 3-cm-deep hole near the seedling 3 days after planting.

Nematode recovery: The roots and soil were removed from each pot, and the soil was shaken gently from each root system and mixed thoroughly. P. hexincisus was extracted from 100 cm3 of soil from each pot by using a centrifugal-flotation method (4). Adhering soil was washed from the roots, and 1-2 g of roots from each root system were selected randomly and cut into 1.5-cm segments for nematode extraction by a shaker method (2). The remaining root mass and the roots used for extraction were dried at 90 C for 5 days. Numbers of P. hexincisus per gram of dry root and per whole root system were calculated. Numbers of P. hexincisus per pot were determined by multiplying the number of nematodes per 100 cm3 of soil by 15 and adding the result to the number of nematodes per whole root system.

Pathogenicity tests: Pathogenicity tests of P. hexincisus on soybean cvs. S1346, S1578, G-3340, Clark 63, and Forrest rep-

Received for publication 7 May 1981.

¹Journal Paper No. J-10243 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011. Project 2375. Supported by a grant from the Iowa Soybean Promotion Board.

²Department of Plant Pathology, Seed and Weed Sciences, Iowa State University, Ames, IA 50011. Present address: Union Carbide Agricultural Products Company, Inc., P. O. Box 12014, T. W. Alexander Dr., Research Triangle Park, North Carolina 27709. The author thanks D. C. Norton for guidance in preparation of this manuscript.

218 Journal of Nematology, Volume 14, No. 2, April 1982

Table 1. Numbers of *Pratylenchus hexincisus* after 3 months on soybean cultivars and lines inoculated with $3,000 \pm 100$ nematodes per 15-cm-d pot.

Cultivar	Maturity group	Pratylenchus hexincisus			
		100 cm³ soil*	g dry root*	1,500 cm ³ soil + root*	
			• ·······	- 	
		First test	1971 al		
Harcor	II	lla	331a	586a	
Calland	III	22a	294a	769a	
A1564	I	22a	408a	910a	
Corsoy	II	13a	456a	1,004a	
B216	II	33a	416a	1,220a	
Elf	III	16a	366a	1,241a	
S1492	II	21a	806a	1,408a	
Beeson	II	280b	1,089ad	1,820a	
Hodgson	I	15a	945a	1,962a	
Wayne	III	34a	806a	1,992a	
Wells	II	23a	1,108ad	2,157a	
Coles	II	23a	1,030ad	2,162a	
Sloan	II	19a	771a	2,460a	
Amsov 71	II	74a	780a	2.686a	
Williams	TI	264b	5.006bd	12.222b	
Woodworth	III	671c	13,442c	34,940c	
		Second test			
 P61-22	IJ	7a		627a	
\$1564	Ť	9abc	2442	1.024ab	
CX 155	Ĩ	20abc	8102	1,933ab	
\$2596	TI	12abc	207a	1,200ab	
A 9575	II II	8ab	207a 807a	1.409ab	
Peking	IV	72	380a	1,10540	
Formest	V	62	205a	1,505ab	
1109.4	Ŭ,	Va Maho	1766ab	1,041a0 1,799ab	
J102A	11	Ifabe	1,700aD	1,754aD	
1 100700	111	Oabe	470a 609a	1,004aD 9,917ab	
A2050 Eronklin	14	0abc	295a	2,017aD 9,999ab	
ETAIIKIIII 61474	1 V	5abc 72ad	1 190a	2,552aD 9.544ab	
51474 D000	11	19ebe	1,129a 549a	2,944aD	
BZZU Distant 71		12aDC	042a 604a	2,790aD	
PICKELL / I	IV T	19abc	094a	2,807aD	
51244	1	19200	791a	3,107ab	
P190763		13abc	774a	3,213ab	
Lee 74	VI	Izabc	777a	3,328ab	
Bedford	VI	Ibabe	83ba	3,397ab	
51346	1	IUabc	1,026a	4,125ab	
\$4055	111	16abc	829a	4,388ab	
Cumberland	111	27abcd	925a	4,911ab	
Clark 63	IV	77cde	2,308ab	8,500b	
BSR301	111	49bcd	4,450bc	23,601c	
\$1578	II	199e	8,374c	40,084c	
G-3340	III	117cde	9,779d	50,473d	

*Means with common letters within a column are not significantly different (P = 0.05) according to Duncan's multiple-range test.

resenting maturity groups I-V, respectively, were conducted in the greenhouse. Three treatments for each of five cultivars were arranged in a randomized block design with five replications of each treatment. The treatments were (i) 20 ml of water containing 5000 \pm 200 nematodes pipetted on germinated seed and covered with soil, (ii) 20 ml of nematode-free wash water collected during the nematode extraction (hereinafter called "nematode-wash water") was pipetted on germinated seed and covered with soil to monitor effects of microbial contaminants on plant growth, and (iii) soybean plant (check) without nematodes or nematode-wash water. One germinated seed was planted in a 15-cm-d clay pot containing 1,500 cm³ sandy soil.

At the end of 3 months, nematodes were extracted from roots and soil and the same procedures carried out as in the host susceptibility tests. The foliage and roots of each plant were dried at 90 C for 5 days. Weights of the dried roots used in nematode extractions were added to the total root weights.

RESULTS

Host susceptibility tests: P. hexincisus was recovered from the roots of all 41 soybean cultivars and lines tested (Table 1). Final populations (Pf) of P. hexincisus per pot were larger than the respective initial population (Pi) with 13 cultivars. Significant differences existed in numbers of *P.* hexincisus per 100 cm³ of soil, per gram dry root, and per pot, among soybean cultivars in both tests. Cultivars G-3340, S1578, Woodworth, BSR301, and Williams (Table 1) supported large numbers (P = 0.05) of *P.* hexincisus. Numbers of nematodes per pot varied from 586 in Harcor to 34,940 in Woodworth in the first test and from 627 in P61-22 to 50,473 in G-3340 in the second test (Table 1).

Pathogenicity test: P. hexincisus reduced (F = 0.01) shoot and root biomasses of all five cultivars (Table 2). There were no significant differences in shoot and root biomasses of plants inoculated with nematode-wash water compared with the check plants. Numbers of P. hexincisus per gram dry root, per 100 cm³ soil, and per pot were different (P = 0.01) among the five cultivars tested. Numbers per pot varied from 20,770 in S1346 to 232,388 in G-3340 (Table 2).

Table 2. Shoot and root weight and numbers of *Pratylenchus hexincisus* in five soybean cultivars in the greenhouse 3 months after inoculation with $5,000 \pm 200 P$. hexincisus or wash-water* treated or non-inoculated controls.

Cultivar	Treatment	Shoot† weight (g)	Root† weight (g)	P. hexincisus ⁺		
				g dry root	100 cm ³ soil	pot§
S-1346	Inoculated	13.la	1.6a	12,721a	67a	20,770a
	Wash-water	17.3b	2.4b	0	0	0
	Noninoculated	16 .1 b	2.6b	0	0	0
S-1578	Inoculated	15.0a	2.2a	62,192b	1,0785	151,568c
	Wash-water	21.3b	4.4b	0	0	0
	Noninoculated	20.7b	3.8b	0	0	0
Clark 63	Inoculated	11.8a	1.9a	44,567ab	399a	92,635b
	Wash-water	21.4b	4.8b	0	0	0
	Noninoculated	21.2b	5.4b	0	0	0
G-3340	Inoculated	14.7a	2.1a	93,812b	I,835c	232,338d
	Wash-water	23.9b	5.7b	0	0	0
	Noninoculated	21.0b	4.5b	0	0	0
Forrest	Inoculated	12.7a	2.1a	10,530a	119a	24,305a
	Wash-water	21.3b	3.6b	0	0	0
	Noninoculated	20.6b	4.4b	0	0	0

*Nematode-free wash water collected during the nematode extraction to monitor effect of microbial contamination on plant growth.

†Means with common letters within a column for a given variety are not significantly different (P = 0.05) according to Duncan's multiple-range test.

#Means with common letters within a column are not significantly different (P = 0.01) according to Duncan's multiple-range test.

\$1,500 cm³ soil + whole root system.

DISCUSSION

Various soybean cultivars are commonly used as a rotation crop with corn in the North Central states of the USA. Up to 52,000 *P. hexincisus*/g dry root have been associated with poor soybean growth under field conditions in Iowa. Population increase of *P. scribneri* occurred on cultivars such as Clark 63, Williams, Woodworth, Calland, Corsoy, and Beeson (1). Large differences in numbers of *Pratylenchus* spp. among soybean cultivars probably partly explains the wide range in numbers of this nematode occurring among fields.

Although P. hexincisus reduced shoot and root biomass of the five soybean cultivars tested, its final population (P_t) differed (P = 0.01) in these cultivars (Table 2). For example, at a P_f of 20,770 P. hexincisus, shoot and root biomass of cv. S1346 was reduced by 18.6% and 39.5%, respectively. However, at a P_f of 232,338 P. hexincisus, shoot and root biomass of cv. G-3340 was reduced by 30.2% and 53.9%, respectively. These results and results reported by others (1,5) indicate that different soybean cultivars have varying reactions to a given species of Pratylenchus and that the relationship between nematode numbers and biomass reduction is not always linear.

Knowledge of the reaction of soybean cultivars to *P. hexincisus* will facilitate a management program to control this nematode. Although it is difficult to extrapolate greenhouse data to field conditions, large numbers of *P. hexincisus* per gram dry root have been associated with poor corn and soybean growth in Iowa. Other stresses, such as moisture, low fertility, and other organisms, including nematodes, will allow for fewer nematodes necessary to cause measurable injury in the field. The ability of *P. hexincisus* to reduce plant growth in the greenhouse in the absence of other parasitic organisms adds credibility to the concept that this species is a major contributing factor to reduced yields in fields where large nematode populations occur.

LITERATURE CITED

1. Acosta, N., R. B. Malek, and D. I. Edwards. 1979. Susceptibility of soybean cultivars to Pratylenchus scribneri. J. Agric. Univ. P. R. 62:108-110.

2. Bird, G. W. 1971. Influence of incubation solution on the rate of recovery of Pratylenchus brachyurus from cotton roots. J. Nematol. 3:378-385.

3. Ferris, V. R., and R. L. Bernard. 1958. Plant parasitic nematodes associated with soybeans in Illinois. Plant Dis. Rep. 42:798-801.

4. Jenkins, W. R. 1964. A rapid centrifugalflotation technique for separating nematodes from soil. Plant Dis. Rep. 48:692.

5. Lindsey, D. W., and R. J. Cairns. 1971. Pathogenicity of lesion nematode, Pratylenchus brachyurus on six soybean cultivars. J. Nematol. 3:220-226.

6. McCallum, D. R., and O. J. Dickerson. 1971. Bean (pinto) root-lesion nematodes (Pratylenchus spp.), soybean (Wayne) root-lesion nematode (Pratylenchus hexincisus). Pp. 159, 172 *in* Fungicide and nematicide test results for 1971. Vol. 27.

7. Norton, D. C., and P. Hinz. 1976. Relationship of Hoplolaimus galeatus and Pratylenchus hexincisus to reduction of corn yields in sandy soils in Iowa. Plant Dis. Rep. 60:197-200.

8. Schmitt, D. P. 1976. Relative suitability of soybean cultivars to Pratylenchus brachyurus. J. Nematol. 8:302 (Abstr.).

9. Taylor, D. P., R. V. Anderson, and W. A. Haglund. 1958. Nematodes associated with Minnesota crops. I. Preliminary survey of nematodes associated with alfalfa, flax, peas, and soybeans. Plant Dis. Rep. 42:195-198.

10. Thomas, S. H. 1978. Population densities of nematodes under seven tillage regimes. J. Nematol. 10:24-27.

11. Zirakparvar, M. E. 1980. Host range of Pratylenchus hexincisus and its pathogenicity on corn, soybean, and tomato. Phytopathology 70:749-753.