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Quantitative description of the relation-
ship between plant growth and preplant
nematode densities is an essential pre-
requisite for nematode pest management de-
cisions in annual crops (2,3). A common
technique to describe this relationship is to
use linear regressions of plant growth and
log-transformed nematode population den-
sities (1,7). The linearization produced by
the transformation empirically accounts for
the decreased damage per nematode, due to
competitive interactions and damage over-
lap, as nematode densities increase. Sein-
horst (9) derived an explanatory model for
the relationship based on Nicholson’s com-
petition curve.

The model is based on sound biological
theory and is of the form y = m + (1-m)
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z™T, The minimum yield (m) (on a 0-1
relative scale) represents the residual plant
growth at extremely high nematode popula-
tion densities. It assumes that there may be
a point below which yield cannot be further
reduced by nematodes. Of course, for any
crop or environmental situation, m may be
zero. P is the nematode population density
per prescribed unit of soil and /or roots. The
tolerance limit (T) is the nematode popula-
tion density below which yield reduction
cannot be measured. Again, for any crop
variety or environmental situation, T may
be zero. The slope-determining parameter
(z) of the damage function is defined as the
proportion of the plant undamaged in the
presence of parasitism by one nematode.
Since z has a value slightly smaller than 1,
raising it to the exponent (P-T) results in
less effect per nematode as each new nema-
tode is added to the system.

The linear approach has been charac-



teristically used, since linear regression tech-
niques are readily available. Seinhorst
curves are often fitted by the use of trans-
parent overlays of standard curves with vary-
ing values of m and z. We have developed a
computerized algorithm to derive the values
of m, z, and T, at which the curve best fits
the data points, as measured by minimiza-
tion of the residual sum of squares and max-
imization of the correlation coefficient. A
potential problem with this type of deriva-
tion is that the algorithm assumes that some
minimum yield value is represented among
the data set. In practice, population den-
sities may not have been high enough to ap-
proach the minimum yield of the crop
under that nematode and environmental
stress. The algorithm allows the user to de-
cide whether the minimum vyield should be
calculated based on the available data, or
to specify some value of the minimum yield
and avoid overestimation of predicted yield
at high nematode densities. If there is no
obvious leveling trend for yield values at
high nematode densities among the avail-
able data, it may be wise to set m = 0 and
calculate z and T values accordingly.
Using the model—

where y; is the relative yield of the ith plant
or plot, determined by dividing the actual
vield by the average yield of all plots with
P, =T, the objective is to minimize the res-
idual sum of squares with respect to the pa-
rameters T, m, and z. From the residual sum
of squares obtained with this model—
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the least squares estimator of m is calculated
by determining partial derivatives. Since
the second term in equation (i) does not
depend on m or z—
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then the partial derivative of the first term
of equation (i) can be set equal to zero—
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and solved for m—
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(iii)

where n is the number of points with Py
greater than T. Summation is only over
these n points in recognition that their
population densities are high enough to
contribute to yield reduction. Having ob-
tained an estimate of m by minimizing res-
idual sum of squares with respect to m, we
now minimize the residual sum of squares
with respect to z—
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again, summation is only over the points
with P; greater than T. Unlike equation
(iii), equation (iv) cannot be solved ana-
lytically. A numerical solution is to estab-
lish an interval of uncertainty within which
z is known to lie, and to successively reduce
the range by evaluating equation (iv) at
the midpoint of each new interval. Ulti-
mately the z value is found at which the
residual sum of squares is minimized for a
given T.

Calculus cannot be used to find the least
squares estimator of the tolerance limit (T)
hecause the residual sum of squares is not a
continuous function of T. Hence an itera-
tive procedure is used to evaluate the res-
idual sum of squares over an increasing
range of T values and to calculate the m
and z values at each of these levels. This
allows selection of the value of T that min-
imizes the residual sum of squares and pro-
vides the associated z and m values.

The general procedure (Fig. I) is to
start with a coarse range of T values which
covers a wide span of the observed P values
by setting a relatively large T increment. An
initial value for T and a starting value for
z are selected. A value of z = 0.99 is con-
venient, since z is generally close to 1. Using
the estimated z and T values, an m value is
derived from equation (iii). This is the best
possible value of m for a given value of z
and T. Using this m value, the partial de-
rivative of the residual sum of squares with
respect to z is calculated from equation (iv).
Since equation (iv) cannot be solved ana-
Iytically, an iterative procedure is used to
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Fig. 1. Flow charts of main program and “z search” routine for determining T, z, and m values for the
least squares fit of y = m + (1-m)z(P-T) when P > Tand y = 1 when P = T for a data set.

converge the partial derivative of the res-
idual sum of squares with respect to z on 0.
If the sign of the calculated partial deriva-
tive is initially positive, the lower limit of
the interval of uncertainty is decreased by a
value of 0.01 and the upper limit becomes
the previous lower limit—in the first case,
0.99. It may be necessary to limit the lowest
allowable value of z, since by definition, z is
close to 1.0. However, the units in which the
population is measured should be consid-
ered in this limit. If the population is ex-
pressed per 200 g soil in determining the
damage function, the z value will be lower

than if the population is expressed per 1,000
g soil since the perceived growth reduction
is being attributed to fewer nematodes. Con-
sistency in use of the model is necessary. By
definition, z is the proportion of the plant
undamaged by a single nematode. To main-
tain the biological integrity of the model, a
lower limit of about z = 0.97 may be reason-
able if nematodes are expressed per 1,000 g
soil.

The partial derivative is recalculated
successively until the lower limit of the in-
terval of uncertainty becomes negative. This
indicates that the true value of z is now



within the interval of uncertainty. Once the
true interval of uncertainty has been identi-
fied, its midpoint is calculated and used to
evaluate the partial derivative. The sign of
the partial derivative at this new value is
determined, indicating whether the true z
value is included within the top half or the
bottom half of the interval of uncertainty.
Thus a new interval of uncertainty is ob-
tained with half the previous range.

The iterative procedure is repeated until
the upper and lower limits of the interval of
uncertainty are separated by less than
.00001, or another appropriately small num-
ber. At this stage the r? value is calculated
and tested against previously calculated r®
values. The tolerance limit is then incre-
mented by the preselected increment and
the iterative procedure repeated over the
initial coarse grid. Each time a new T value
is selected by incrementation from the previ-
ous one it is necessary to recalculate the rela-
tive yields throughout the whole data set
using the maximum yield as an average of
the yield at those population densities less
than T. This assumes that below T the
yield is unaffected by the nematode popula-
tion. The residual sum of square values are
scanned for each T value to select the region
of the population densities at which the
residual sum of squares approaches a min-
imum. A new search is made over a range
of T values in this region with finer incre-
ments between them. The procedure is con-
tinued until the best value of T is known to
a desired level of accuracy.

The procedure described allows deter-
mination of the descriptive parameters of a
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Seinhorst curve for any data set. Further, it
allows subjective judgment in the determi-
nation of appropriate m and T values. How-
ever, it removes the absolute subjectivity
involved in selection of the parameters by
overlaying curves. The algorithm simplifies
use of a model based on sound biological
theory.

We have used the algorithm to calculate
T, z, and m values for some published data
and compared r? values with those for linear
regressions on the log transformed nematode
populations (Table 1). The data were used
by Seinhorst (9,11) as examples (4,5,6,8,11).
In the cases where there were relatively few
data points (5,6,8), or the data were from an
extremely careful greenhouse study (11),
both Seinhorst and linear models produced
high r? values. In one data set (6,9) the pre-
dicted z value was apparently low, indicat-
ing considerable damage per nematode.
However, the nematode counts were ex-
pressed per 100 ml soil, thereby inflating the
perceived damage per nematode.

It is possible that a minimum yield has
not been reached in data sets used with this
program. Calculating a value of m and
fitting a least squares curve based on this
may constitute a false biological assumption.
Accordingly, the program allows the user to
subjectively assign a value of m for cases
where the true value may not occur within
the range of the data set. Trial runs with
the algorithm indicate that the magnitude
of m strongly influences T and z, under-
scoring the assertion of Seinhorst (10) that
plant growth should be tested against a wide
range of nematode densities.

Table 1. Comparison of damage function parameters of Seinhorst modelt and linear model}. for several

data sets.
No. of

Source of obser- Seinhorst model Linear model

data set§ vations T m z x2 T slope(b) x2
11 43 85 242 99964 934%» 295 143 925%*
4,9 67 78 7134 98007 382> 9 —.057 377
59 4 20 220 99603 999 % 38 —.174 9g7e*
6,9 7 10 347 95523 O79#* 10 —.188 .844*
8,9 6 10 240 99680 994 %» 30 —.144 .980**

ty =m + (1-m)z(P-T) fory > T,y = 1 for P="T.
Jy=1+blog(®P-T)fory>T,y=1forP=T.
§Data sets from references in Literature Cited.
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