Screening Soybeans for Resistance to Reniform Nematode Disease in the Philippines¹

B. K. LIM² and M. B. CASTILLO³

Abstract: Sixty-five soybean varieties were tested in the field for resistance to Rotylenchulus reniformis. Criteria for resistance or susceptibility were root necrosis, nematode recovery from roots and soil, and egg production. Nine varieties were resistant, 13 moderately resistant, 26 moderately susceptible, and 17 susceptible. Linear correlations between resistance rating and each assessment parameter were highly significantly positive, suggesting that any of the parameters could be used to identify resistance. There were also highly significant positive linear correlations between any two combinations of parameters, indicating that they were reciprocally related. Key Words: soybean resistance, screening, Rotylenchulus reniformis, reniform nematode, assessment parameters, statistical correlations.

Soybean [Glycine max (L.) Merr.] is becoming an important crop in the Philippines because demand, particularly for livestock feed, exceeds production, and feed millers import soybean meal at an annual cost of \$70 million in foreign exchange (3).

A potentially important pest of soybean is the reniform nematode, *Rotylenchulus reniformis* Linford & Oliveira (2, 14). *Rotylenchulus* spp. are the most widely distributed and abundant nematodes in the Philippines, in soils growing soybean and other nongraminaceous annual upland crops (4, 5, 10). In a field experiment, yield reduction in soybean due to R. reniformis was as high as 45% during the dry season (8). This nematode is believed to be as important as *Meloidogyne* spp. on soybean.

Several soybean breeding lines and varities showed resistance to R. reniformis in pot experiments conducted in the United States (1, 2, 13, 15). This study was designed to screen soybean varieties for resistance to R. reniformis under Philippine conditions, and to identify the most efficient parameters for determining varietal resistance.

MATERIALS AND METHODS

The experiment was conducted on an area of 17×40 m on Maahas clay loam soil at the International Rice Research Institute (IRRI) Experiment Station, College,

Received for publication 14 August 1978.

¹ Portion of a Master's thesis by the senior author, University of the Philippines at Los Banos, College of Agriculture (UPLBCA), College, Laguna 3720, Philippines.

²Former Scholar, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA). Present address: Grop Protection Services, Department of Agriculture, Kuala Lumpur, Malaysia.

³ Associate Professor and Nematologist, Department of Plant Pathology, UPLBCA. The authors thank SEARCA for financial support; and S. Shanmugasundaram, B. Legaspi, and R. Navarro for providing the seeds of soybean varities used in this experiment.

Laguna, Philippines. The field had been planted to three successive crops of mung bean, cowpea, soybean, and peanut. The land was cultivated with a small rototiller, and three blocks were prepared, each $5.3 \times$ 40 m, separated by 0.50-m bunds. Each block was subdivided into two 2.4 × 40-m plots, each surrounded by a 0.50-m drainage ditch. Forty 0.75 × 2.4-m beds, 0.25 m apart, were constructed per plot, making 80 beds per block.

The test plants were 80 soybean varieties obtained from the Asian Vegetable Research and Development Center (AVRDC). Tainan, Taiwan; Bureau of Plant Industry (BPI), Los Banos, Laguna, Philippines; and Department of Agronomy, UPLBCA, College, Laguna, Philippines. Seeds of each variety were planted in single rows, with 20 cm between hills, in an 11-hill row. Three seeds were sown per hill at a depth of 3 to 4 cm. A randomized complete block design with three replications (blocks) was used. Only 65 varieties germinated. The cropping period was 30 June to 15 September 1977.

Split application of an inorganic fertilizer containing 14% N, 14% P, and 14% K was done on a bedwise basis at 60-60-60 kg/ha. The first application was during land preparation, and the second and the third 1 and 2 months after planting. Handweeding was done whenever necessary. Insects and fungal diseases were controlled by foliar spraying, as needed, respectively with monocrotophos 16.8% EC at 1.0 kg ai/ha and with a coordination product (80% manganese and 20% zinc ethylene bisdithiocarbamate) at 1.5 kg ai/ha. Plants were watered by natural rainfall.

Initial population densities of plantparasitic nematodes in the experimental area were determined after the beds were prepared. Each of the three blocks was divided crosswise into seven sections. Collected from each section were 60 randomly obtained 50-cc soil samples at a depth of 6 to 20 cm from the top of the bed. These samples were pooled, and nematodes were extracted from 300-cc composite sample by the combination of sieving and Baermann funnel techniques and quantified with a dissecting microscope. To account for nematode eggs, which could not be isolated from the soil by the extraction procedure used, the sieved soil samples were further assayed

on the reniform nematode-susceptible mung bean (MG 50-10A) by a procedure described by Castillo et al. (7).

Nematode population densities were also determined at the last harvest, 11 weeks after planting. Sampling for nematodes was done by collecting about 100-cc soil samples containing feeder roots from each of five alternate hills along the plant row of each bed. The first and last hills of each bed were not sampled. The samples were pooled, and a composite 300-cc soil sample and a 1-g root sample were obtained. Soil samples were processed and examined for nematodes as in determination of initial densities except that no bioassay was made of the sieved soil. Root samples were stained in acid fuchsinlactophenol and cleared in lactophenol (12). The presence and number of nematodes in or on the roots were determined by crushing a few root pieces at a time between two glass slides and examining them under a dissecting microscope. Data were also collected on numbers of egg masses/g of roots and eggs/egg mass.

Plants from the hills of each bed sampled for nematodes were carefully uprooted with a trowel, and the roots were washed and examined for disease symptoms with a magnifying glass (3X). The only symptom observed was necrotic discoloration, which was rated on a severity scale of 1 to 5 based on relative percentages of necrotic portions of root systems. Browning of the roots was interpreted as indication of root necrosis.

Data collected at the end of the experiment were analyzed statistically, and differences were determined among means of the varieties within each criterion. For objective comparison of the resistance of the varieties, indices were computed for necrosis, nematode recoveries (from roots, from soil, from both soil and roots), numbers of egg masses observed in roots, and eggs/egg mass. That was done by assigning arbitrary but standardized values to the statistical means of the varieties within each parameter and considering the average of the indices as the resistance rating of the variety concerned. On the basis of resistance ratings, four host categories were assigned to the varieties: resistant, moderately resistant, moderately susceptible, and susceptible.

To select the parameter that would be

Reniform Nematode/Soybeans: Lim, Castillo 277

'TABLE I. Root necrosis rating of soybean varieties grown in field infested with Rotylenchulus reniformis and nematode recovery and reproduction 11 weeks after seeding.^a

ofNecrosisIg300 ccmasses (egg)/egg/eggTK 5UPLBCA12 a8.3 a10.5 a18.6 a0.3 a240.aStrain 99BPI1.3 a-b12.7 a-b37.3 a-d18.6 a0.3 a29.0 aStrain 12BPI1.5 a-c14.0 a-c18.0 a-b32.0 a-b1.0 a-b30.7 aP1200451UPLBCA1.5 a-c13.0 a-b28.0 a-c42.0 a-c1.0 a-b33.6 a+GC 40078-40AVRDC1.5 a-c11.3 a-b22.3 a-f65.6 a-g2.3 a-d39.6 a+GCSY 12BPI1.5 a-c11.3 a-b22.3 a-f65.6 a-g2.3 a-d39.6 a+GCSY 6BPI1.6 b-c20.9 a-f68.0 a-g2.3 a-d42.3 a+GC 40142-0.66AVRDC1.5 a-c11.3 a-b52.3 a-f63.6 a-g2.3 a-d42.3 a+EGSY 78UPLBCA1.6 b-c20.9 a-f18.0 b-i20.a c-d45.2 a-gEGSY 78DPLBCA2.0 d-c22.0 a-g98.7 c-i1.7 a-c43.2 b-iGC 40142-0.2AVRDC2.5 c-g22.0 a-g198.7 b-i1.7 a-c62.0 e-gGC 40142-0.15AVRDC2.5 c-g23.0 a-g198.7 c-i1.7 a-c62.0 e-gGC 40142-0.23AVRDC2.5 c-g23.0 a-g198.7 c-i1.7 a-c62.0 e-gGC 40142-0.15AVRDC2.5 c-g23.0 a-g198.7 c-i1.7 a-c62.0 e-gGC 40142-0.15AVRDC2.5 c-g23.0 a-g193.8 c-g53.8 d-g <td< th=""><th></th><th>Source</th><th></th><th>nemato</th><th>Number of odes recovere</th><th>Number of egg</th><th>Number of</th></td<>		Source		nemato	Number of odes recovere	Number of egg	Number of	
Variety secds rating ^b roots soil Total of roots mass TK 5 UPLBCA 1.2 a 8.3 a 10.3 a 18.6 a 0.3 a 29.0 a Strain 12 BP1 1.5 a-b 127 a-b 37.3 a-d 50.0 a-d 0.3 a 29.0 a CG 40078-40 AVRDC 1.5 a-c 14.0 a-c 28.0 a-c 42.0 a-c 1.0 a-b 35.5 a-d CG 40172-066 AVRDC 1.5 a-c 14.0 a-c 41.7 a-c 55.7 a-c 2.3 a-d 42.3 a-c 16.8 a-b 2.3 a-d 42.3 a-c 16.8 a-a 2.5 a-c 42.5 a-c 12.5 a-c 14.0 a-c 41.7 a-c 55.6 a-d 2.3 a-d 42.3 a-d 16.5 a-a 2.5 a-d 42.5 a-d 12.5 a-c 14.5 a-b 12.5 a-c 14.5 a-b 12.5 a-c 14.5 a-b 14.5 a-c 14.		of	Necrosis	1 g	300 cc		masses/g	eggs/egg
	Variety	seeds	rating ^b		soil	Total		masse
Strain 12BPI1.5 a-c140 a-c180 a-b20.2 a-b1.0 a-b30.7 a-bP1200451UPLBCA1.5 a-c130 a-b20.0 a-b330 a-b1.7 a-c39.6 a-cEGSY 12BPI1.5 a-c140 a-c41.7 a-c55.7 a-c2.3 a-d63.8 a-lEGSY 12BPI1.5 a-c140 a-c41.7 a-c55.7 a-c2.3 a-d63.8 a-lEGSY 6BPI1.5 b-c20.0 a-f68.0 a-g88.0 a-h2.0 a-c45.2 a-gEGSY 6BPI1.6 b-c19.3 a-c39.0 a-h20.0 a-f48.0 a-h2.0 a-c45.2 a-gRossUPLBCA1.8 b-c19.3 a-g39.3 a-g39.3 a-j17.3 a-c49.2 b-JGC 40142-0.12AVRDC1.7 c-d31.0 a-k72.7 a-g10.3 7 a-j30.0 a-c55.3 d-JTainung 4 x RossUPLBCA2.0 d-e20.0 a-f88.0 b-j108.0 b-k67.5 h-i42.9 a-JGC 40142-0.12AVRDC2.5 f-g23.0 a-g98.7 c-l12.1 7 a-c62.9 a-J3.6 f48.1 b-JSankuoUPLBCA2.5 f-g23.0 a-g19.3 c-m13.2 b-g3.3 a-f48.1 b-JTainung 4 x	TK 5	UPLBCA		8.3 a	10.3 a	18.6 a	0.3 a	34.0 a-b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Strain 99				37.3 a-d		0.3 a	29.0 a
$\begin{array}{c} CC 40078-40 & AVRDC & 1.5 acc & 13.0 a-b & 20.0 a-b & 35.0 a-b & 1.7 a-c & 30.5 a-c \\ CGSY 12 & BPI & 1.5 a-c & 14.0 a-c & 41.7 acc & 55.7 acc & 2.3 a-d & 48.8 a-l \\ GC 40142-0.66 & AVRDC & 1.5 a-c & 11.3 a-b & 52.5 a-f & 63.6 a-g & 2.3 a-d & 42.3 a-c \\ EGSY 6 & BPI & 1.6 b-c & 20.0 a-f & 68.0 a-g & 88.0 a-h & 2.0 a-c & 45.2 a-g \\ CSY 72 & UPLBCA & 1.8 c-d & 21.7 a-g & 71.7 a-h & 103.4 a-j & 1.7 a-c & 49.2 b-l \\ K.E. 32 & UPLBCA & 1.8 c-d & 21.7 a-g & 71.7 a-h & 103.4 a-j & 1.7 a-c & 49.2 b-l \\ GC 40176-1-12 & AVRDC & 1.7 c-d & 31.0 a-k & 72.7 a-g & 105.7 a-j & 30.a-c & 45.3 a-j \\ GC 40176-1-12 & AVRDC & 1.7 c-d & 31.0 a-k & 72.7 a-g & 105.7 a-j & 30.a-c & 45.3 a-j \\ Tainung 4 x Ross & UPLBCA & 2.0 d-c & 21.0 a-g & 87.0 c-l & 12.1 r-cm & 1.7 a-c & 62.0 g-l \\ GC 40142-0.58 & AVRDC & 2.5 f-g & 23.0 a-g & 95.7 c-l & 121.7 c-m & 1.7 a-c & 62.0 g-l \\ GC 40142-0.58 & AVRDC & 2.5 f-g & 23.0 a-g & 95.7 c-l & 121.7 c-m & 1.7 a-c & 62.0 g-l \\ GC 40142-0.58 & AVRDC & 2.5 f-g & 23.0 a-g & 95.7 c-l & 121.7 c-m & 1.7 a-c & 62.0 g-l \\ Tainung 4 x & & & & & & & & & & & & & & & & & &$	Strain 12			14.0 a-c	18.0 a-b	32.0 a-b	1.0 a-b	30.7 a
$ \begin{array}{c} \mathbf{FCSY} 12 & \mathbf{BPI} & \mathbf{1.5 acc} & \mathbf{14.0 acc} & \mathbf{41.7 acc} & \mathbf{55.7 acc} & \mathbf{2.3 acl} & \mathbf{656. acg} \\ \mathbf{GC} \ 40142.0-66 & \mathbf{AVRDC} & \mathbf{15.5 acc} & \mathbf{11.3 acb} & \mathbf{52.3 scl} & \mathbf{656. acg} & \mathbf{2.3 acl} & \mathbf{42.3 acc} \\ \mathbf{EGSY} \ 6 & \mathbf{BPI} & \mathbf{1.6 bcc} & \mathbf{20.0 acf} & \mathbf{68.0 acg} & \mathbf{88.0 ach} & \mathbf{20.acc} & \mathbf{45.2 acl} \\ \mathbf{UPL.SY} \ 2 & \mathbf{UPLBCA} & \mathbf{1.6 bcc} & \mathbf{19.3 acc} & \mathbf{39.3 acd} & \mathbf{58.6 acl} & \mathbf{2.7 acc} & \mathbf{495. bc} \\ \mathbf{Acc} & \mathbf{21.7 acg} & \mathbf{70.0 acg} & \mathbf{91.7 aci} & \mathbf{4.3 ach} & \mathbf{38.3 acl} \\ \mathbf{Ross} & \mathbf{UPLBCA} & \mathbf{20.dcc} & \mathbf{21.7 acg} & \mathbf{10.0 acg} & \mathbf{91.7 aci} & \mathbf{4.3 ach} & \mathbf{38.3 acl} \\ \mathbf{GC} \ 40176.1-12 & \mathbf{AVRDC} & \mathbf{1.7 ccd} & \mathbf{31.0 ack} & \mathbf{72.7 acg} & \mathbf{103.7 acj} & \mathbf{30.acc} & \mathbf{45.3 acj} \\ \mathbf{GC} \ 40176.1-12 & \mathbf{AVRDC} & \mathbf{2.5 fcg} & \mathbf{23.0 acg} & \mathbf{98.7 ccl} & \mathbf{121.7 ccm} & \mathbf{1.7 acc} & \mathbf{53.4 cc} \\ \mathbf{GC} \ 40142.0-15 & \mathbf{AVRDC} & \mathbf{2.5 fcg} & \mathbf{23.0 acg} & \mathbf{98.7 ccl} & \mathbf{121.7 ccm} & \mathbf{1.7 acc} & \mathbf{53.4 cc} \\ \mathbf{GC} \ 40142.0-32 & \mathbf{AVRDC} & \mathbf{2.5 fcg} & \mathbf{23.0 acg} & \mathbf{101.3 ccm} & \mathbf{124.3 ccn} & \mathbf{30.0 acc} & \mathbf{551.1 cc} \\ \mathbf{GCS} \ \mathbf{X124} \ \mathbf{PI} \mathbf{UPLBCA} & \mathbf{2.7 gch} & \mathbf{29.3 acl} & \mathbf{101.3 ccm} & \mathbf{124.3 ccn} & \mathbf{30.0 acc} & \mathbf{551.6 cc} \\ \mathbf{GCS} \ \mathbf{X124} \ \mathbf{PIN} & \mathbf{UPLBCA} & \mathbf{2.7 gch} & \mathbf{29.7 acl} & \mathbf{133.0 dc} & \mathbf{33.acl} & \mathbf{62.0 cgl} \\ \mathbf{GC} \ 40142.0-15 & \mathbf{AVRDC} & \mathbf{2.7 gch} & \mathbf{29.3 acl} & \mathbf{101.3 ccm} & \mathbf{124.3 ccn} & \mathbf{30.0 acc} & \mathbf{551.6 cc} \\ \mathbf{CSS} \ \mathbf{X15} \ \mathbf{BPI} & \mathbf{3.0 bcl} & \mathbf{33.0 ack} & \mathbf{98.0 ccl} & \mathbf{131.0 dc} & \mathbf{4.3 ach} & \mathbf{57.6 cc} \\ \mathbf{GCS} \ \mathbf{X15} \ \mathbf{BPI} & \mathbf{3.0 bcl} & \mathbf{33.0 ack} & \mathbf{102.5 cm} & \mathbf{155.3 bc} & \mathbf{3.5 acc} & \mathbf{551.6 cc} \\ \mathbf{GC} \ 40142.0-150 & \mathbf{AVRDC} & \mathbf{2.7 gch} & \mathbf{350.0 ack} & \mathbf{120.7 bc} & \mathbf{166.7 bc} & \mathbf{3.3 acf} & \mathbf{62.0 cgl} \\ \mathbf{0gdcn} & \mathbf{UPLBCA} & \mathbf{3.0 bcl} & \mathbf{33.0 ack} & \mathbf{102.5 cm} & \mathbf{155.3 bc} & \mathbf{3.5 acc} & \mathbf{551.6 cc} \\ \mathbf{51.5 \ \mathbf{M11} \ \mathbf{37.5 cc} & \mathbf{350.5 cc} & \mathbf{155.5 bc} & \mathbf{35.7 acg} & \mathbf{557.5 cc} \\ \mathbf{GC} \ 40042.0-150 & \mathbf{AVRDC} & \mathbf{3.0 bcl} & \mathbf{33.0 ack} & \mathbf{122.7 bc} & \mathbf{167.7 bc} & 33$	PI 200451							34.5 a-b
$ \begin{array}{cccc} C_0 0 1 20-66 & AVRDC & 1.5 ac & 11.3 acb & 52.3 acf & 65.6 acg & 2.3 acf & 42.5 acf \\ EGSY 6 & BPI & 1.6 bc & 200 acf & 680 acg & 88.0 ach & 2.0 ac & 45.2 acf \\ UPL SY 2 & UPLBCA & 1.6 bc & 19.3 ac & 39.3 acf & 56.6 acf & 2.7 acc & 49.5 bc \\ K.E. 32 & UPLBCA & 1.8 ccf & 21.7 acg & 71.0 acg & 91.7 aci & 4.3 ach & 38.3 acf \\ Ross & UPLBCA & 2.0 dc & 21.7 acg & 71.7 ach & 103.4 acj & 1.7 acc & 49.2 bd \\ GC 401761-12 & AVRDC & 1.7 ccf & 31.0 ack & 72.7 acg & 103.7 acj & 30.ac & 45.3 acf \\ Taimung 4 x Ross & UPLBCA & 2.0 dc & 20.0 acf & 88.0 bc j & 108.0 bck & 6.7 bci & 42.9 acf \\ GC 40142.0-158 & AVRDC & 2.5 fcg & 24.7 ach & 89.3 bc j & 114.0 bcl & 1.7 acc & 55.4 cd \\ GC 40142.0-158 & AVRDC & 2.5 fcg & 24.7 ach & 89.3 bc j & 114.0 bcl & 1.7 acc & 56.9 cd \\ Taimung 4 x & UPLBCA & 2.7 gch & 29.3 acf & 121.7 ccm & 1.7 acc & 55.9 cd \\ Taimung 4 x & UPLBCA & 2.7 gch & 29.3 acf & 112.5 cm & 124.3 ccn & 30.acc & 55.1 cd \\ CES XVI:24 PIN & UPLBCA & 2.7 gch & 29.3 acf & 112.5 cn & 124.3 ccn & 30.acc & 55.1 cd \\ CES XVI:24 PIN & UPLBCA & 2.7 gch & 29.3 acf & 112.5 0 fco & 155.7 hc & 30.acc & 54.5 cd \\ GC 40142.0-159 & AVRDC & 2.7 gch & 32.7 ack & 108.0 ccl & 131.0 dc & 4.3 ach & 57.6 cd \\ GC 40142.0-159 & AVRDC & 2.7 gch & 32.7 ack & 108.0 ccl & 131.0 dc & 4.3 ach & 57.6 cd \\ GC 40142.0-159 & AVRDC & 2.7 gch & 32.7 ack & 108.0 ccl & 13.0 dc & 4.3 ach & 57.6 cd \\ GC 40142.0-159 & AVRDC & 2.7 gch & 32.7 ack & 108.0 ccl & 13.0 dc & 3.3 acf & 62.0 gcl \\ Ogden & UPLBCA & 3.0 hci & 35.0 ack & 122.5 fco & 155.0 hc & 6.7 bi & 54.8 cd \\ GC 40142.0-159 & AVRDC & 3.0 hci & 35.0 ack & 122.5 fco & 155.0 hc & 6.7 bi & 54.8 cd \\ GC 40142.0-159 & AVRDC & 3.0 hci & 35.0 ack & 122.7 fco & 160.0 hc & 3.3 acf & 62.0 gcl \\ Ogden & UPLBCA & 3.0 hci & 34.3 ack & 125.7 fco & 160.0 hc & 3.3 acf & 62.0 gcl \\ GC 40142.0-159 & AVRDC & 3.0 hci & 34.3 ack & 125.7 fco & 160.0 hc & 5.3 aci & 62.5 gcl \\ Stain & WDLBCA & 3.0 hci & 34.3 ack & 135.7 gco & 166.0 hc & 5.3 aci & 62.5 gcl \\ Stain & WDLBCA & 3.0 hci & 34.3 ack & 135.7 gco & 166.0 hc & 5$	GC 40078-40							39.6 a-d
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								36.8 a-b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
K.E. 32UPLBCA1.8 cd217 ag70.0 ag91.7 ai4.3 a.h98.3 a.cRossUPLBCA2.0 dec21.7 ag81.7 a.h103.4 a.j1.7 a.c49.2 b.jGC 40176-1-12AVRDC1.7 c.d31.0 a.k72.7 ag103.7 a.j30.a ce45.3 agEGSY 78BPI2.0 dec18.7 a.d86.8 a.j105.0 a.j2.7 a.e55.3 d.jCES XVI-23 PUPLBCA2.5 f.g23.0 ag98.7 c.l121.7 cm1.7 a.c62.0 d.jGC 40142-0-158AVRDC2.3 c.f19.3 ac120.0 c.n199.8 c.p3.3 a.f48.1 b.jSankuoUPLBCA2.7 g.h23.0 a.g101.3 c.m124.3 c.n30.a ce55.1 d.jCilbertUPLBCA2.7 g.h23.0 a.g101.3 c.m124.3 c.n30.a ce55.1 d.jCES XVI-24 PINUPLBCA2.7 g.h33.0 a.k98.0 c.l131.0 d.o4.3 a.h57.6 c.gOgdenUPLBCA2.7 g.h33.0 a.k108.0 c.n140.7 c.q4.0 a.h57.8 c.gOgdenUPLBCA2.7 g.h33.0 a.k108.0 c.n140.7 c.q4.0 a.h57.8 c.gOgdenUPLBCA2.7 g.h33.0 a.k102.9 c.n155.0 h.s6.7 b.i54.6 c.jGlabelUPLBCA2.7 g.h33.0 a.k122.9 f.o165.0 h.s6.7 b.i54.6 c.jGodulaUPLBCA3.0 h.i35.0 a.k122.9 f.o155.0 h.s6.7 b.i54.6 c.jGlabelUPLBCA3.0 h.i35.0								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					• • • • • • • • • • • • • • • • • • • •			45.3 a-g
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0					
SankuoUPLBCA $2.5 \ F_g$ $23.0 \ a.g$ $101.3 \ c.m$ $124.3 \ c.n$ $3.0 \ a.e$ $58.9 \ e.4$ Tainung 4 xGilbertUPLBCA $2.7 \ g.h$ $29.3 \ a.j$ $119.7 \ e.n$ $149.0 \ g.r$ $3.0 \ a.e$ $55.1 \ d. Gilbert$ CES XVI-24 PINUPLBCA $2.7 \ g.h$ $29.3 \ a.j$ $119.7 \ e.n$ $149.0 \ g.r$ $3.0 \ a.e$ $55.1 \ d. Gilbert$ CES XVI-24 PINUPLBCA $2.7 \ g.h$ $33.0 \ a.k$ $80.0 \ c.h$ $131.0 \ d.o$ $4.3 \ a.h$ $57.6 \ e.l$ CG 40142-0.159MVRDC $2.7 \ g.h$ $32.7 \ a.k$ $108.0 \ d.n$ $110.7 \ e.q$ $4.0 \ a.h$ $57.3 \ e.l$ SolarUPLBCA $3.0 \ h.i$ $35.0 \ a.k$ $120.0 \ e.n$ $155.0 \ h.s$ $6.7 \ b.i$ $54.8 \ e.l$ WoodworthUPLBCA $3.0 \ h.i$ $35.0 \ a.k$ $122.3 \ f.o$ $155.3 \ h.s$ $3.7 \ a.g$ $56.9 \ e.l$ CobbUPLBCA $3.0 \ h.i$ $35.0 \ a.k$ $122.3 \ f.o$ $155.0 \ h.s$ $6.7 \ a.g$ $51.6 \ e.l$ WilliamsUPLBCA $3.0 \ h.i$ $34.3 \ a.k$ $122.3 \ f.o$ $15.0 \ h.s$ $4.0 \ a.h$ $61.8 \ g.l$ WilliamsUPLBCA $3.0 \ h.i$ $34.3 \ a.k$ $138.7 \ g.o$ $122.0 \ h.s$ $4.0 \ a.h$ $62.5 \ g.l$ TaiwanBPI $3.1 \ i$ $37.0 \ a.m$ $123.0 \ f.o$ $15.0 \ h.s$ $5.3 \ a.i$ $62.1 \ g.l$ UPLBCA $3.5 \ j.l$ $4.0 \ a.h$ $134.3 \ a.k$ $133.7 \ g.o$ $180.0 \ h.i$ $62.3 \ g.l$ Taiwan <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
GliortUPLBCA 2.7 g-h 29.3 a-j 119.7 e-n 149.0 g-r 3.0 a-c 55.1 d-CES XVI-24 PINUPLBCA 2.7 g-h 28.7 a-i 125.0 f-o 153.7 h-s 3.0 a-c 54.5 c-jK 475BPI 3.2 i-j 33.0 a-k 192.5 c-m 153.3 d-o 3.3 a-f 62.0 g-jOgdenUPLBCA 2.7 g-h 39.0 b-n 127.0 f-o 166.0 h-s 3.3 a-f 62.0 g-jOgdenUPLBCA 3.0 h-i 35.0 a-k 120.0 c-n 165.0 h-s 6.7 b-i 54.8 c-jMultivar 80UPLBCA 3.0 h-i 35.0 a-k 122.0 c-n 155.0 h-s 6.7 b-i 54.8 c-jWoodworthUPLBCA 3.0 h-i 35.0 a-k 122.0 r-o 164.7 h-s 4.3 a-h 56.9 c-jCobbUPLBCA 3.0 h-i 34.3 a-k 128.7 f-o 160.0 h-s 4.0 a-h 61.8 g-jWilliamsUPLBCA 3.0 h-i 34.3 a-k 138.7 g-o 172.6 h-t 5.0 a-i 59.6 f-kTaiwanBPI 3.1 i 37.0 a-m 116.0 d-n 153.0 j-s 8.3 e-i 61.2 g-jTaiwanBPI 3.1 i 37.0 a-m 116.0 d-n 153.0 j-s 8.3 e-i 61.2 g-jTaiwanBPI 3.1 i 37.0 a-m 160.0 d-n 153.0 j-s 8.3 e-i 61.2 g-jTaiwanBPI 3.1 i 37.0 a-m 160.0 d-n 153.0 j-s 8.3 e-i 61.2 g-jTaiwanBPI 3.1 i 37.0 a		OFLDCA	2.5 I-g	25.0 a-g	101.5 C-m	124.5 C-II	э.0 а-е	э8.9 е-к
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UPI BCA	97 m h	90 8 2 ;	11070 0	140.0 cm	8000	55 T A :
K 475BPI 3.0 h-i 33.0 a-k 98.0 c-l 131.0 d-o 4.3 a-h 57.5 c-l CGSV 15BPI 3.2 i-j 33.0 a-k 102.3 c-m 135.3 d-o 3.3 a-f 62.0 g-l GC 40142-0-159AVRDC 2.7 g-h 32.7 a-k 108.0 d-n 140.7 c-q 40.3 a-h 57.3 c-l S13UPLBCA 3.0 h-i 35.0 a-k 120.0 c-n 155.0 h-s 6.7 b-i 54.8 c-l S14UPLBCA 3.0 h-i 35.0 a-k 129.7 f-o 164.7 h-s 4.3 a-h 56.7 c-l WoodworthUPLBCA 3.0 h-i 35.0 a-k 129.7 f-o 164.7 h-s 4.3 a-h 56.9 c-l CobbUPLBCA 3.0 h-i 34.3 a-k 125.7 f-o 160.0 h-s 40.3 a-h 62.5 g-l WilliamsUPLBCA 3.0 h-i 34.3 a-k 123.0 f-o 161.7 h-s 5.3 a-i 62.7 g-l TawanBPI 3.1 i 37.0 a-m 116.0 d-n 153.0 j-s 8.3 e-i 61.2 g-l UPLBCA 3.5 i-l 40.3 b-n 123.0 f-o 161.7 h-s 5.3 a-i 62.7 g-l UPLBCA 3.0 i-l 37.0 a-m 120.0 f-n 153.0 j-s 8.3 e-i 61.2 g-l UPLBCA 3.5 i-l 40.3 b-n 123.0 f-o 161.7 h-s 53.3 a-i </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
OgdenUPLBCA 2.7 g-h 32.7 a-k 108.0 d-n 140.7 e-q 4.0 a-h 57.3 e-lGC 40142-0-159AVRDC 2.7 g-h 39.0 b-n 127.0 f-o 166.0 h-s 3.3 a-f 53.5 c-jS-13UPLBCA 3.0 h-i 35.0 a-k 120.0 e-n 155.5 h-s $57.a$ e-g 56.7 e-lWoodworthUPLBCA 3.0 h-i 35.0 a-k 122.0 e-n 164.7 h-s 4.3 a-h 56.7 e-lWoodworthUPLBCA 3.0 h-i 35.0 a-k 129.7 f-o 164.7 h-s 4.3 a-h 56.7 e-lClark 63UPLBCA 3.5 j-1 48.0 e-n 119.5 e-n 167.5 h-s 3.7 a-g 54.8 c-jCobbUPLBCA 3.1 i 34.3 a-k 125.7 f-o 160.0 h-s $40.a$ -h 61.8 g-lWilliamsUPLBCA 3.0 h-i 34.3 a-k 138.7 g-o 172.6 h-t $50.a$ a-i 62.5 g-lTaiwanBPI 3.1 i 37.0 a-m 116.0 d-n 153.0 j-s 8.3 e-i 61.2 g-lUPSL 85UPLBCA 3.5 j-1 40.3 b-n 123.0 f-o 161.7 h-s 53.3 e-i 62.5 g-lQC 40081-0-27AVRDC 3.1 i 36.3 a-l 134.7 g-o 171.0 h-s 80.4 el.2 g-g-lVLCS 16BPI 3.5 j-1 43.5 c-n 163.0 j-p 202.3 l-v $53.a$ a-i 59.9 f-kVLCS 16BPI 3.5 j-1 43.5 c-n 165.0 j-p 212.7 m-v $50.a$ a-i 56.8 e-lGC 40142-0-74AVRDC 3.6								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
S-13UPLBCA3.0 h-i35.0 a-k120.0 c-n155.0 h-s6.7 b-i54.8 c;Multivar 80UPLBCA3.0 h-i33.0 a-k122.3 f-o155.3 h-s3.7 a-g56.7 e-iClark 63UPLBCA3.0 h-i35.0 a-k122.3 f-o164.7 h-s4.3 a-h56.9 e-iClark 63UPLBCA3.1 i34.3 a-k125.7 f-o164.7 h-s4.3 a-h61.8 g-jWilliamsUPLBCA3.0 h-i34.3 a-k125.7 f-o166.0 h-s4.0 a-h61.8 g-jWilliamsUPLBCA3.0 h-i34.3 a-k133.7 g-o168.0 h-s5.3 a-i62.1 g-jStrain 78BPI3.1 i37.0 a-m152.0 h-p189.0 j-s8.3 e-i61.2 g-jTaiwanBPI3.1 i37.0 a-m152.0 h-p189.0 j-u5.0 a-i62.1 g-jGC 40081-0-27AVRDC3.1 i36.3 a-l134.7 g-o171.0 h-s8.0 d-i62.3 g-jVLCS 16BPI3.3 i-k39.0 b-n163.3 i-p202.3 l-v5.3 a-i59.9 f-kVLCS 12-ABPI3.3 i-k46.3 d-n161.0 h-p207.3 m-v4.0 a-h62.7 g-jBPI 5el. 1BPI3.5 j-l49.3 f-o163.0 i-p21.v5.0 a-i56.8 e-jGC 40142-0-87AVRDC3.6 k-l46.3 d-n161.0 h-p207.3 m-v4.0 a-h62.7 g-jBPI 5el. 1BPI3.5 j-l49.3 f-o175.0 k-p220.7 o-v6.7 b-i58.3 e-jGC 40142-0-87AVRDC3.5 j-l<			27 g-h					
Multivar 80UPLBCA 3.0 h-i 33.0 a-k 122.3 f-o 155.3 h-s 3.7 a-g 56.7 e-l WoodworthUPLBCA 3.0 h-i 35.0 a-k 129.7 f-o 164.7 h-s 4.3 a-h 56.9 e-l Clark 63UPLBCA 3.5 j-l 48.0 e-n 119.5 e-n 167.5 h-s 3.7 a-g 54.8 c-j CobbUPLBCA 3.1 i 34.3 a-k 125.7 f-o 160.0 h-s 4.0 a-h 61.8 g-j WilliamsUPLBCA 3.0 h-i 34.3 a-k 133.7 g-o 168.0 h-s 5.3 a-i 62.5 g-j Strain 78BPI 3.2 i-j 38.7 h-n 123.0 f-o 161.7 h-s 5.3 a-i 62.2 g-j UPSL 85UPLBCA 3.3 i-k 37.0 a-m 152.0 h-p 189.0 j-u 5.0 a-i 57.6 e-l I 400490UPLBCA 3.5 j-l 40.3 b-n 140.3 g-o 170.0 h-s 8.0 d-i 62.3 g-l PI 400490UPLBCA 3.5 j-l 40.3 b-n 160.3 i-p 202.3 l-v 5.3 a-i 59.9 f-k VLCS 12-ABPI 3.3 i-k 39.0 b-n 163.3 i-p 207.3 m.v 4.0 a-h 62.7 g-l BPI 8el. 1BPI 3.5 j-l 43.7 c-n 169.0 j-p 212.7 m-v 5.0 a-i 61.5 g-l G 2 40142-0-87AVRDC 3.6 k-l $46.3 $								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
WilliamsUPLBCA $3.0 h-i$ $34.3 a-k$ $138.3 g-o$ $172.6 h-t$ $5.0 a-i$ $59.6 f-k$ T-8UPLBCA $3.0 h-i$ $34.3 a-k$ $138.7 g-o$ $168.0 h-s$ $5.3 a-i$ $62.1 g-l$ Strain 78BPI $3.2 i-j$ $38.7 b-n$ $123.0 f-o$ $161.7 h-s$ $5.3 a-i$ $62.1 g-l$ TaiwanBPI $3.1 i$ $37.0 a-m$ $116.0 d-n$ $153.0 j-s$ $8.3 e-i$ $61.2 g-l$ UPSL 85UPLBCA $3.3 i-k$ $37.0 a-m$ $152.0 h-p$ $189.0 j-u$ $5.0 a-i$ $57.6 e-l$ QC 40081-0-27AVRDC $3.1 i$ $36.3 a-l$ $134.7 g-o$ $171.0 h-s$ $8.0 d-i$ $62.3 g-l$ PI 400490UPLBCA $3.5 j-l$ $40.3 b-n$ $140.3 g-o$ $180.6 i-t$ $60.a a-i$ $60.4 g-l$ VLCS 16BPI $3.3 i-k$ $46.3 d-n$ $161.0 h-p$ $207.3 m-v$ $4.0 a-h$ $62.7 g-l$ BPI Sel. 1BPI $3.5 j-l$ $43.7 c-n$ $169.0 j-p$ $212.7 m-v$ $5.0 a-i$ $65.8 e-l$ GC 40142-0-87AVRDC $3.6 k-l$ $46.3 d-n$ $155.3 h-p$ $20.6 l-v$ $6.0 a-i$ $61.5 g-l$ Tainung 3UPLBCA $3.5 j-l$ $49.3 f-o$ $175.0 k-p$ $220.7 o-v$ $6.7 h-i$ $58.3 e-l$ GC 40142-0-74AVRDC $4.0 m-n$ $58.3 j-s$ $139.7 g-o$ $198.0 l-u$ $3.7 a-g$ $57.9 e-l$ VLCS 12-BBPI $3.6 k-l$ $46.3 d-n$ $187.7 m-p$ $229.0 p-v$ $4.0 a+h$ $62.8 g-l$ Tainung 4UPLBCA								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		UPLBCA						
Strain 78BPI $3.2 i-j$ $38.7 b-n$ $123.0 f-o$ $161.7 h-s$ $5.3 a-i$ $62.5 g-J$ TaiwanBPI $3.1 i$ $37.0 a-m$ $116.0 d-n$ $153.0 j-s$ $8.3 e-i$ $61.2 g-J$ UPSL 85UPLBCA $3.3 i-k$ $37.0 a-m$ $116.0 d-n$ $153.0 j-s$ $8.3 e-i$ $61.2 g-J$ UPSL 85UPLBCA $3.3 i-k$ $37.0 a-m$ $116.0 d-n$ $153.0 j-s$ $8.0 a-i$ $57.6 e-J$ CG 40081-0-27AVRDC $3.1 i$ $36.3 a-I$ $134.7 g-o$ $17.10 h-s$ $8.0 d-i$ $62.8 g-J$ PI 400490UPLBCA $3.5 j-I$ $40.3 b-n$ $140.3 g-o$ $180.6 i-t$ $60.a-i$ $60.4 g-J$ VLCS 16BPI $3.3 i-k$ $39.0 b-n$ $163.3 i-p$ $202.3 1-v$ $5.3 a-i$ $59.9 f-k$ VLCS 12-ABPI $3.5 i-I$ $43.7 c-n$ $169.0 j-p$ $212.7 m-v$ $5.0 a-i$ $66.8 e-J$ GC 40142-0-87AVRDC $3.6 k-I$ $46.3 d-n$ $155.3 h-p$ $201.6 1-v$ $60.a -i$ $61.5 g-J$ Tainung 3UPLBCA $3.5 j-I$ $49.3 f-o$ $165.0 i-p$ $214.3 n-v$ $4.7 a-i$ $58.3 e-J$ PI 371609UPLBCA $3.5 j-I$ $49.3 f-o$ $175.0 k-p$ $220.7 o-v$ $6.7 b-i$ $58.1 e-J$ GC 40142-0-74AVRDC $4.0 m-n$ $58.3 j-s$ $197.7 p 298.0 p-v$ $4.0 a-h$ $62.8 g-J$ Tainung 4UPLBCA $3.5 j-I$ $49.3 f-o$ $178.7 1-p$ $228.0 p-v$ $5.7 a-i$ $60.4 g-J$ CES XVI-38 P <t< td=""><td></td><td>UPLBCA</td><td>3.0 h-i</td><td>34.3 a-k</td><td></td><td></td><td></td><td></td></t<>		UPLBCA	3.0 h-i	34.3 a-k				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Strain 78	BPI	3.2 i-j	38.7 b-n				
UPSL 85UPLBCA 3.3 i-k 37.0 a-m 152.0 h-p 189.0 j-u 5.0 a-i 57.6 e-i GC 40081-0-27AVRDC 3.1 i 36.3 a-l 134.7 g-o 171.0 h-s 8.0 d-i 62.3 g-l PI 400490UPLBCA 3.5 j-l 40.3 b-n 140.3 g-o 180.6 i-t 6.0 a-i 61.23 g-l VLCS 16BPI 3.3 i-k 39.0 b-n 163.3 i-p 202.3 l-v 5.3 a-i 59.9 f-k VLCS 12-ABPI 3.3 i-k 46.3 d-n 161.0 h-p 207.3 m-v 4.0 a-h 62.7 g-l BPI Sel. 1BPI 3.5 j-l 43.7 c-n 169.0 j-p 212.7 m-v 5.0 a-i 56.8 e-l GC 40142-0-87AVRDC 3.6 k-l 46.3 d-n 155.3 h-p 201.6 l-v 6.0 a-i 61.5 g-l Tainung 3UPLBCA 3.5 j-l 49.3 f-o 175.0 k-p 220.7 o-v 6.7 b-i 58.3 e-l PI 371609UPLBCA 3.5 j-l 49.3 f-o 178.7 l-p 228.0 p-v 5.7 a-i 60.4 g-l CES XVI-38 PUPLBCA 3.5 j-l 49.3 f-o 178.7 l-p 228.0 p-v 5.7 a-i 60.4 g-l CES XVI-38 PUPLBCA 3.5 j-l 44.7 d-n 167.3 j-p 212.0 m-v 10.3 i 54.3 e-l GC 40085-2-10AVRDC 4.1 m <td>Taiwan</td> <td>BPI</td> <td></td> <td>37.0 a-m</td> <td>116.0 d-n</td> <td></td> <td></td> <td>61.2 g-k</td>	Taiwan	BPI		37.0 a-m	116.0 d-n			61.2 g-k
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UPSL 85	UPLBCA	3.3 i-k	37.0 a-m	152.0 h-p		5.0 a-i	57.6 e-k
PI 400490UPLBCA 3.5 j-1 40.3 b-n 140.3 g-o 180.6 i-t 6.0 a-i 60.4 g-I VLCS 16BPI 3.3 i-k 39.0 b-n 163.3 i-p 202.3 1-v 5.3 a-i 59.9 f-k VLCS 12-ABPI 3.3 i-k 46.3 d-n 161.0 h-p 207.3 m-v 4.0 a-h 62.7 g-I BPI Sel. 1BPI 3.5 j-1 43.7 c-n 169.0 j-p 212.7 m-v 5.0 a-i 56.8 e-I GC 40142-0-87AVRDC 3.6 k-l 46.3 d-n 155.3 h-p 201.6 1-v 6.0 a-i 61.5 g-I Tainung 3UPLBCA 3.5 j-1 49.3 f-o 165.0 i-p 214.3 n-v 4.7 a-i 58.3 e-I PI 371609UPLBCA 3.5 j-1 49.3 f-o 175.0 k-p 220.7 o-v 6.7 b-i 58.1 e-I GC 40142-0-74AVRDC 4.0 m-n 58.3 j-s 139.7 g-o 198.0 1-u 3.7 a-g 57.9 e-I VLCS 12-BBPI 3.6 k-1 46.3 d-n 187.7 m-p 229.0 p-v 4.0 a-h 62.8 g-I Tainung 4UPLBCA 3.5 j-1 49.3 f-o 178.7 1-p 228.0 p-v 5.7 a-i 60.4 g-I GC 40089-2-8AVRDC 4.1 n 53.7 h-q 136.7 g-o 190.4 j-u 8.3 e-i 61.6 g-I LincolnUPLBCA 3.5 j-1 44	GC 40081-0-27	AVRDC		36.3 a-l	134.7 g-o			62.3 g-k
VLCS 16BPI $3.3 i \cdot k$ $39.0 b \cdot n$ $163.3 i \cdot p$ $202.3 l \cdot v$ $5.3 a \cdot i$ $59.9 f \cdot k$ VLCS 12-ABPI $3.3 i \cdot k$ $46.3 d \cdot n$ $161.0 h \cdot p$ $207.3 m \cdot v$ $4.0 a \cdot h$ $62.7 g \cdot l$ BPI Sel. 1BPI $3.5 j \cdot l$ $43.7 c \cdot n$ $169.0 j \cdot p$ $212.7 m \cdot v$ $5.0 a \cdot i$ $56.8 e \cdot l$ GC 40142 \cdot 0.87AVRDC $3.6 k \cdot l$ $46.3 d \cdot n$ $155.3 h \cdot p$ $201.6 l \cdot v$ $6.0 a \cdot i$ $61.5 g \cdot l$ Tainung 3UPLBCA $3.5 j \cdot l$ $49.3 f \cdot o$ $165.0 i \cdot p$ $214.3 n \cdot v$ $4.7 a \cdot i$ $58.3 e \cdot l$ PI 371609UPLBCA $3.5 j \cdot l$ $45.7 d \cdot n$ $175.0 k \cdot p$ $220.7 o \cdot v$ $6.7 b \cdot i$ $58.1 e \cdot l$ GC 40142 \cdot 0.74AVRDC $4.0 m \cdot n$ $58.3 j \cdot s$ $139.7 g \cdot o$ $198.0 l \cdot u$ $3.7 a \cdot g$ $57.9 e \cdot l$ VLCS 12 \cdot BBPI $3.6 k \cdot l$ $46.3 d \cdot n$ $187.7 m \cdot p$ $229.0 p \cdot v$ $4.0 a \cdot h$ $62.8 g \cdot l$ Tainung 4UPLBCA $3.5 j \cdot l$ $49.3 f \cdot o$ $178.7 l \cdot p$ $228.0 p \cdot v$ $5.7 a \cdot i$ $60.4 g \cdot l$ GC 40089 \cdot 2 \cdot 8AVRDC $4.1 n$ $53.7 h \cdot q$ $136.7 g \cdot o$ $190.4 j \cdot u$ $8.3 e \cdot i$ $61.6 g \cdot l$ LincolnUPLBCA $4.5 o \cdot p$ $66.0 m \cdot u$ $129.7 f \cdot o$ $195.7 k \cdot u$ $4.3 a \cdot h$ $65.0 h \cdot l$ GC 40085 \cdot 2 \cdot 10AVRDC $4.0 m \cdot n$ $50.3 g \cdot p$ $129.7 f \cdot o$ $195.7 k \cdot u$ $4.3 a \cdot h$ $65.0 h \cdot l$ GES XVI	PI 400490	UPLBCA	3.5 j-1	40.3 b-n		180.6 i-t	6.0 a-i	60.4 g-k
BPI Sel. 1BPI 3.5 j-1 43.7 c-n 169.0 j-p 212.7 m-v 5.0 a-i 56.8 e-l GC 40142-0-87AVRDC 3.6 k-1 46.3 d-n 155.3 h-p 201.6 l-v 6.0 a-i 61.5 g-l Tainung 3UPLBCA 3.5 j-1 49.3 f-o 165.0 i-p 214.3 n-v 4.7 a-i 58.3 e-l PI 371609UPLBCA 3.5 j-1 45.7 d-n 175.0 k-p 220.7 o-v 6.7 b-i 58.1 e-l GC 40142-0-74AVRDC 4.0 m-n 58.3 j-s 139.7 g-o 198.0 l-u 3.7 a-g 57.9 e-l VLCS 12-BBPI 3.6 k-l 46.3 d-n 187.7 m-p 229.0 p-v 4.0 a-h 62.8 g-l Tainung 4UPLBCA 3.5 j-1 49.3 f-o 178.7 l-p 228.0 p-v 5.7 a-i 60.4 g-l CES XVI-38 PUPLBCA 3.5 j-1 44.7 d-n 167.3 j-p 212.0 m-v 10.3 i 54.3 e-l GC 40089-2-8AVRDC 4.1 n 53.7 h-q 136.7 g-o 190.4 j-u 8.3 e-i 61.6 g-l LincolnUPLBCA 4.5 o-p 66.0 m-u 129.7 f-o 180.0 i-t 9.7 h-i 67.6 i-k I 346BPI 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 6.0 a-i 57.7 e-l CES XVI-112 PINUPLBCA $3.7 1\text{ m}$ <td>VLCS 16</td> <td>BPI</td> <td></td> <td>39.0 b-n</td> <td>163.3 i-p</td> <td>202.3 l-v</td> <td>5.3 a-i</td> <td>59.9 f-k</td>	VLCS 16	BPI		39.0 b-n	163.3 i-p	202.3 l-v	5.3 a-i	59.9 f-k
BP1 Sel. 1BPI 3.5 j-l 43.7 c-n 169.0 j-p 212.7 m-v 5.0 a-i 56.8 e-f GC 40142-0-87AVRDC 3.6 k-l 46.3 d-n 155.3 h-p 201.6 l-v 6.0 a-i 61.5 g-f Tainung 3UPLBCA 3.5 j-l 49.3 f-o 165.0 i-p 214.3 n-v 4.7 a-i 58.3 e-f PI 371609UPLBCA 3.5 j-l 45.7 d-n 175.0 k-p 220.7 o-v 6.7 b-i 58.1 e-f GC 40142-0-74AVRDC 4.0 m-n 58.3 j-s 139.7 g-o 198.0 l-u 3.7 a-g 57.9 c-f Tainung 4UPLBCA 3.5 j-l 49.3 f-o 178.7 l-p 228.0 p-v 4.0 a-h 62.8 g-f Tainung 4UPLBCA 3.5 j-l 44.7 d-n 167.3 j-p 212.0 m-v 10.3 i 54.3 e-f GC 40089-2-8AVRDC 4.1 n 53.7 h-q 136.7 g-o 190.4 j-u 8.3 e-i 61.6 g-f LincolnUPLBCA 4.5 o-p 66.0 m-u 129.7 f-o 195.7 k-u 4.3 a-h 65.0 h-f GC 40085-2-10AVRDC 4.0 m-n 50.3 g-p 129.7 f-o 190.4 j-u 8.3 e-i 61.6 g-f LincolnUPLBCA 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 60.3 a-i 57.7 e-f CES XVI-112 PINUPLBCA $3.7 1 $	VLCS 12-A		3.3 i-k	46.3 d-n	161.0 h-p	$207.3 \mathrm{m} \cdot \mathrm{v}$	4.0 a-h	62.7 g-k
Tainung 3UPLBCA $3.5 j$ -l $49.3 f$ -o $165.0 i$ -p $214.3 n$ -v $4.7 a$ -i $58.3 e$ -lPI 371609UPLBCA $3.5 j$ -l $45.7 d$ -n $175.0 k$ -p $220.7 o$ -v $6.7 b$ -i $58.1 e$ -lGC 40142-0-74AVRDC $4.0 m$ -n $58.3 j$ -s $139.7 g$ -o $198.0 l$ -u $3.7 a$ -g $57.9 e$ -lVLCS 12-BBPI $3.6 k$ -l $46.3 d$ -n $187.7 m$ -p $229.0 p$ -v $4.0 a$ -h $62.8 g$ -lTainung 4UPLBCA $3.5 j$ -l $49.3 f$ -o $178.7 l$ -p $228.0 p$ -v $5.7 a$ -i $60.4 g$ -lCES XVI-38 PUPLBCA $3.5 j$ -l $44.7 d$ -n $167.3 j$ -p $212.0 m$ -v $10.3 i$ $54.3 e$ -lGC 40089-2-8AVRDC $4.1 n$ $53.7 h$ -q $136.7 g$ -o $190.4 j$ -u $8.3 e$ -i $61.6 g$ -lLincolnUPLBCA $4.5 o$ -p $66.0 m$ -u $129.7 f$ -o $180.0 i$ -t $9.7 h$ -i $67.6 i$ -kGC 40085-2-10AVRDC $4.0 m$ -n $50.3 g$ -p $129.7 f$ -o $180.0 i$ -t $9.7 h$ -i $67.6 i$ -kI 346BPI $4.5 o$ -p $77.0 o$ -u $132.0 g$ -o $209.0 m$ -v $6.0 a$ -i $57.7 e$ -lCES XVI-112 PINUPLBCA $3.7 l$ -m $50.3 g$ -p $169.0 j$ -p $219.3 0$ -v $9.0 f$ -i $60.8 g$ -lS-4UPLBCA $3.7 l$ -m $50.3 g$ -p $169.0 j$ -p $219.3 0$ -v $9.0 f$ -i $60.8 g$ -lS-5SVI-112 PINUPLBCA $3.7 l$ -m $50.3 g$ -p $169.0 j$ -p $219.3 0$ -v $9.0 f$ -i $60.8 g$ -l <td>BPI Sel. 1</td> <td></td> <td></td> <td></td> <td>169.0 j-p</td> <td>212.7 m-v</td> <td>5.0 a-i</td> <td>56.8 e-k</td>	BPI Sel. 1				169.0 j-p	212.7 m-v	5.0 a-i	56.8 e-k
PI 371609UPLBCA 3.5 $j-1$ 45.7 $d-n$ 175.0 $k-p$ 220.7 $o-v$ 6.7 $b-i$ 58.1 $e-i$ GC 40142-0-74AVRDC 4.0 $m-n$ 58.3 $j-s$ 139.7 $g-o$ 198.0 $l-u$ 3.7 $a-g$ 57.9 $e-i$ VLCS 12-BBPI 3.6 $k-1$ 46.3 $d-n$ 187.7 $m-p$ 229.0 $p-v$ 4.0 $a-h$ 62.8 $g-i$ Tainung 4UPLBCA 3.5 $j-1$ 49.3 $f-o$ 178.7 $l-p$ 228.0 $p-v$ 5.7 $a-i$ 60.4 $g-i$ CES XVI-38 PUPLBCA 3.5 $j-1$ 44.7 $d-n$ 167.3 $j-p$ 212.0 $m-v$ 10.3 i 54.3 $e-i$ GC 40089-2-8AVRDC 4.1 n 53.7 $h-q$ 136.7 $g-o$ 190.4 $j-u$ 8.3 $e-i$ 61.6 $g-i$ LincolnUPLBCA 4.5 $o-p$ 66.0 $m-u$ 129.7 $f-o$ 195.7 $k-u$ 4.3 $a-h$ 65.0 $h-i$ GC 40085-2-10AVRDC 4.0 $m-n$ 50.3 $g-p$ 129.7 $f-o$ 180.0 $i-t$ 9.7 $h-i$ 67.6 $i+k$ I 346BPI 4.5 $o-p$ 77.0 $o-u$ 132.0 $g-o$ 209.0 $m-v$ 9.0 $f-i$ 60.8 $e-i$ CES XVI-112 PINUPLBCA 3.7 $1-m$ 50.3 $g-p$ </td <td>GC 40142-0-87</td> <td></td> <td></td> <td>46.3 d-n</td> <td>155.3 h-p</td> <td>201.6 l-v</td> <td>6.0 a-i</td> <td>61.5 g-k</td>	GC 40142-0-87			46.3 d-n	155.3 h-p	201.6 l-v	6.0 a-i	61.5 g-k
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tainung 3				165.0 і-р	214.3 n-v	4.7 a-i	58.3 e-k
VLCS 12-BBPI 3.6 k-1 46.3 d-n 187.7 m-p 229.0 p-v 4.0 a-h 62.8 g-I Tainung 4UPLBCA 3.5 j-1 49.3 f-o 178.7 l-p 228.0 p-v 5.7 a-i 60.4 g-I CES XVI-38 PUPLBCA 3.5 j-1 44.7 d-n 167.3 j-p 212.0 m-v 10.3 i 54.3 e-I GC 40089-2-8AVRDC 4.1 n 53.7 h-q 136.7 g-o 190.4 j-u 8.3 e-i 61.6 g-I LincolnUPLBCA 4.5 o-p 66.0 m-u 129.7 f-o 195.7 k-u 4.3 a-h 65.0 h-I GC 40085-2-10AVRDC 4.0 m-n 50.3 g-p 129.7 f-o 180.0 i-t 9.7 h-i 67.6 i-k I 346BPI 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 60.3 a-i 57.7 e-I CES XVI-112 PINUPLBCA 3.7 1-m 50.3 g-p 169.0 j-p 219.3 o-v 9.0 f-i 60.8 g-I S-4UPLBCA 4.0 m-n 59.0 k-t 172.3 k-p 231.3 q-w 4.3 a-h 61.7 g-I CES XVI-103 PUPLBCA 3.7 1-m 57.3 i-r 154.0 h-p 208.7 m-v 9.3 g-i 58.8 e-I CES XVI-103 PUPLBCA 3.7 1-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-I PI 62204UPLBCA 3.7 1-m </td <td></td> <td></td> <td>3.5 j-1</td> <td></td> <td></td> <td>220.7 o-v</td> <td>6.7 b-i</td> <td>58.1 e-k</td>			3.5 j-1			220.7 o-v	6.7 b-i	58.1 e-k
Tainung 4UPLBCA3.5 j-l49.3 f-o178.7 l-p228.0 p-v5.7 a-i60.4 g-lCES XVI-38 PUPLBCA3.5 j-l44.7 d-n167.3 j-p212.0 m-v10.3 i54.3 e-lGC 40089-2-8AVRDC4.1 n53.7 h-q136.7 g-o190.4 j-u8.3 e-i61.6 g-lLincolnUPLBCA4.5 o-p66.0 m-u129.7 f-o195.7 k-u4.3 a-h65.0 h-lGC 40085-2-10AVRDC4.0 m-n50.3 g-p129.7 f-o180.0 i-t9.7 h-i67.6 i-kI 346BPI4.5 o-p77.0 o-u132.0 g-o209.0 m-v60.a-i57.7 e-lCES XVI-112 PINUPLBCA3.7 1-m50.3 g-p169.0 j-p219.3 o-v9.0 f-i60.8 g-lS-4UPLBCA4.0 m-n59.0 k-t172.3 k-p231.3 q-w4.3 a-h61.7 g-lCES XVI-103 PUPLBCA3.7 1-m57.3 i-r154.0 h-p208.7 m-v9.3 g-i58.8 e-lCES XVI-103 PUPLBCA3.7 1-m57.3 i-r170.3 k-p227.6 p-v8.0 d-i60.0 g-lPI 62204UPLBCA3.7 1-m48.7 e-n186.0 n-p234.7 r-w8.3 e-i60.1 g-lGC 40142-0-17AVRDC4.9 q78.3 p-u101.3 c-m179.6 i-t8.0 d-i69.3 i-k	GC 40142-0-74					198.0 l-u	3.7 a-g	57.9 e-k
CES XVI-38 PUPLBCA3.5 j-144.7 d-n167.3 j-p212.0 m-v10.3 i54.3 e-IGC 40089-2-8AVRDC4.1 n53.7 h-q136.7 g-o190.4 j-u8.3 e-i61.6 g-ILincolnUPLBCA4.5 o-p66.0 m-u129.7 f-o195.7 k-u4.3 a-h65.0 h-IGC 40085-2-10AVRDC4.0 m-n50.3 g-p129.7 f-o180.0 i-t9.7 h-i67.6 i-kI 346BPI4.5 o-p77.0 o-u132.0 g-o209.0 m-v60.a-i57.7 e-ICES XVI-112 PINUPLBCA3.7 1-m50.3 g-p169.0 j-p219.3 o-v9.0 f-i60.8 g-IS-4UPLBCA4.0 m-n59.0 k-t172.3 k-p231.3 q-w4.3 a-h61.7 g-ICES 434BPI4.0 m-n54.7 i-r154.0 h-p208.7 m-v9.3 g-i58.8 e-ICES XVI-103 PUPLBCA3.7 1-m57.3 i-r170.3 k-p227.6 p-v8.0 d-i60.0 g-IPI 62204UPLBCA3.7 1-m48.7 e-n186.0 n-p234.7 r-w8.3 e-i60.1 g-IGC 40142-0-17AVRDC4.9 q78.3 p-u101.3 c-m179.6 i-t8.0 d-i69.3 i-k	VLCS 12-B				-			62.8 g-k
GC 40089-2-8 AVRDC 4.1 n 53.7 h-q 136.7 g-o 190.4 j-u 8.3 e-i 61.6 g-I Lincoln UPLBCA 4.5 o-p 66.0 m-u 129.7 f-o 195.7 k-u 4.3 a-h 65.0 h-I GC 40085-2-10 AVRDC 4.0 m-n 50.3 g-p 129.7 f-o 180.0 i-t 9.7 h-i 67.6 i-k I 346 BPI 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 60.a-i 57.7 e-I CES XVI-112 PIN UPLBCA 3.7 1-m 50.3 g-p 169.0 j-p 219.3 o-v 9.0 f-i 60.8 g-I S-4 UPLBCA 4.0 m-n 59.0 k-t 172.3 k-p 231.3 q-w 4.3 a-h 61.7 g-I CES XVI-103 P UPLBCA 3.7 1-m 57.3 i-r 170.3 k-p 208.7 m-v 9.3 g-i 58.8 e-I CES XVI-103 P UPLBCA 3.7 1-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-I PI 62204 UPLBCA 3.7 1-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-I GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6	Q							60.4 g-k
LincolnUPLBCA4.5 o-p66.0 m-u129.7 f-o195.7 k-u4.3 a-h65.0 h-GC 40085-2-10AVRDC4.0 m-n50.3 g-p129.7 f-o180.0 i-t9.7 h-i67.6 i-kI 346BPI4.5 o-p77.0 o-u132.0 g-o209.0 m-v6.0 a-i57.7 e-ICES XVI-112 PINUPLBCA3.7 1-m50.3 g-p169.0 j-p219.3 o-v9.0 f-i60.8 g-IS-4UPLBCA4.0 m-n59.0 k-t172.3 k-p231.3 q-w4.3 a-h61.7 g-ICES XVI-103 PUPLBCA3.7 1-m57.3 i-r154.0 h-p208.7 m-v9.3 g-i58.8 e-ICES XVI-103 PUPLBCA3.7 1-m57.3 i-r170.3 k-p227.6 p-v8.0 d-i60.0 g-IPI 62204UPLBCA3.7 1-m48.7 e-n186.0 n-p234.7 r-w8.3 e-i60.1 g-IGC 40142-0-17AVRDC4.9 q78.3 p-u101.3 c-m179.6 i-t8.0 d-i69.3 i-k								54.3 e-k
GC 40085-2-10 AVRDC 4.0 m-n 50.3 g-p 129.7 f-o 180.0 i-t 9.7 h-i 67.6 i-k I 346 BPI 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 6.0 a-i 57.7 e-I CES XVI-112 PIN UPLBCA 3.7 1-m 50.3 g-p 169.0 j-p 219.3 o-v 9.0 f-i 60.8 g-I S-4 UPLBCA 4.0 m-n 59.0 k-t 172.3 k-p 231.3 q-w 4.3 a-h 61.7 g-I CES XVI-103 P UPLBCA 3.7 1-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-I PI 62204 UPLBCA 3.7 1-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-I GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k						3		61.6 g-k
I 346 BPI 4.5 o-p 77.0 o-u 132.0 g-o 209.0 m-v 6.0 a-i 57.7 e-I CES XVI-112 PIN UPLBCA 3.7 1-m 50.3 g-p 169.0 j-p 219.3 o-v 9.0 f-i 60.8 g-I S-4 UPLBCA 4.0 m-n 59.0 k-t 172.3 k-p 231.3 q-w 4.3 a-h 61.7 g-I CES 434 BPI 4.0 m-n 54.7 i-r 154.0 h-p 208.7 m-v 9.3 g-i 58.8 e-I CES XVI-103 P UPLBCA 3.7 1-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-I PI 62204 UPLBCA 3.7 1-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-I GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k								65.0 h-k
CES XVI-112 PINUPLBCA3.7 l-m50.3 g-p169.0 j-p219.3 o-v9.0 f-i60.8 g-lS-4UPLBCA4.0 m-n59.0 k-t172.3 k-p231.3 q-w4.3 a-h61.7 g-lCES 434BPI4.0 m-n54.7 i-r154.0 h-p208.7 m-v9.3 g-i58.8 e-lCES XVI-103 PUPLBCA3.7 l-m57.3 i-r170.3 k-p227.6 p-v8.0 d-i60.0 g-lPI 62204UPLBCA3.7 l-m48.7 e-n186.0 n-p234.7 r-w8.3 e-i60.1 g-lGC 40142-0-17AVRDC4.9 q78.3 p-u101.3 c-m179.6 i-t8.0 d-i69.3 i-k								67.6 i-k
S-4 UPLBCA 4.0 m-n 59.0 k-t 172.3 k-p 231.3 q-w 4.3 a-h 61.7 g-1 CES 434 BPI 4.0 m-n 54.7 i-r 154.0 h-p 208.7 m-v 9.3 g-i 58.8 e-1 CES XVI-103 P UPLBCA 3.7 l-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-1 PI 62204 UPLBCA 3.7 l-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-1 GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k								57.7 e-k
CES 434 BPI 4.0 m-n 54.7 i-r 154.0 h-p 208.7 m-v 9.3 g-i 58.8 e-i CES XVI-103 P UPLBCA 3.7 l-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-i PI 62204 UPLBCA 3.7 l-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-i GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k								60.8 g-k
CES XVI-103 P UPLBCA 3.7 l-m 57.3 i-r 170.3 k-p 227.6 p-v 8.0 d-i 60.0 g-i PI 62204 UPLBCA 3.7 l-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-i GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k					•	+		
PI 62204 UPLBCA 3.7 l-m 48.7 e-n 186.0 n-p 234.7 r-w 8.3 e-i 60.1 g-l GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k								58.8 e-k
GC 40142-0-17 AVRDC 4.9 q 78.3 p-u 101.3 c-m 179.6 i-t 8.0 d-i 69.3 i-k								
					-			60.1 g-k
(continued)	GU 40142-0-17	AVKDU	4.9 q	-		179.01-t	8.U d-1	09.3 1-K

Variety	Source		nemate	Number of odes recovere	Number of egg	Number of	
	of seeds	Necrosis rating ^b	l g roots	300 cc soil	Total	masses/g of roots	eggs/egg mass°
CES XVI-26 P	UPLBCA	4.3 n-o	58.3 j-s	171.3 k-p	229.6 p-v	9.0 f-i	58.9 e-k
PI 60273	UPLBCA	4.3 n-o	65.7 İ-u	$178.01 \cdot \hat{p}$	243.7 s-w	7.3 c-i	65.5 h-k
GC 40057-1-12	AVRDC	4.7 p-g	67.0 n-u	158.0 h-p	225.0 p-v	10.3 i	64.0 h-k
GC 40081-0-17	AVRDC	5.0 q	86.3 s-u	186.0 n-p	272.3 u-w	6.7 b-i	63.6 h-k
EGSY 99	BPI	4.9 q	82.0 r-u	133.0 g-o	215.0 o-v	9.7 h-i	74.1 k
L 114	UPLBCA	4.7 p-q	79.7 q-u	182.0 m-р	261.7 t-w	9.3 g-i	62.5 g-k
GC 40177-0-11	AVRDC	4.8 p-q	87.0 t-u	201.7 o-p	288.7 v-w	9.0 f-i	59.8 f-k
PI 200492	UPLBCA	5.0 q	93.3 u	343.0 q	436.3 x	8.0 d-i	67.2 i-k
Improved pelican	BPI	5.0 q	89.0 u	222.7 p	311.7 w	10.3 i	71.7 j-k

*Data are means of three replicates. Means followed by the same letter do not differ at the 5% level by Duncan's multiple-range test.

Based on a severity scale of 1 to 5 determined from relative percentages of necrotic portions of root systems as follows: 1 = 0% (no necrosis); 2 = 1-25% (light necrosis); 3 = 26-50% (moderate necrosis); 4 = 51-75% (severe necrosis); and 5 = 0 over 75\% (very severe necrosis). "Means of counts from all egg masses found.

Means of counts from an egg musses found

most reflective of resistance, statistical analyses were made of correlation of resistance rating and necrosis rating, nematode recoveries from 1 g roots, 300 cc soil, and both 1 g roots and 300 cc soil, and numbers of egg masses/g of roots and eggs/egg mass, based on r values (correlation coefficients). The r values of the different assessment parameters for determining resistance were also analyzed to determine the correlations of these parameters.

RESULTS AND DISCUSSION

Rotylenchulus predominated over the other plant-parasitic nematode genera before the experiment. The average initial population density/300-cc soil sample of this nematode was 41 compared with an average total of only 7 for all other genera encountered: Helicotylenchus, Meloidogyne, Tylenchorhynchus, Hoplolaimus, Hemicriconemoides, Pratylenchus, and Criconemoides.

At the end of the experiment, root necrosis ratings, *R. reniformis* recoveries from 1 g roots, 300 cc soil, and both 1 g roots and 300 cc soil, and numbers of egg masses/g of roots and eggs/egg mass differed significantly among varieties (Table 1). Relations were generally positive for necrosis, nematode recovery, and nematode reproduction. The deviations from this trend observed in certain varieties may indicate a variability in tolerance to the nematode in these varieties. There were no apparent increases in population densities of other nematode genera over the initial densities.

Resistance ratings differed greatly among the varieties (Table 2). Nine varieties (TK 5, Strain 99, Strain 12, PI 200451, GC 40078-2-40, EGSY 12, GC 40142-0-66, EGSY 6, and UPL-SY 2) were resistant and 13 were moderately resistant. Twenty-six and 17 varieties respectively showed moderately susceptible and susceptible reactions.

TK 5, Strain 99, and Strain 12 were also recently found (6) resistant to the root-knot nematodes *Meloidogyne incognita*, *M. arenaria*, and *M. javanica* in pots. Those varieties are therefore potentially useful in nematode control and breeding programs.

Three successive croppings of TK 5 resulted in increased populations of R. reniformis, although the increase was less than that on mung bean (9). In a subsequent field experiment involving this variety, no significant yield reductions occurred in soil infested predominantly by R. reniformis during two successive wet-season plantings, although yield loss was as high as 45% in the succeeding dry-season planting (8). In mung bean, yield reductions had been significant since the first wet-season planting and were much higher (as high as 75%) than in TK 5 during the dry-season planting. While those observations suggest

Reniform Nematode/Soybeans: Lim, Castillo 279

TABLE 2. Resistance rating and host category of soybean varieties to Rotylenchulus reniformis, based on indices of root necrosis, nematode recovery, egg mass production, and egg production.^a

		Nematode recovery indices			Egg mass	Egg	Resist-	
Variety	Necrosis index	Roots	Soil	Roots and soil	produc- tion index	product- tion index	ance rating (Av.)	Host category ^b
ТК 5	0.71	0.57	0.71	0.50	1.33	1.64	0.91	R
Strain 99	1.07	0.86	1.78	1.25	1.33	1.09	1.23	R
Strain 12	1.42	1.14	1.07	0.75	2.00	1.09	1.25	R
PI 200451	1.07	1.14	1.42	1.00	2.00	1.64	1,38	R
GC 40078-2-40	1.42	0.86	1.07	0.75	2.67	2.73	1.58	R
EGSY 12	1.42	1.14	2.13	1.50	3.33	1.64	1.86	R
GC 40142-066	1.42	0.86	2.49	2.00	3.33	3.27	2.23	R
EGSY 6	1.78	2.00	2.84	2.25	2.67	4.36	2.65	R
UPL-SY 2	1.78	1.71	1.78	1.75	4.00	5.45	2.75	R
K.E. 32	2.49	2.28	2.84	2.50	6.00	2.18	3.05	MR
Ross	3.20	2.28	3.20	2.75	2.67	5.45	3.26	MR
GC 40176-1-12	2.49	3.42	2.84	2.75	4.00	4.36	3.31	MR
EGSY 78	3.20	1.43	3.55	2.75	4.00	7.63	3.76	MR
Tainung 4 x Ross	3.20	2.00	4.26	3.25	7.33	3.82	3.98	MR
CES XVI-23 P	4.62	2.28	5.33	4.00	2.67	6.54	4.24	MR
GC 40142-0-158	4.62	2.54	4.26	3.50	2.67	9 .81	4.57	MR
GC 40142-0-32	3.91	1.71	6.75	5.25	4.67	5.45	4.62	MR
Sankuo	4.62	2.28	5.68	4.25	4.00	8.72	4.93	MR
Tainung 4 x								
Gilbert	5.33	3.14	6.75	6.25	4.00	7.63	5.52	MR
CES XVI-24 PIN	5.33	2.85	7.46	6.75	4.00	7.09	5.58	MR
K 475	6.04	3.42	5.33	4.75	6.00	8.72	5.71	MR
EGSY 15	6.75	3.42	5.68	4.75	4.67	9.81	5.85	MR
Ogden	5.33	3.42	6.39	5.50	6.00	8.72	5.89	MS
GC 40142-0-159	5.33	4.56	7.46	6.75	4.67	6.54	5.89	MS
S-13	6.04	3.42	6.75	6.75	7.33	7.09	6.23	MS
Multivar 80	6.04	3.42	7.46	6.75	5.33	8.72	6.29	MS
Woodworth	6.04	3.42	7.46	6.75	6.00	8.72	6.40	MS
Clark 63	7.81	5.42	6.75	6.75	5.33	7.09	6.53	MS
Cobb	6.39	3.42	7.46	6.75	6.00	9.81	6.64	MS
Williams	6.04	3.42	7.81	7.00	6.67	9.27	6.70	MS
T-8	6.04	3.42	7.81	6.75	6.67	9.81	6.75	MS
Strain 78	6.75	4.56	7.46	6.75	6.67	9.81	7.00	MS
Taiwan	6.39	3.99	6.39	6.75	9.33	9.81	7.11	MS
UPSL 85	7.10	3.99	8.52	7.75	6.67	8.72	7.13	MS
GC 40081-0-27	6.39	3.71	7.81	6.75	8.67	9.81	7.19	MS
PI 400490	7.81	4.56	7.81	7.25	6.67	9.81	7.32	MS
VLCS 16	7.10	4.56	8.88	8.50	6.67	9.27	7.50	MS
VLCS 12-A	7.10	5.13	8.52	8.75	6.00	9.81	7.55	MS
BPI Sel. 1	7.81	4.85	9.23	8.75	6.67	8.72	7.67	MS
GC 40142-0-87	8.17	5.13	8.52	8.50	6.67	9.81	7.80	MS
Tainung 3	7.81	5.99	8.88	9.00	6.67	8.72	7.85	MS
PI 371609	7.81	5.13	9.59	9.25	7.33	8.72	7.97	MS
GC 40142-0-74	9.59	8.27	7.81	8.25	5.33	8.72	8.00	MS
VLCS 12-B	8.17	5.13	10.30	9.50	6.00	9.81	8.15	MS
Tainung 4	7.81	5.99	9.94	9.50	6.67	9.81	8.29	MS
CES XVI-38 P	7.81	5.13	9.23	8.75	12.00	8.72	8.61	MS
GC 40089-2-8	9.94	7.13	7.81	7.75	9.33	9.81	8.63	MS
Lincoln	11.01	9.69	7.46	8.00	6.00	10.36	8.75	MS
GC 40085-2-10	9.59	6.56	7.46	7.25	11.34	10.90	8.85	S
1 346	11.01	10.26	7.81	8.75	6.67	8.72	8.87	S
CES XVI-112 PIN	8.88	6.56	9.23	9.25	10.00	9.81	8.96	S
S-4	9.59	8.84	9,59	10.00	6.00	9.81	8.97	S
CES 434	9.59	7.70	8.52	8.75	10.67	8.72	8.99	S
CES XVI-103 P PI 62204	8.88 8.88	7.70 5.42	9.59 10.65	9.50 10.25	8.67 9.33	9.81 9.81	9.03 9.06	S S

(continued)

Variety	Necrosis index	Nematode recovery indices			Egg mass	Egg	Resist -	
		Roots	Soil	Roots and soil	produc- tion index	product- tion index	ance rating (Av.)	Host category ^b
GC 40142-0-17	12.00	10.55	5.68	7.25	8.67	10.90	9.18	s
CES XVI-26 P	10.34	8.27	9.59	9.50	10.00	8.72	9.40	S
PI 60273	10.34	9.41	9.94	10.50	8.00	10.36	9.76	S
GC 40057-1-12	11.72	9,98	8.52	9.50	12.00	10.36	10.35	S
GC 40081-0-17	12.00	11.40	10.65	11.00	7.33	10.36	10.46	S
EGSY 99	12.00	11.12	7.81	9.25	11.34	12.00	10.59	S
L 114	11.72	10.83	10.30	10.75	10.67	9.81	10.68	S
GC 40177-0-11	11.72	11.69	11.01	11.25	10.00	9.27	10.82	S
PI 200492	12.00	12.00	12.00	12.00	8.67	10.90	11.26	S
Improved pelican	12.00	12.00	11.36	11.50	12.00	11.45	11.72	S

TABLE 2. (Continued)

*Indices for necrosis, nematode recoveries from roots, soil, and both soil and roots, egg mass production, and egg production were determined from the statistical means (differentiated by letters) in Table 1 for necrosis rating, numbers of nematodes recovered from 1 g roots, 300 cc soil, and both 1 g roots and 300 cc soil, number of egg masses/g of roots, and number of eggs/egg mass, respectively, by assigning an arbitrary value of 12 to the highest mean and equally divided lower values (determined by the number of statistically different means involved) to the succeeding different means. Indices of means designated by two or more letters were determined by dividing the sum of the corresponding values by the number of letters involved. *Based on the resistance ratings using the following scale: 0-2.93 = R (resistant); 2.94-5.86 = MR (moderately resistant); 5.87-8.79 = MS (moderately susceptible); and 8.80-11.72 = S (susceptible). The ranges were based on the quotient (2.93) obtained by dividing 11.72 (highest resistance rating) by 4 (number of categories).

that TK 5 may possess greater tolerance than resistance to R. reniformis, according to the categorization of Dropkin and Nelson (11), they were not supported by the results of the present experiment.

The use of resistance ratings, based on indices of the assessment parameters used in this study, appears to be potentially useful in determining the relative host categories, other than tolerance, of crop varieties to R. reniformis. This method compares varietal resistance based on several criteria. Comparisons of crops' resistance nematodes are usually limited to single parameters, and it is sometimes difficult to determine which parameter should be assigned most importance. Basing indices for the different parameters on statistical means reduced the chances of assigning different values to statistically similar means. Objectivity was enhanced by the determination of the ranges of resistance ratings to which the host categories were assigned, based on a value derived from the data. The use of indices instead of actual values in determining resistance ratings, however, has the disadvantage of favoring the parameter concerning which lower numbers of statistically different means are involved.

Highly significant positive linear correlations existed between resistance rating and any of the assessment parameters (Fig. 1). This suggests that, under the conditions of the experiment, any of the parameters could be used to identify resistance. From the analyses of significance of differences between correlation coefficients, nematode recovery from 1 g roots, total recoveries from 1 g roots and 300 cc soil, and necrosis rating were equally the most efficient parameters. Among these, use of necrosis rating is apparently the simplest and least timeconsuming. However, since necrosis could be caused by various other factors (secondary invading organisms such as fungi and bacteria), it is necessary to supplement necrosis rating with nematode recovery from 1 g roots. The high efficiency of nematode recovery from 1 g roots as a parameter could probably be attributed to the fact that this criterion is the most indicative of the relative degree of nematode infection. Number of egg masses/g of roots was the least efficient parameter. This was perhaps partly related to the differences in the rates of nematode development in the different varieties.

Highly significant positive linear cor-

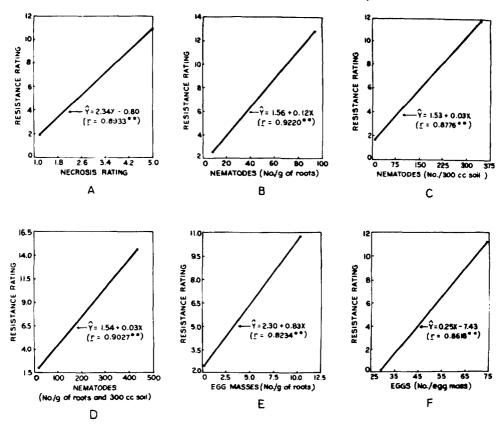


FIG. 1. Correlation between resistance rating and each of the six assessment parameters used in the study: A) necrosis rating; B) number of nematodes/g of roots; C) number of nematodes/300 cc soil; D) number of nematodes/g of roots and 300 cc soil; E) number of egg masses/g of roots; and F) number of eggs/egg mass.

relations were also observed between any two combinations of parameters. This observation agrees with the general trend of relationships in Table 1.

LITERATURE CITED

- BIRCHFIELD, W., and L. R. BRISTER. 1969. Reaction of soybean varieties to the reniform nematode, Rotylenchulus reniformis. Plant Dis. Reptr. 53:999-1000.
- BIRCHFIELD, W., C. WILLIAMS, E. E. HARTWIG, and L. R. BRISTER. 1971. Reniform nematode resistance in soybeans. Plant Dis. Reptr. 55:1043-1045.
- CAGAMPANG, I. C., R. M. LANTICAN, F. B. BALLON, and B. M. LEGASPI. 1972. Growing soybeans in the Philippines. ICPP Tech. Bull. 6, UPLB, College, Laguna, Philippines. 9 p.
- CASTILLO, M. B. 1971. Reniform nematode, Rotylenchulus sp., in mungo, soybean and peanut soils at the UPCA Central Experiment Station. Phil. Phytopathol. 7:61-67.
- 5. CASTILLO, M. B. 1975. Plant parasitic nematodes associated with mung bean, soybean

and peanut in the Philippines. Phil. Agr. 59:91-99.

- CASTILLO, M. B., A. P. RODIL, and B. K. LIM. 1978. Resistance in soybeans [Glycine max (L.) Merr.] to root-knot nematodes and statistical analysis of correlations of assessment parameters. Phil. Phytopathol. 14: (in press).
- CASTILLO, M. B., M. S. ALEJAR, and J. A. LITSINGER. 1977. Increased efficiency of determining populations of Rotylenchulus reniformis and Meloidogyne acrita through bioassay. Phil. Agr. 61:64-69.
- 8. CASTILLO, M. B., M. B. ARCEO, and J. A. LITSINGER. 1978. Population dynamics of plant parasitic nematodes. I. Rotylenchulus reniformis and its effect on yields of field legumes. Phil. Agr. 61: (in press).
- CASTILLO, M. B., N. B. BAJET, and R. R. HARWOOD. 1976. Nematodes in cropping patterns. I. Population of Rotylenchulus reniformis on successively monocultured crops. Phil. Agr. 59:288-294.
- CASTILLO, M. B., and J. A. LITSINGER. 1977. Plant parasitic nematodes of mungbean in the Philippines. First International Mungbean Symposium Proceedings, pp. 195-200.

282 Journal of Nematology, Volume 11, No. 3, July 1979

AVRDC, Tainan, Taiwan.

- 11. DROPKIN, V. H., and P. E. NELSON. 1960. The histopathology of root-knot nematode infections in soybean. Phytopathology 50:442-447.
- 12. McBETH, C. W., A. L. TAYLOR, and A. L. SMITH. Note on staining nematodes in root tissue. Proc. Helminth. Soc. Wash. 8:26.
- REBOIS, R. V., J. M. EPPS, and E. E. HART-WIG. 1970. Correlation of resistance in soybeans to Heterodera glycines and Rotylen-

chulus reniformis. Phytopathology 60:695-700. 14. REBOIS, R. V., and W. C. JOHNSON. 1973. Effect of Rotylenchulus reniformis on yield and nitrogen, potassium, phosphorus and amino acid content of seed of Glycine max. J. Nematol. 5:1-6.

 REBOIS, R. V., W. C. JOHNSON, and E. J. CAIRNS. 1968. Resistance in soybeans, Glycine max. L. Merr., to the reniform nematode. Crop Sci. 8:394-395.