The Influence of Temperature on Meloidogyne incognita on Soybean
Abstract
The effects of temperature and initial inoculum density of Meloidogyne incognita on soybean growth and nematode reproduction were investigated in greenhouse temperature tanks and in controlled-growth chambers. The interactions of initial inoculum density (P[subi]) and soil temperature in effects on shoot growth were adequately described by multiple-regression models. At the highest temperatures (30 or 32/28 C), moderate to high inoculum killed many plants. A PI of 27,000 eggs/15-cm-diam pot retarded shoot growth at 26 C. Only the greatest P[subi] (81,000 eggs/15-cm pot) suppressed shoot growth at 18, 22, or 20/16 C. Inoculation with 3,000 or 9,000 eggs/plant resulted in heavier root systems at all temperatures except 30 C. At that temperature, 9,000 eggs suppressed root growth. At 18 and 26 C, a P[subi] of 81,000 eggs was required to retard root growth. Nematode reproduction was related directly to temperature and P[subi] except at a density of 81,000 eggs/15-cm pot. Key Words: Glycine max, root-knot, population dynamics.Downloads
Published
Issue
Section
License
Copyright and Permissions
All material published by the Society of Nematologists (SON), except for papers prepared by United States and Canadian government employees, is copyrighted and protected under the U.S. copyright law. Under the Copyright Act of 1976, the term of copyright for materials registered by an organization is 75 years from the date first published. Before publishing any manuscript, SON requires that authors transfer full and complete ownership of any copyright to SON by signing a JON Page Charge/Copyright Form (.pdf). SON then registers the copyright. Subsequent use of published materials requires written permission from the SON and may be obtained by contacting the current Editor-in-Chief and state where and how the material will be used.
The author warrants that the article is an original work not published elsewhere in whole or in part, except in abstract form, and that the author has full power to make this grant. If portions of the article have been published previously, then the author warrants that permission has been obtained from the copyright holder and the author will submit a copy of the permission release with this copyright transfer form.
SON shall claim no proprietary right other than copyright. Authors and coauthors retain the right to revise, adapt, modify, or otherwise use all or part of the article in future works of the author(s), such as press releases, lectures, and reviews, provided that all such use is for the personal noncommercial benefit of the author(s). All patent rights are retained by the author(s).