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ABSTRACT
The incidence of numerous vector-borne diseases (VBDs) has recently increased alarmingly due to various widespread factors, including 

unplanned urbanization, greater human mobility, environmental changes, vector resistance to insecticides, and evolving pathogens. In this 
context, the World Health Organization (WHO) has repositioned effective and sustainable vector control as a key approach to prevent and 
eliminate VBDs. It has been shown that the microbiome influences development, nutrition, and pathogen defense in disease-transmitting vectors 
such as mosquitoes, sandflies, tsetse flies, triatomine bugs, and ticks. Consequently, understanding the endogenous regulation of vector biology 
can aid in developing effective approaches for vector control. In this respect, a metatranscriptomic approach analyzes all the expressed RNAs in 
an environmental sample (meta-RNAs) and can thus reveal how the metabolic activities of the microbiome influence vector biology. This review 
includes an extensive analysis of available literature on microbial and viral studies for some of the major hematophagous disease-transmitting 
arthropods, with a focus on studies that used next generation sequencing (NGS) approaches. Since a consensus terminology for these “meta-
sequencing analyses” has not yet been established, a definition of these terms is presented here to provide the framework for systematically 
sorting the available information for each of the VBDs analyzed here to single out metatranscriptomic analyses. Finally, key gaps in knowledge 
were identified for some of these hematophagous disease-transmitting arthropods which will prove very useful for driving future studies.  
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INTRODUCTION

The importance of vector-borne diseases (VBDs) is 
indisputable. They represent more than 17% of all infectious 
diseases and cause more than 700,000 deaths each year 
(WHO 2017). Many of these vectors are bloodsucking 
arthropods that transmit disease-causing pathogens when 
taking a blood meal (WHO 2023a). Mosquitoes head the 
list with three main disease-transmitting genera: Anopheles 
(malaria), Aedes (mainly arboviruses, including dengue, 
Zika, chikungunya, yellow fever, Rift Valley and others), 
and Culex (West Nile virus and Japanese encephalitis 
virus); all three genera can vector Lymphatic filariasis 
(WHO 2023a). Sandflies (mainly leishmaniasis and sandfly 
fever), tsetse flies (African trypanosomiasis), kissing bugs 
(Chagas disease), and ticks (Lyme disease, relapsing fever 
or borreliosis, and Rickettsial diseases such as spotted 
fever and others), are also responsible for high levels of 

morbidity and mortality (WHO 2023a, 2017). Effective 
vaccines and medicines exist for a few of these VBDs, such 
as vaccines against yellow fever, Japanese encephalitis, 
and tick-borne encephalitis, medicines against lymphatic 
filariasis, human onchocerciasis and malaria, but they are 
currently lacking for most other VBDs. Consequently, 
vector control is still the most effective preventive 
approach against the majority of VBDs, and interventions 
that reduce human-vector contact and vector survival can 
suppress and even halt transmission (WHO 2017). 

In this context, it is now accepted that all eukaryotes 
are meta-organisms and must be considered together with 
their microbiome as an inseparable functional unit (Jones 
2013). The microbiome forms a dynamic and interactive 
micro-ecosystem that is integrated to the eukaryotic host 
and, as such, is crucial for its correct functioning and 
health (Berg et al. 2020). Consequently, an extensive 
understanding of the microbiome is pivotal for developing 
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effective vector control approaches. A significant progress 
in this respect has been witnessed for the past decade, 
particularly since the development of high throughput 
sequencing platforms which have transformed the 
field of microbial community analysis. Nevertheless, as 
usually happens when a certain field grows exponentially, 
consensus terminology is lacking. The misuse of 
terms such as microbiota, microbiome, metagenome, 
metagenomics, metabarcoding, metataxonomics and 
metatranscriptomics, among others, has contributed to 
the misinterpretation of many study results (Marchesi and 
Ravel 2015). In this review these terms are clearly defined 
(see below) based on different previous proposals, to 
establish a baseline and avoid confusion when interpreting 
the data and drawing conclusions. 

The microbiota encompasses the living prokaryotic 
(Bacteria, Archaea) and eukaryotic (e.g., Protozoa, 
Fungi, and Algae) microorganisms present in a defined 
environment (Marchesi and Ravel 2015). Viruses, 
plasmids, prions, viroids, and free (or “relic”) DNA are 
not part of the microbiota because they are not living 
microorganisms (Dupré and O’Malley 2013). 

On the other hand, the microbiome includes the 
community of microorganisms and their “theatre of 
activity” (Whipps et al. 1988). The latter encompasses 
all molecules produced by microorganisms (structural 
elements [nucleic acids, proteins, lipids, polysaccharides], 
metabolites [signaling molecules, toxins, organic, and 
inorganic molecules]), as well as viruses and “relic” DNA. 
Consequently, microorganisms, viruses, plasmids, prions, 
viroids, and free DNA, are all part of the microbiome 
(Berg et al. 2020). 

Metataxonomics covers the large-scale analysis of 
sequencing data (DNA or RNA) to identify microorganisms 
and/or viruses from complex environmental samples. 
Metataxonomic studies can be undertaken using two 
main approaches (see below): 1) metabarcoding and 2) 
metagenomic/metatranscriptomic shotgun DNA/RNA 
sequencing as modified from (Cox et al. 2017).

Metabarcoding is the large-scale analysis of 
biodiversity (i.e., species composition within a sample) 
through the amplification and sequencing of homologous 
genes (Creer et al. 2010), such as the mitochondrial 
protein-coding gene cytochrome c oxidase subunit I 
(COI) for animal specimens (Hebert et al. 2003), the 16S 
ribosomal DNA gene region for bacteria and archaea 
(Tringe and Hugenholtz 2008), and the 18S ribosomal 
DNA gene region for microbial eukaryotes (Creer et al. 
2010). Thus, barcoding of environmental DNA/RNA (or 
eDNA/eRNA) enables the simultaneous identification 
of many taxa within the same sample (Wikipedia 2023), 

and eRNA metabarcoding also provides a measure of the 
active or viable community (Mengoni et al. 2005).

A metagenome is the collection of genomes and 
genes of the microbiota, and is obtained through 
shotgun sequencing of DNA extracted from a sample 
(metagenomics). The sequencing data is first assembled 
and mapped, or directly mapped, to a reference database, 
and finally annotated. It thus provides information on the 
functional potential of the microbiota. 

Since a metabarcoding analysis is based on the 
amplification and sequencing of taxonomic marker genes, 
it is not metagenomics (Marchesi and Ravel 2015). 

While metagenomics provides information on the 
putative activities of a microbial community, it cannot 
reveal the activities that are occurring at a specific time 
and place, nor how those activities change in response 
to the environment or to biotic interactions. The 
challenge is to discover which of those potential functions 
(metagenome) are happening at a particular point in time 
(metatranscriptome) and, ultimately, to identify what 
causes the difference (Moran 2009). 

Thus, metatranscriptomics analyses all the expressed 
RNAs in an environmental sample (meta-RNAs) by next 
generation sequencing (NGS) of the corresponding 
meta-cDNAs (Marchesi and Ravel 2015). Consequently, 
it has the potential to identify all the taxa within an 
environment (and not just those within a targeted 
lineage, as is the case with metabarcoding) and also 
provides a comprehensive overview of the loci that are 
being transcribed and of their expression levels (Galen 
et al. 2020). Therefore, metatranscriptomics is a more 
informative approach compared to metagenomics, 
because it not only characterizes the genetic content (as in 
a metagenomic analysis) but also identifies the populations 
that are transcriptionally active (Bashiardes et al. 2016). 
Metatranscriptomics has been used for determining 
the functional profile of the microbiome, but it also has 
the potential to detect and classify RNA from different 
lineages (metataxonomics), and this latter aspect has 
been exploited to detect and characterize viruses (Batson 
et al. 2021; Marcelino et al. 2019; Ortiz-Baez et al. 2020; 
Westreich et al. 2019). 

METHODS

To attain an exhaustive review of published literatures 
on microbial and viral studies for the hematophagous 
disease-transmitting arthropods included in this review 
(mosquitoes, sand flies, tsetse flies, triatomines, and 
ticks), with a focus on studies that used NGS approaches, 
a literature search was conducted on English databases, 
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mainly PubMed and Google up to 28 September 2023, 
using a set of terms without language or publication-type 
restrictions. 

The first and necessary step to provide the framework 
for systematically sorting the available information for 
each of the vectors analyzed here, and then singling out 
the metatranscriptomic analyses, consisted in defining 
the terms used in this review (microbiota, microbiome, 
metagenome, metagenomics, metabarcoding, 
metataxonomics and metatranscriptomics). For this, 
a database search was performed using keywords that 
included: "Microbiota", "Microbiome", "Metabarcoding", 
"Metagenomic", "Metatranscriptomic", "Virome", 
"Metavirome", "next-generation sequencing", "high-
throughput sequencing", "Vector-borne diseases". 
Following this database search, the title and abstract of the 
retrieved publications were screened to identify studies 
and reviews that were potentially eligible for inclusion. 

Next, the full texts of likely suitable studies were 
retrieved and i) further assessed for eligibility, and ii) 
screened for other relevant studies that may not have 
been found in the previous step.

In this way, the full text of 26 eligible publications 
were thoroughly assessed to define the mentioned terms, 
and thus provide the necessary baseline for interpreting 
the data that was retrieved in the following step.

The search for each vector was performed separately. 
Once again, keywords were used for the database 
searches, that included: "Microbiota", "Microbiome", 
"Metabarcoding", "Metagenomic", "Metatranscriptomic", 
"Virome", "Metavirome", "next-generation sequencing", 
"high-throughput sequencing", and "Mosquitoes", 
"Sandflies", "Ticks", "Triatomines", "Kissing bugs", "Tsetse 
flies", depending on the vector.

Following this, the title and abstract of the retrieved 
publications were screened to identify studies and reviews 
that were potentially eligible for inclusion. 

Next, the full texts of suitable reviews were retrieved 
and screened to confirm: i) the eligibility of the studies 
that were selected and retrieved from the database search, 
and ii) to search for other relevant studies that may not 
have been found in the database searches. 

Subsequently, the full texts of potentially suitable 
studies were retrieved and i) thoroughly assessed for 
eligibility, ii) screened for other relevant studies that may 
not have been found in the previous step, and iii) classified 
according to the type of analysis (e.g., metabarcoding, 
metavirome, metatranscriptomic) following the 
terminology proposed in this review. With respect to 
this last point, it is important to note that a thorough 
screening of the full texts was paramount to correctly 

assign the type of analysis because, due to the mentioned 
lack of consensus terminology, titles can be misleading. 
For example, titles of metavirome studies have used the 
terms "metatranscriptomic" (Feng et al. 2022) or "Shotgun 
metagenomics" (Aragão et al. 2023). Similarly, the titles of 
culture -dependent and -independent studies have used 
the terms "microbial" (Clay et al. 2008) or "microbiota" 
(Yadav et al. 2015), and thus had to be screened in detail 
to determine eligibility. 

Finally, the full text of 144 suitable publications on 
microbial and viral studies (including studies and reviews) 
for mosquitoes, sandflies, tsetse flies, triatomines, and 
ticks, were thoroughly assessed and used for this review.

The publications that were included in this analysis 
are mentioned in the text and have been incorporated in 
the references list.

METATRANSCRIPTOMIC STUDIES 
IN HEMATOPHAGOUS DISEASE-            
TRANSMITTING ARTHROPODS 

In accordance with the previously defined terms, in 
this review a metatranscriptomic study was considered as 
such if it used NGS to analyze all the expressed RNAs (i.e., 
not only taxonomic marker genes) in the microbiome (or 
from at least two lineages e.g., prokaryotes and viruses). 
Consequently, studies that used environmental RNA 
(eRNA) sequencing to identify only one lineage (e.g., 
viruses) were considered metataxonomic analyses, and are 
only mentioned as background information. Furthermore, 
due to space constraints, this review focuses on the (main) 
hematophagous disease-transmitting arthropods, i.e., 
mosquitoes, sandflies, tsetse flies, triatomines, and ticks, 
which include obligate and non-obligate blood feeders 
(Beaty and Marquardt 1996). Obligate blood feeders feed 
exclusively on vertebrate blood during all life stages (e.g., 
triatomine bugs and ticks) or only as adults (e.g., tsetse 
flies). Non-obligate blood feeders (e.g., mosquitoes and 
sandflies) consume organic materials during immature 
stages and, during adulthood, in addition to blood ingest 
sugars to obtain energy (Song et al. 2022).

In the following sections the mentioned 
hematophagous disease-transmitting arthropods 
are considered individually, and in each case, a brief 
introduction is included on the pathogens they transmit, 
vector biology, and available microbial and viral studies. 
Following that, a specific subsection briefly describes the 
metatranscriptomic studies for that vector (if there are 
any). 
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Mosquitoes (Diptera: Culicidae)

There are thousands of mosquito species, but the 
main disease-transmitting vectors with the greatest threat 
to public health, belong to the genera Anopheles, Aedes, and 
Culex (Beaty and Marquardt 1996; Clements 1992; WHO 
2023a). Mosquitoes are responsible for transmitting some 
of the most dangerous pathogens, including protozoa 
(most importantly Plasmodium), filarial nematodes, and 
viruses (Gabrieli et al. 2021). In 2021 nearly half of the 
world's population was at risk of malaria, with an estimated 
247 million cases and 619,000 deaths worldwide (WHO 
2023b). Culex spp. mosquitoes transmit both arboviruses, 
such as West Nile virus (Flaviviridae: Flavivirus), and 
filarial parasites, and Aedes spp. (mainly Aedes aegypti and 
Ae. albopictus) transmit arboviruses of medical importance 
to animals and humans, including dengue (Flaviviridae: 
Flavivirus), Zika (Flaviviridae: Flavivirus) and chikungunya 
(Togaviridae: Togavirus) viruses (Weaver et al. 2018; WHO 
2017). Some of these pathogens have been wreaking havoc 
for a long time, and others are emerging or resurging, and 
have a very real devastating potential (Weaver et al. 2018).

The mosquitoes’ immature stages (larvae and pupae) 
are aquatic, and larvae feed on organic materials. On the 
other hand, adults are terrestrial and feed on plant saps 
and nectars, whereas females also ingest animal blood 
for egg development (Clements 1992). Consequently, the 
mosquito microbiome is (at least partly) environmentally 
acquired, and can be found in the midgut, salivary glands 
and reproductive tracts (Gao et al. 2020). The microbiome 
affects vector competence, host immune system signaling, 
and longevity, among others, and as such, is critical for 
mosquito development (Caragata et al. 2019; Guégan et 
al. 2018; Strand 2018). Due to its influence on vector-borne 
pathogen transmission, and potential for vector control, 
the mosquito microbiome has attracted increasing 
attention over the past decade. With this escalating 
interest, analyses of the mosquito microbiome using 
NGS approaches are generating hundreds of scientific 
publications every year (Dada et al. 2021b). Of these, the 
vast majority correspond to metataxonomic analyses that 
have used either DNA metabarcoding or RNA shotgun 
sequencing to study the different components of the 
microbiome separately. The metabarcoding analyses have 
mainly focused on bacteria (e.g., Boissière et al. 2012; Buck 
et al. 2016; Coon et al. 2016, 2014; Dada et al. 2021a, 2019; 
Díaz et al. 2021; Dickson et al. 2017; Duguma et al. 2019; 
Gimonneau et al. 2014; Hegde et al. 2018; Mancini et al. 
2018; Muturi et al. 2016; Osei-Poku et al. 2012; Sharma et 
al. 2014; Trzebny et al. 2023; Villegas et al. 2018; Wang et 
al. 2011), but a couple have analyzed the fungal (Tawidian 
et al. 2021) and eukaryotic (Belda et al. 2017) components, 

and one metabarcoding study included both prokaryotes 
and eukaryotes (Thongsripong et al. 2018). 

The viral component of the microbiome has also 
been extensively studied by means of metataxonomic 
approaches that used meta-RNA shotgun sequencing 
(e.g., Aragão et al. 2023; Fauver et al. 2016; Feng et al. 
2022; Hameed et al. 2021; Li et al. 2023; Liu et al. 2023; 
Ramírez et al. 2020; Sadeghi et al. 2018; Shi et al. 2015, 
2017; Thongsripong et al. 2021; Wu et al. 2023; X. Yang et 
al. 2023). 

Metatranscriptomic studies in mosquitoes

Four metatranscriptomic studies in mosquitoes have 
been published to date (see Table 1), however, neither 
of these studies analyzed the metatranscriptomic data to 
determine the expression profile of the microbiomes. The 
first one was designed as a proof of concept to characterize 
the members of the mosquito microbiome (Chandler et al. 
2015). The authors used meta-RNA shotgun sequencing 
on seven individual field-collected female mosquitoes 
from three species, Culex pipiens (Farajollahi et al. 2011), 
Culiseta incidens and Ochlerotatus sierrensis (Ledesma and 
Harrington 2011). Sequences from viruses, bacteria, and 
fungi were identified in each individual, and mosquito 
species identities were also verified using the sequencing 
data. Single stranded RNA viruses of the Bunyaviridae and 
Rhabdoviridae were identified, along with an unclassified 
genus of double-stranded RNA viruses. Further, sequences 
related to 8 bacterial and 13 fungal families were found 
across the seven samples. Bacillus and Escherichia/Shigella 
were identified in all samples and Wolbachia was identified 
in all Cx. pipiens samples, while no single fungal genus was 
found in more than two samples. This study underscores 
the advantage of using this approach to characterize 
the mosquito microbiome and, especially, the value of 
identifying all the components associated with a specific 
host (Chandler et al. 2015).

The next metatranscriptomic analysis was published 
in 2021. In this study, unbiased metatranscriptomic 
sequencing of 148 individual field-collected adult Aedes, 
Culex, and Culiseta mosquitoes enabled the detection of 
sequences from eukaryotes, prokaryotes, and 24 known 
and 46 novel viral species (Batson et al. 2021). The fact that 
individual mosquitoes were sequenced added great value 
to the biological information that was obtained. Among 
others, it was possible to compute the prevalence of each 
microbe and the high frequency of viral co-infections, to 
establish an association between animal pathogens and 
specific blood meals, and to speciate the host mosquito 
(Batson et al. 2021). 
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That same year another metatranscriptomic study 
analyzed total RNA extracted from dissected abdomens 
of Ae. albopictus females fed with sugar and human blood 
containing either normal or heat-inactivated serum, 
to evaluate the effect of heat inactivation on gene 
expression in the mosquitoes, and on the bacterial and 
viral components of their microbiome (Calle-Tobón et 
al. 2021). The authors found that at least 600 host genes 
showed a modified expression profile when mosquitoes 
were fed with normal vs. heat-inactivated-containing 
blood, and that the bacterial community changed at 6 
hours post-feeding. Nevertheless, they did not observe 
differences in the core viral component of the mosquito 
microbiome. These results suggest that serum heat 
inactivation may have a profound effect on mosquito and 
microbiome metabolism. This study only described the 
bacterial and viral components of the microbiome. 

The most recent metatranscriptomic analysis 
evaluated the microbiome of Ae. albopictus populations 
in Germany (Rau et al. 2022) where the mosquito 
specimens collected as larvae in the field from seven 
German locations were processed immediately after adult 
emergence, and adults were pooled according to sex 
before total RNA extraction. Sequence analysis revealed 
the presence of viruses, bacteria, and fungi. Some of the 
identified taxa had already been described in Ae. albopictus, 
such as Wolbachia pipientis, Acinetobacter baumannii or 
Usinis virus. Others had been detected previously in 
other mosquito species and invertebrates but not in Ae. 
albopictus, including High Island virus, Guapiaçu virus and 
Elizabethkingia anophelis. Lastly, some of the bacteria had 
not been identified previously in mosquitoes, including 
Limnobacter humi, Zooglea resiniphila, and Chryseobacterium 
aureum. The authors also found differences between males 

Table 1: Comparative summary of metatranscriptomic studies (if available) in mosquitoes, sandflies, tsetse flies, triatomines and 
ticks. The list includes the host and species that were analyzed, country of origin of the specimens and if they were field-collected or 
lab-reared, developmental stage and sex that were analyzed, what part of the specimen/s was/were analyzed (whole body or certain 
tissues), the type of RNA that was sequenced (and if there was rRNA depletion), the NGS platform that was used, taxonomic and 
functional profiling (yes or no), and the corresponding reference. No information was available for tsetse flies, triatomines.

 Host Species Country of 
origin (field-

collected/
lab-reared) 

Developmental 
stage (sex) 

Body/
Tissue 

RNA type Sequencing 
platform 

Taxonomic 
profiling 

Functional 
profiling 

Reference

 Mosquitoes Culex pipiens, 
Culiseta 
incidens and 
Ochlerotatus 
sierrensis 

USA (field-
collected) 

Adults 
(females) 

Whole 
body 

Total RNA; 
rRNA 
subtraction 

Illumina 
HiSeq2000 

Yes No Chandler et 
al. 2015

 Aedes, Culex 
and Culiseta 

USA (field-
collected) 

Adults 
(females) 

Whole 
body 

Total RNA; 
rRNA 
subtraction 

Illumina 
NovaSeq 
or NextSeq 
sequencing 
system 

Yes No Batson et al. 
2021

 Aedes 
albopictus 

USA (F1 lab-
reared) 

Adults 
(females) 

Whole 
abdomen 
and 
midgut 

Total RNA, 
rRNA 
subtraction 

Illumina HiSeq Yes No Calle-Tobón 
et al. 2021

Ae. Albopictus Germany 
(field-collected 
as larvae) 

Recently 
emrged adults 
(female and 
male) 

Whole 
body 

Total RNA Ion Torrent Yes No Rau et al. 
2022 

 Sandflies Lutzomyia 
longipalpis 

Argentina and 
Brazil (field-
collected) 

Adults (female 
and male) 

Whole 
body 

Total RNA Pyrosequencing 
(454 GS FLX 
Titanium) 

Yes No McCarthy et 
al. 2011

 Phlebotomus 
chinensis 

China (field-
collected) 

Adults (don’t 
specify sex) 

Whole 
body 

Total RNA; 
rRNA 
subtraction 

Illumina 
NovaSeq 

Yes No Wang et al. 
2022

Ticks Ixodes 
holocyclus, 
Haemaphysalis 
bancrofti 
and Ixodes 
trichosuri 

Australia 
(field-
collected) 

Nymphs and 
adults (females 
and males) 

Whole 
body 

Total RNA Illumina 
NovaSeq 

Yes No Gofton et al. 
2022 
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and females: in females more contigs were assigned to 
bacteria, whereas in males most contigs were assigned to 
viruses (Rau et al. 2022).

Sandflies (Diptera: Phlebotominae)

Phlebotomine sandflies can transmit various diseases. 
Even though the most important are the leishmaniases 
(Maroli et al. 2013), they also transmit viruses (Alkan 
et al. 2013; Depaquit et al. 2010) and bacteria (Maroli et 
al. 2013), although little is known about the molecular 
interactions of sandflies with viruses and bacteria (Telleria 
et al. 2018). Phleboviruses are the most significant of the 
sandfly-borne viruses, causing symptoms that span from 
short term fever to haemorrhagic fever (Alkan et al. 
2013). In South America, sandflies are the most important 
vectors of Bartonella bacilliformis, the etiological agent of 
bartonellosis (Battisti et al. 2015; Schultz 1968). 

Sandflies lay their eggs in moist environments (leaves, 
soil, animal burrows, and/or tree trunk niches) and 
immature stages feed on organic materials (Volf et al. 2002). 
During adulthood they feed on sugars and females also 
ingest blood (Beaty and Marquardt 1996). Consequently, 
they are exposed to a wide range of microorganisms 
and viruses which can become part of their microbiome 
(Sant’Anna et al. 2012), mainly colonizing the sandfly 
midgut (Telleria et al. 2018). Sandflies become infected 
with Leishmania when they engorge on host blood to 
develop eggs and reproduce, and as the parasite develops 
exclusively in the mid- and hindgut of the sandfly, it 
coexists and interacts with the gut microbiome (Kelly et 
al. 2017). Moreover, the gut microbiome has a significant 
impact on Leishmania development (Louradour et al. 
2017), and on sandfly fecundity and development (Telleria 
et al. 2018), which is why it has gained relevance over the 
last decade (Tabbabi et al. 2022). 

Initial approaches to study the sandfly microbiota 
were culture-dependent (Akhoundi et al. 2012; Dillon et 
al. 1996; Oliveira et al. 2000; Perira de Oliveira et al. 2001; 
Volf et al. 2002) but, with the advent of molecular methods, 
standard bacteriological methods were combined with 
Sanger-sequencing of clones and culture-independent 
methods (Campolina et al. 2020; Fraihi et al. 2017; 
Gouveia et al. 2008; Guernaoui et al. 2011; Gunathilaka et 
al. 2020; Hillesland et al. 2008; Karimian et al. 2019; Li et 
al. 2016; Machado et al. 2014; Maleki-Ravasan et al. 2015; 
Mukhopadhyay et al. 2012; Sant’Anna et al. 2012; Vivero 
et al. 2016) (reviewed in Tabbabi et al. 2022). Notably, 
since the development of high throughput platforms, 
fewer studies have used an NGS approach to analyze the 
sandfly microbiome compared to other hematophagous 

arthropods such as mosquitoes and ticks. A few studies 
have used DNA metabarcoding to describe the bacterial 
community (e.g., Kelly et al. 2017; Papadopoulos et al. 
2020; Pires et al. 2017; Vivero et al. 2021, 2019), and the 
bacterial and fungal communities (Tabbabi et al. 2021), 
and one RNA metabarcoding study analyzed 16S rRNA 
transcripts (Monteiro et al. 2016). 

Interestingly, even though sandfly-borne viruses 
have been extensively studied using traditional methods 
(reviewed in Ayhan and Charrel 2017; Depaquit et al. 
2010; Jancarova et al. 2023), no metataxonomic approach 
has yet been used to analyze the viral component of the 
microbiome.

Metatranscriptomic studies in sandflies

To date, only two metatranscriptomic studies have 
been published for sandflies (Table 1). Neither study 
analyzed the metatranscriptomic data to determine the 
functional profile of the microbiome.

The first study analyzed the microbiome associated 
with field-caught adult male and female Lutzomyia 
longipalpis from an Argentine endemic (Posadas, 
Misiones) and a Brazilian non-endemic (Lapinha Cave, 
Minas Gerais) visceral leishmaniasis location (McCarthy 
et al. 2011). Total RNA was extracted from whole sandflies 
and submitted to high-throughput pyrosequencing. The 
diversity of bacterial, fungal, and protist transcripts 
that were identified mostly confirmed the sandflies’ 
feeding habits and behavioral patterns. Nevertheless, 
it also suggested that these vectors could possibly be a 
chance source of dispersal of various animal and plant 
diseases, such as coccidiosis and malaria. Gregarines 
(protozoan invertebrate parasites) were also identified, 
which suggested they could be used as an efficient control 
method under natural conditions (McCarthy et al. 2011). 

The other study analyzed the metatranscriptomes 
of several adult Phlebotomus chinensis populations in 
China (Wang et al. 2022). This analysis revealed actively 
replicating/transcribing bacteria, RNA and DNA viruses, 
and eukaryotic microbes. The authors found that the 
microbiome represented up to 1.8% of the total non-
ribosomal RNA and comprised more than 87 species, 70 
of which were novel, including divergent Flavivirus and 
Trypanosomatidae. Importantly, they identified four 
types of human and/or mammalian pathogens, including 
two phleboviruses (hedi and wuxiang viruses), one novel 
spotted fever group Rickettsia, and a member of the 
Leishmania donovani complex. This study also showed the 
ubiquitous presence of Wolbachia.
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Tsetse flies (Diptera: Glossinidae)

Tsetse flies (Glossina sp.) are the primary vector 
of Trypanosoma brucei, the causal agent of human and 
domesticated animal African trypanosomiases in sub-
Saharan Africa (Wang et al. 2013). 

Adult tsetse (males and females) feed exclusively on 
vertebrate blood and, unlike other oviparous insects, 
females produce only one egg per gonotrophic cycle 
(Tobe 1978). Offspring develop in their mother’s uterus, 
immediately pupate after being deposited as 3rd instar 
larvae (adenotrophic viviparity), and adults emerge after 
30 days. A highly modified maternal accessory gland (or 
milk gland) provides nourishment during larvagenesis 
(Attardo et al. 2008; Benoit et al. 2012), and maternal 
milk is the route used by vertically-transmitted symbiotic 
bacteria to colonize the developing larvae (Wang et al. 
2013).

Tsetse harbors various bacterial species. The 
bacterial community includes 3 maternally-transmitted 
endosymbionts, and a taxonomically diverse but reduced 
assemblage acquired from the environment (Wang et 
al. 2013), particularly from the host skin surface during 
blood meals (Farikou et al. 2010; Simo et al. 2008). The 
simplicity of the bacterial microbiota is most probably 
due to the unique aspects of tsetse fly biology, which 
significantly limit environmental microbial exposure. 
Namely, the obligate vertebrate blood feeding lifestyle of 
adults and the live birth of progeny following intrauterine 
larval development (Benoit et al. 2015).

Wigglesworthia, Sodalis and Wolbachia are the three 
endogenous symbionts. All field-collected tsetse flies 
examined to date harbor the obligate Wigglesworthia, 
whereas infection prevalence of Sodalis in field populations 
varies from 0 to 85% (Farikou et al. 2011; Maudlin et al. 
1990), and Wolbachia infection prevalence in field-captured 
tsetse differs significantly between different host species, 
and between populations of the same species (Alam et al. 
2012; Doudoumis et al. 2012).

Tsetse’s association with Wigglesworthia is ancient (50-
80 million years ago), and the significance of this mutualism 
has crystalized in the bacteriome structure (Aksoy et 
al. 1995). This specialized organ is an immunotolerant 
niche that only harbors Wigglesworthia within specialized 
epithelial cells (bacteriocytes) (Aksoy 2000, 1995). This 
bacterium is also found extracellularly in milk gland 
secretions (Attardo et al. 2008). Wigglesworthia provides 
its host with nutritional and immunological benefits, 
supplying the necessary nutrients that are lacking in the 
blood diet (Wang et al. 2009). Moreover, in the absence 
of Wigglesworthia, 1) intrauterine larval development is 

stunted and progeny aborted (Pais et al. 2008; Schlein 
1977)), and 2) larval intrauterine development produces 
adults with a severely compromised immune system 
(Weiss et al. 2012, 2011). 

Sodalis is a gram-negative endosymbiont closely 
related to free-living Enterobacteriaceae, that is also found 
in other insects such as stink bugs (Kaiwa et al. 2010) and 
weevils (Toju et al. 2010). In contrast to Wigglesworthia, it 
exhibits a wide tissue tropism and can be found both intra 
and extracellularly in various tissues including midgut, fat 
body, milk gland, salivary glands and hemocoel (Balmand 
et al. 2013; Cheng and Aksoy 1999). Even though Sodalis 
lacks a clearly defined functional role within its host and is 
absent in several natural tsetse populations, various studies 
indicate that it may play a role in tsetse’s ability to vector 
pathogenic trypanosomes. In contrast to Wigglesworthia, 
which increases tsetse refractoriness to trypanosomes, 
Sodalis appears to favor the establishment of trypanosome 
infections (Wang et al. 2013; Welburn et al. 1993).

Wolbachia is a widespread alpha-proteobacteria 
endosymbiont that infects approximately 70% of insects, 
including some tsetse populations (Hilgenboecker et al. 
2008). Wolbachia is only found intracellularly in tsetse 
germ line tissues, and can be detected in early oocyte, 
embryo and larvae (Balmand et al. 2013; Cheng et al. 
2000). It is thus transmitted transovarially via germ line 
cells, in contrast to Sodalis and Wigglesworthia which are 
transmitted via milk gland secretions.

Other environmentally acquired bacteria are 
found in tsetse flies and include members of the 
phyla Actinobacteria, Bacteroidetes, Firmicutes, and 
Proteobacteria. They have been found consistently in 
different tsetse species captured in geographically distinct 
localities (Aksoy et al. 2014; Geiger et al. 2009; Lindh and 
Lehane 2011). Nevertheless, they account for less than 1% 
of tsetse’s bacterial gut microbiota (Aksoy et al. 2014), and 
their effect on the biology of tsetse flies is still unclear 
(Gaithuma et al. 2020).

The bacterial component of the microbiome has been 
studied to a certain degree using culture dependent and 
independent approaches (Geiger et al. 2011, 2009; Lindh 
and Lehane 2011), DNA metabarcoding (Aksoy et al. 
2014; Doudoumis et al. 2017; Griffith et al. 2018; Tsakeng 
et al. 2022), and one DNA metabarcoding analysis that 
simultaneously gauged the bacterial component and the 
blood meal source (Gaithuma et al. 2020). Compared to 
other VBDs, the number of NGS studies is very limited.

Many tsetse flies from colonies and natural 
populations, also harbor a salivary gland-associated 
rod-shaped, enveloped DNA virus called Salivary Gland 
Hypertrophy Virus (SGHV) (Jaenson 1978), that can 
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cause hypertrophy of the salivary glands and gonadal 
lesions (Jaenson 1978). It is vertically transmitted via 
maternal milk gland secretions, or horizontally during 
the feeding process (Abd-Alla et al. 2011). Most SGHV-
infected tsetse are asymptomatic and have no apparent 
loss of host fitness, but flies infected with high virus titers 
show reduced fecundity and lifespan, and display hyper-
trophied salivary glands (Abd-Alla et al. 2011; Sang et al. 
1999). Infection prevalence of SGHV in field populations 
varies according to location and species (Malele et al. 2013). 
Recently, two single-stranded RNA viruses of unknown 
impact were isolated from a Glossina morsitans morsitans 
colony (Glossina morsitans morsitans iflavirus (GmmIV) 
and Glossina morsitans morsitans negevirus (GmmNegeV)) 
(Meki et al. 2021). Results revealed potential horizontal 
viral transmission during feeding and/or vertical viral 
transmission from parent to offspring (Meki et al. 2021). 
Another study that analyzed public tsetse RNA-seq 
libraries (mainly from laboratory colonies), identified 
the genomes of four iflaviruses (Manni and Zdobnov 
2021). The iflavirus identified in G. morsitans (GliflaV1) was 
found in all 136 available G. morsitans RNA-seq libraries, 
and displayed a broad tissue tropism and high abundance, 
reaching up to 15% of library content. Its ubiquitous 
distribution and presence in the reproductive tissues, 
intrauterine larvae, and teneral flies suggest it could be 
part of the initial core microbiota maternally transmitted 
to the progeny (Manni and Zdobnov 2021).

Nevertheless, no meta-RNA sequencing approach has 
been undertaken to characterize the viral component of 
the tsetse microbiome.

Metatranscriptomic studies in tsetse flies

No metatranscriptomic approach has yet been 
undertaken to identify the prokaryotic, eukaryotic, and 
viral composition of the tsetse microbiome (Table 1). 

Two studies addressed tsetse-Wigglesworthia mutualism 
through dual RNA sequencing (Bing et al. 2017; Munoz 
et al. 2017). Briefly, one of these studies characterized the 
expression profile of the tsetse-Wigglesworthia association 
within the bacteriomes of field captured adult tsetse 
(Glossina pallidipes) from Kenya, with the objective of 
understanding these interactions within the host’s natural 
setting (Munoz et al. 2017). The other study used colony-
reared individuals to perform a dual RNA-seq analysis of 
the bacteriome, coupled with a metabolomic analysis of 
the bacteriome and haemolymph collected from normal 
and symbiont-cured (sterile) females (Bing et al. 2017). 

Recently, a comparative transcriptomic analysis was 
performed between Glossina morsitans and G. brevipalpis 

tenerals (Medina Munoz et al. 2021). Because these newly 
emerged adults have not yet fed, their digestive tract 
microbiota only consists of the core bacteria seeded through 
maternal milk gland secretions, namely Wigglesworthia 
and Sodalis (Medina Munoz et al. 2021). Although a more 
diverse bacterial community has been reported in the 
digestive tracts of adults, these environmentally acquired 
bacteria are lacking within tenerals. Consequently, the 
mentioned study only compared the Wigglesworthia, Sodalis 
and tsetse transcriptomes (Medina Munoz et al. 2021). 

As none of these studies included the eukaryotic and/
or viral components of the microbiome, in this review they 
were not considered metatranscriptomic analyses.

Kissing bugs (Hemiptera: Reduviidae: Triatominae)

Triatomines, also known as kissing bugs, vector 
Trypanosoma cruzi, the etiological agent of Chagas' disease 
(WHO 2023c). An estimated 6-7 million people worldwide 
are infected with T. cruzi, leading to around 12,000 deaths 
each year and some 75 million people at risk of infection, 
mainly in Latin America (WHO 2023d). 

Triatomines typically live in home walls or roof cracks 
and peridomiciliary structures of rural or suburban areas. 
They usually feed at night, and the parasites enter the 
body when the person inadvertently smudges the faeces 
or urine into the bite, other skin breaks, the eyes or the 
mouth (WHO 2023c).

Triatomines feed exclusively on vertebrate blood 
throughout their developmental cycle and, as other 
hematophagous vectors, they harbor beneficial symbionts 
whose primary role is to supply them with nutrients 
that are lacking in the diet (Salcedo-Porras et al. 2020). 
Symbionts are extracellular, reside in the midgut and 
hindgut lumens (Brecher and Wigglesworth 1944; 
Duncan 1926; Wigglesworth 1936), and are required 
for the insect’s development and survival (Brecher and 
Wigglesworth 1944; Durvasula et al. 2008; Vallejo et al. 
2009; Yassin 2005). Symbionts include Rhodococcus rhodnii, 
Corynebacterium sp. and Nocardia sp. (Salcedo-Porras et al. 
2020), and are transmitted from parent to offspring by 
coprophagy (Salcedo-Porras et al. 2020).

The first study to use 16S rRNA gene amplification 
in triatomines identified only one bacterium in Triatoma 
infestans (Hypša and Dale 1997). Since then, culture-
dependent (Lopez-Ordonez et al. 2018), culture-
independent (da Mota et al. 2012; Gumiel et al. 2015), 
and high-throughput sequencing approaches have been 
used to gain a more comprehensive view of the bacterial 
component of the microbiome. The latter have mostly 
used bacterial metabarcoding (Brown et al. 2020; Díaz 
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et al. 2016; Kieran et al. 2019; Lima et al. 2018; Mann et 
al. 2020; McCall et al. 2018; Montoya-Porras et al. 2018; 
Oliveira et al. 2018; Orantes et al. 2018; Rodríguez-Ruano 
et al. 2018; Tarabai et al. 2023; Waltmann et al. 2019), a 
few have used DNA metabarcoding to identify various 
components simultaneously (bacteria, vertebrate hosts, 
parasite diversity and, in one case, triatomine bugs) 
(Dumonteil et al. 2020, 2018; Murillo-Solano et al. 2021), 
one metataxonomic study used shotgun pyrosequencing 
to describe cultivable bacteria (Carels et al. 2017), and 
another metataxonomic study used an interesting 
Restriction-site Associated DNA sequencing (RADSeq)-
based analysis to simultaneously study the vector, the 
parasite, bacteria and feeding patterns (Orantes et al. 
2018) (reviewed by Salcedo-Porras et al. 2020). Various 
of these studies have reported low bacterial diversity 
in the triatomine microbiome in comparison to other 
insect groups (da Mota et al. 2012; Gumiel et al. 2015; 
Lopez-Ordonez et al. 2018). Nevertheless, the triatomine 
microbiome harbors a broad spectrum of eukaryotic 
organisms and viruses, apart from bacteria (Song et al. 
2022). 

Very little is known about the viral component of the 
microbiome. To date, only 8 triatomine viruses have been 
identified and characterized: the Triatoma virus (TrV), 
that was discovered in a colony of field-collected Triatoma 
infestans (Muscio et al. 1988, 1987), and very recently 
seven Rhodnius prolixus viruses 1-7 (RpV1-7) (De Brito et 
al. 2021), which were initially discovered in transcriptome 
assemblies from ovarian tissues of Rhodnius prolixus 
(Coelho et al. 2021). Both RpVs and TrV are vertically 
transmitted to progeny (De Brito et al. 2021; Muscio 
et al. 1997). On the other hand, contigs related to viral 
genomes were incidentally identified in transcriptomic 
analyses of the salivary glands, fat bodies and testes of 
Rhodnius prolixus, Panstrongylus megistus and P. lignarius 
(Nevoa et al. 2018; Ribeiro et al. 2015; Schwarz et al. 
2014), but these observations were not explored further. 
Finally, no metataxonomic analysis has yet studied the 
viral component of the microbiome and thus remains a 
pending assignment.

Metatranscriptomic studies in kissing bugs

Notably, no metatranscriptomic study has been 
performed in triatomines (Table 1).

Ticks (Arachnida: Ixodida)

Tick-borne pathogens cause most of the VBDs in 
temperate North America, Europe and Asia, and although 

these include viruses, bacteria, and parasites (Jongejan 
and Uilenberg 2004), Lyme disease is the most prevalent 
in the northern hemisphere (Rochlin and Toledo 2020). 
Some tick species may harbor numerous pathogens, 
whereas other species are typically associated with one 
major pathogen (Sanchez-Vicente et al. 2019). 

There are two main tick families, Argasidae (soft ticks) 
and Ixodidae (hard ticks), that differ in their ecology and 
public health impact (Parola and Raoult 2001; Sonenshine 
and Roe 2014). Soft ticks have a more restricted habitat 
(Sonenshine 2014), feed quickly, can take several blood 
meals per stage (Vial 2009), and transmit fewer human 
pathogens than hard ticks (Parola and Raoult 2001). On 
the other hand, hard ticks are cosmopolitan  (Sonenshine 
2014), and have extended feeding periods (Sonenshine 
and Roe 2014) during the active feeding stages in their life 
cycle (larva, nymph and adult) (Parola and Raoult 2001), 
that facilitate the transmission of pathogens (Eisen 2018). 

Ticks are obligate blood feeders and, because they 
are vulnerable to desiccation, they live in dark and 
humid conditions (e.g., in leaf litter and animal burrows) 
(Goddard 2005). Consequently, exposure to these 
habitats, combined with the process of feeding on animals 
that host a diverse skin microbiome, provide opportunities 
for ticks to obtain part of their microbiome from the 
environment (Burtis et al. 2019). Like all blood-sucking 
arthropods, ticks lack key vitamins that are necessary for 
their development and rely on their bacterial symbionts to 
overcome this dietary limitation (Bonnet and Pollet 2021). 
The tick microbiome thus includes vertically transmitted 
symbionts and the environmentally acquired commensals. 

Tick microbial diversity and composition has mostly 
been characterized by sequencing of the 16S rRNA gene 
(Bonnet and Pollet 2021). Some of these studies have used 
culture-independent approaches and Sanger sequencing 
(Clay et al. 2008; Hartelt et al. 2004; Moreno et al. 2006; 
Schabereiter-Gurtner et al. 2003; Van Overbeek et al. 
2008), but most have used bacterial DNA metabarcoding 
(e.g., Andreotti et al. 2011; Barraza-Guerrero et al. 2020; 
Beard et al. 2021; Budachetri et al. 2014; Carpi et al. 2011; 
Clayton et al. 2015; Gall et al. 2017; Guizzo et al. 2020; 
Heise et al. 2010; Lalzar et al. 2012; Narasimhan et al. 
2014; Ponnusamy et al. 2014; Qiu et al. 2014; Sakamoto 
et al. 2020; Sperling et al. 2020; Zhang et al. 2020). One 
study performed DNA metabarcoding of various lineages 
(Bacteria, Archaea, Fungi and protists) (Landesman 
et al. 2019), whereas a couple of studies used shotgun 
metagenomics to analyze Bacteria and Archaea (Nakao 
et al. 2013) or only Bacteria (Díaz-Sánchez et al. 2019), 
and two studies analyzed bacterial transcriptomics 
(Hernández-Jarguín et al. 2018; Vayssier-Taussat et al. 
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2013) (reviewed in Narasimhan and Fikrig 2015 and Wu-
Chuang et al. 2021).

Tick-borne viruses are a diverse group that includes 
members of Flaviviridae, Bunyavirales, Orthomyxoviridae 
and Reoviridae (Johnson et al. 2023). Probably this is why 
the viral component of the tick microbiome has recently 
been studied quite extensively through meta-RNA 
sequencing (e.g., Bratuleanu et al. 2023; Cai et al. 2023; 
Guo et al. 2022; Harvey et al. 2019; Kong et al. 2022; Liu et 
al. 2022; Ni et al. 2023; Pettersson et al. 2017; Tokarz et al. 
2018; Xu et al. 2021; Z. Yang et al. 2023). 

Metatranscriptomic studies in ticks

The only metatranscriptomic study in ticks to date 
(Table 1) did not examine the metatranscriptomic data 
to determine the functional profile of the microbiome. 
The authors used untargeted metatranscriptomics to 
analyze the prokaryotic, eukaryotic and viral components 
of the microbiome in ticks (mainly Ixodes holocyclus and 
Haemaphysalis bancrofti) and in wildlife blood samples 
(from Rattus rattus, Rattus fuscipes, Perame lesnasuta 
and Trichosurus vulpecula) from urban and rural sites 
in Australia (Gofton et al. 2022). This study identified 
32 unique tick-borne taxa, including 10 novel putative 
species. These included haemoprotozoa (Babesia, 
Theileria, Hepatozoon and Trypanosoma spp.), bacteria 
(Borrelia, Rickettsia, Ehrlichia, Neoehrlichia and Anaplasma 
spp.), and numerous viruses (including Reoviridae and 
a novel Flaviviridae-like jingmenvirus). A phylogenetic 
analysis of all the tick-borne microorganisms indicated 
that they were unique compared to their relatives 
from outside Australia, and no foreign tick-borne 
human pathogens were found (Gofton et al. 2022).  

CONCLUSION

This review has addressed the status of 
metatranscriptomic and related studies in VBDs, focusing 
on some of the main hematophagous disease-transmitting 
arthropods namely mosquitoes, sandflies, tsetse flies, 
triatomines and ticks. The analysis was based on an 
extensive literature review of available microbial and viral 
studies for these hematophagous arthropods, and mainly 
focused on analyses that used high throughput sequencing 
approaches. Moreover, due to the lack of consensus 
terminology for these “meta-sequencing analyses”, as 
a first step, these terms were defined to establish the 
necessary baseline for interpreting those studies and 
drawing consistent conclusions, namely:

- The majority of studies that used NGS approaches 
to analyze the microbiome of these vectors, carried 
out bacterial metataxonomic analyses using DNA 
metabarcoding. 

- Most metataxonomic studies have been carried out 
in mosquitoes, followed by ticks, whereas the number of 
analyses for triatomines, sandflies, and tsetse flies is quite 
limited, particularly for sandflies and tsetse. 

- The number of metatranscriptomic studies is 
notoriously low for all these hematophagous vectors: 
only 4 studies in mosquitoes, 2 in sandflies, 1 in ticks, and 
none in triatomines and tsetse flies (Table 1). Moreover, 
even though metatranscriptomics has the potential to 
unravel the taxonomic and functional profile of a sample, 
these studies only focused on identifying the different 
components of the microbiome and did not analyze the 
data to determine their expression profile. 

Despite the fact that it is a challenge to assign functions 
and correctly interpret results in metatranscriptomic 
studies (Moran 2009; Rozadilla et al. 2020), the benefits 
of identifying all the processes that are simultaneously 
mediated by an undisturbed microbiome are evident. 
Ultimately, this review has helped to single out these gaps 
in knowledge for the VBDs included here, and this is a 
major step towards addressing them in future studies.
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