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ABSTRACT

The purpose of this study was to perform descriptive and inferential analyses to better understand the presence 
of the abundant mosquito species Aedes atlanticus and Aedes infirmatus in St. Johns County, northeastern Florida. 
Historical surveillance data (2010-2019) obtained from Anastasia Mosquito Control District of St. Johns County, St. 
Augustine, FL, was organized to graph temporal mosquito abundance trends and inverse distance weighted (IDW) 
interpolation was used to map spatial distribution patterns of mosquitoes. Precipitation and habitat composition 
were investigated as spatiotemporal predictors of mosquito abundance using Pearson’s correlation statistics. There 
were considerable and inconsistent fluctuations in the population abundance of Ae. atlanticus and Ae. infirmatus 
across and within individual surveillance seasons during the last decade. Precipitation was significantly associated 
with total county-wide mosquito population counts by season (Ae. atlanticus, R = 0.810, p = 0.005; Ae. infirmatus, R = 
0.850, p = 0.002), while the association with weekly mosquito population trends was inconsistently significant across 
species, lag time, and years. The proportion of surrounding land covered by upland forest, water, and agriculture 
was associated with species abundance at the spatial level of individual trap sites. Overall, the results identify that Ae. 
atlanticus and Ae. infirmatus share a spatiotemporal relationship and are similarly impacted by rainfall and habitat 
type. Findings of the study might help to inform improved surveillance by integrating IDW estimation maps with 
current district resources and improved knowledge of species’ ecology.
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INTRODUCTION

Aedes atlanticus Dyar & Knab and Aedes in-
firmatus Dyar & Knab are floodwater mosqui-
toes that are aggressive biters and nuisance 
pests. There is field evidence that these mos-
quitoes are vectors for several arboviruses in-
cluding keystone virus (KEYV) and eastern 
equine encephalitis virus (EEEV) (Bigler et 
al. 1976, Wellings et al. 1972, LeDuc et al. 
1975, Roberts and Scanlon 1975). The high 
abundance of these two mosquito species in 
St. Johns County [AMCD 2017] combined 
with the detection of both KEYV and EEEV 
within county borders may pose a risk to 
public and veterinary health. However, the 
population distribution and ecological pat-

terns of Ae. atlanticus and Ae. infirmatus in St. 
Johns County and the entirety of North Flor-
ida are not well described. Such knowledge 
could help to inform and improve surveil-
lance and control programs in the county.

Geographic information systems (GIS) 
and remote sensing have emerged as power-
ful tools in mosquito control efforts by offer-
ing insights into geographic distribution and 
spatial clustering which help to understand 
historical patterns and overall dynamics of 
mosquito vector populations (Hungerford 
1991) and arbovirus transmission (Sallam 
et al. 2016a, b). A spatiotemporal analysis 
can be used to determine static or dynamic 
hotspots of abundant mosquito populations 
and guide control efforts to predict and pre-
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emptively manage these areas. Additionally, 
it is equally important to observe and study 
the potential ecological drivers of mosquito 
distributions to better understand a species’ 
presence and geographical movement. Such 
knowledge can be used to optimize surveil-
lance and control programs, especially when 
considering ecological drivers of vector pop-
ulations as indirect risk factors for arbovirus 
transmission.

The objective of this study was to explore 
the spatiotemporal distribution of Ae. atlanti-
cus and Ae. infirmatus and examine potential 
ecological drivers of mosquito abundance 
and distribution in St. Johns County based 
on the historical surveillance records ar-
chived by Anastasia Mosquito Control Dis-
trict (AMCD) of St. Johns County, FL.

MATERIALS AND METHODS

Study Area. St. Johns County is located on 
the northeastern part of Florida and covers 
1,650 km2  between the St. Johns River and the 
Atlantic Ocean coastline (Fig. 1). The region 
has a humid subtropical climate with an av-
erage high temperature of 90°F (32.2 °C) 
in the warmest month and an average low 
temperature of 46°F (7.8 °C) in the coldest 
month (Weather Atlas). The environment 
is characterized by a range of salt and fresh 
water habitats and is classified as an Eastern 

Florida Flatwoods Class IV ecoregion by the 
Environmental Protection Agency (United 
States Environmental Protection Agen-
cy). The population estimate for 2019 was 
249,734 residents compared to an estimated 
190,646 residents in 2010 (Florida Health 
Charts). Shapefiles of St. Johns County wa-
terways, roads, and mosquito adulticide 
zones were retrieved from AMCD GIS ar-
chives.

Mosquito surveillance dataset. AMCD uses 
the U.S. Centers for Disease Control and 
Prevention (CDC) light traps (John Hock, 
Gainesville, FL) baited with octenol for its 
seasonal surveillance program which typical-
ly runs April-November every year. During 
2010-2019 light traps were equipped with a 
plastic collection container with a pesticide 
stick, 12V battery, light bulb, and an octenol 
lure stick (synthetic semiochemical, Bio-
sense). Traps were set out in designated field 
locations (one trap per site, number of sites 
dependent on season) once every week for 
approximately 24 hours. Afterwards, light 
traps and collections were transported to the 
AMCD laboratory for species identification 
and database recordkeeping using appropri-
ate taxonomic keys (Darsie and Ward 2005).

Data preparation & exploratory data analy-
sis. Historical CDC light trap surveillance 
data (2010-2019) were retrieved from AMCD 
database records. Spreadsheet data of weekly 
mosquito trap collections for a subset of years 
(2010, 2013, 2016, 2019) were reorganized, 
georeferenced, and compiled into total counts 
per week and per trap location for both Ae. at-
lanticus and Ae. infirmatus (Fig. 2a, b). The to-
tal sum of adult female mosquitoes collected 
at an individual or all CDC light trap sites 
over the course of a (standardized) surveil-
lance season was used as a measure of total 
seasonal count. The standardization process 
entailed comparing the start and end dates 
of all surveillance seasons and tailoring a 
standard period that matched the short-
est surveillance season (twenty-six weeks; 
early May-early November) to all years with 
approximately equivalent start/end dates. 
Mosquito counts that fell outside of these 
weeks for any year were excluded from all 
temporal and spatial analyses. Total seasonal 

Figure 1. Map of Florida and county borders of St. 
Johns County, Florida
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counts were then utilized as proxy measures 
for assuming total seasonal abundance at ei-
ther an individual location or on a county-
wide scale. County-wide totals were averaged 
by the number of active trap sites in a given 
surveillance season to account for differenc-
es in number of traps deployed (Table  1). 
Four years of the ten-year timespan were ini-
tially singled out for spatiotemporal analy-
ses due to a limited time capacity; however, 
early exploratory data analysis motivated the 
integration of total count data from the re-
maining six years of the decade in temporal 
analyses (not spatial) to better understand 
the fluctuations in county-wide trends across 
separate surveillance seasons.

One problem that arose was the pres-
ence of null values for weeks within the stan-
dardized season due to no trap collections 
that week for unknown or extreme weather-
related reasons. Data imputation was used to 

overcome this issue by averaging the weekly 
county-wide abundance data between the 
prior week and following week surrounding 
a missing data point. Four years had no miss-
ing collection weeks while other years had 
one, two (most), or in one case three weeks 
missing. Other imputation techniques, such 
as averages for a particular collection week 
across the remaining ten years, did not pro-
duce valid estimates. Imputation was not 
used to replace missing weekly count values 
at individual trap sites and thus did not im-
pact spatial analyses.

Due to observations from initial explor-
atory analyses, rainfall was chosen as a po-
tential environmental predictor of temporal 
mosquito abundance. Daily and seasonal 
precipitation summaries (April 2010-Nover-
mber 2020) were downloaded from the Hast-
ings 4 NE, FL US GHCND: USC00083874 
weather station in St. Johns County via the 

Figure 2. CDC light traps and spatial heterogeneity of mosquito abundance: (a) CDC light trap locations for 
the years 2010, 2013, 2016, and 2019. (b) Descriptive statistics of mosquito counts at 2010, 2013, 2016, and 2019 
trap sites. The minimum, maximum, and standard deviation (Min, Max, SD) were calculated using the total count 
of mosquitoes collected at individual trap sites over each twenty-six-week season to emphasize spatial heterogeneity. 
Averaged seasonal abundances for each species during these years are listed in Table 1.
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National Oceanic and Atmospheric Admin-
istration Climate Data Online Search tool 
(https://www.ncdc.noaa.gov/cdo-web/
search).

Spatial analysis. GIS Esri ArcMap 10.7.1 
software was used to create maps and per-
form all spatial functions and calculations. 
Total seasonal mosquito trap counts were 
linked to the county shapefile with XY 
coordinates (latitude, longitude) of sam-
pling sites. All data sets were projected to 
the (GCS_NAD_1983_2011) geographic 
coordinate system and the Albers Equal 
Conical Area projection coordinate system 
(NAD_1983_2011_Florida_GDL_Albers). 
Portions of the base county shapefile were 
erased with the overlay of the waterways to 
clarify the boundaries of the county land-
mass and adulticide zones during creation 
of interpolation maps.

 Previous entomological and vector stud-
ies have employed interpolation techniques 
to estimate mosquito species abundance 
at non-sampled locations, particularly us-
ing the inverse distance weighted (IDW) 
method (Allen and Shellito 2008, Cleckner 
et al. 2011, Sarfarz et al. 2012, Sumaye et 
al. 2012, Suganthi et al. 2015, Dunphy et al. 
2019, Saffawati et al. 2019). IDW was cho-
sen for these analyses due to its low process-
ing power, comprehensiveness, and simpli-

fied interpolation that does not necessitate 
the more sophisticated math parameters 
of other methods. All interpolation for 
mosquito abundance was performed using 
ArcMap 10.7.1 default settings (variable 
distance, twelve minimum neighbors) due 
to the uneven and extensive spread of sam-
pling sites. The default decay power of two 
was also kept because this is within the stan-
dard range of environmental interpolation 
studies (literature cited above). A biologi-
cally relevant fixed distance (i.e. mosquito 
flight range) was not possible to include in 
the input parameters because the distance 
between most sampling sites exceeded such 
a distance threshold. IDW maps were cre-
ated for each singled-out year (2010, 2013, 
2016, 2019) or an aggregate total across 
the four years using georeferenced sea-
sonal totals. For several statistical analyses, 
the layer attributes of estimated mosquito 
counts were extracted from IDW maps for 
2010, 2013, and 2016 by setting the input 
location points as the CDC light trap sites 
from the 2019 surveillance season, which 
had the highest number of active trap sites 
(Fig. 2 a,b). This allowed comparison of 
(estimated) mosquito abundance across 
the timeline from locations where a trap 
was not permanently placed throughout 
the four years.

Table 1. The total and average abundance of Ae. atlanticus and Ae. infirmatus for every year 2010-2019 using the 
total combined count of all mosquitoes from all traps active during the twenty-six-week season. To describe the 
full timeline of 2010-2019, the minimum, maximum, mean, and standard deviation (Min, Max, Mean, SD) were 
calculated using the compiled averaged abundance of mosquitoes from all trap sites over each season (Average/
trap) across all years to emphasize temporal heterogeneity among separate surveillance seasons. Use of raw collection 
counts; imputed values were not included in the calculations of this table.

Surveillance season Ae. atlanticus Ae. infirmatus

Year(s) No. traps Total Average/trap Total Average/trap

2010 39 1,525 39.10 679 17.41
2011 39 405 10.38 948 24.31
2012 39 6,861 175.92 2,05 71.92
2013 39 26,769 686.38 1,221 31.31
2014 38 19,938 524.68 987 25.97
2015 32 20,670 645.94 322 10.06
2016 32 26,337 823.03 452 14.13
2017 32 47,088 1,471.50 9,935 310.47
2018 32 15,098 471.81 1,175 36.72
2019 41 3,236 78.93 589 14.37

Min Max Mean SD Min Max Mean SD

 2010-2019 10.38 1471.5 490.29 457.54 10.06 310.47 55.75 91.25
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Habitat composition analysis. This meth-
odology was based on studies by Moncayo 
(2000) and Kelen et al (2012). Land use/
land cover (LULC) data sourced from the 
2014 St. Johns River Water Management 
District (SJRWMD) LULC dataset which was 
downloaded from the Florida Geographic 
Data Library (https://www.fgdl.org/meta-
dataexplorer/explorer.jsp). St. Johns River 
Water Management District provides a lo-
calized and finely detailed classification of 
LULC with a maximum one hundred LULC 
codes to describe polygon land plots. Digital 
orthophotography and classification of St. 
Johns County was accomplished by SJRWMD 
in 2015. There are four levels of LULC classi-
fications defined by the SJRWMD with Level 
1 being the broadest and Level 4 as the most 
specific. Level 2 classification codes were 
originally chosen but were later adjusted to 
resemble Level 1 codes with seven aggregat-
ed categories; (1) residential and built-up, 
(2) agriculture, (3) upland non-forested, (4) 
upland forested, (5) water, (6) wetlands, and 
(7) transportation, utilities, and barren.

Buffer zones were drawn around all 
thirty-two mosquito trapping sites from the 
2016 surveillance season. Data from other 
surveillance years (2010, 2013, and 2019) 
were not included in these analyses to avoid 
confounding of potentially significant LULC 
change between years, e.g. urbanization. 
The buffer radii were 2.2 km or 1.4 km to 
account for the published flight range of 
Ae. atlanticus and Ae. infirmatus, respectively 
(Morris et al. 1991, Verdonschot and Besse-
Lototskaya 2014). The values of the total 
area of Level 2 LULC codes within each 
buffer zone were extracted to calculate the 
proportions of LULC classes within the to-
tal buffer area surrounding individual CDC 
light trap sites. The identity tool was used for 
retrieval of the exact LULC classification of 
any individual polygon cell that contained a 
mosquito trap site.

Statistical analysis: For non-spatial analy-
ses, classical Pearson’s correlation was used 
to test the relationships between two quanti-
tative variables (total seasonal precipitation 
vs total seasonal county-wide mosquito abun-
dance, total weekly precipitation vs total 

weekly county-wide mosquito abundance). 
Precipitation was lagged at two and three-
week intervals for correlation tests with mos-
quito counts to account for the timespan 
needed for mosquito development from 
egg to adult. Spatially-referenced mosquito 
abundance at individual trap sites was rep-
resented by total seasonal counts. For habi-
tat composition analyses and related Pear-
son’s correlations, abundances at individual 
2016 trap sites were log(n+1) transformed 
to achieve a more normalized distribution 
(Williams 1937, Bidlingmayer 1969). Mos-
quito abundance was separately compared 
against values of percent buffer coverage by 
each LULC class. Non-parametric statistics 
(Kruskal-Wallis) were used for any testing 
of quantitative variables between categorical 
groups (surveillance season) due to the non-
normal distribution of all datasets (O’Hara 
and Kotze 2010). All statistical tests were per-
formed using SPSS Statistic 26 software and 
were species-specific.

RESULTS

Spatiotemporal patterns. Temporal: Mos-
quito abundance data (2010-2019) were 
compared by year, month, and week with 
measurements of average number mosqui-
toes per trap to account for the varied num-
ber and location of light traps across the ten 
years. Overall, abundance of Aedes atlanticus 
was higher than that of Ae. infirmatus in CDC 
light trap collections every year except for 
2011 which had an abnormal pattern due to 
most traps having comparatively low or zero 
counts of Ae. atlanticus throughout the dura-
tion of the surveillance season. Both species 
demonstrated variation in total mosquito 
abundance across individual surveillance 
seasons; however, abundance trends (popu-
lation rise or decline) over the decade were 
similar between the two species, aside from 
2012-2013 and 2015-2016 when total sea-
sonal counts of Ae. atlanticus and Ae. infirma-
tus contrastingly increased or decreased in 
number compared to the previous year (Ta-
ble 1). There was a positive correlation (R = 
0.674, p = 0.046) between the average (stan-
dardized) seasonal abundance between the 
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two species. Aedes atlanticus often had peak 
activity in the latter half of the season with 
a gradual increase in emergence until the 
end of October. In contrast, average peak 
abundance for Ae. infirmatus typically oc-
curred June-August and then remained low 
for the rest of the season. There were also 
week-to-week fluctuations which were not 
constant between years as the population 
growth curves of both species were highly 
variable over the standardized twenty-six-
week season for 2010-2019 with differences 

in magnitude and seasonal timing of popu-
lation peaks between years. Aedes infirmatus 
populations generally emerged before Ae. 
atlanticus according to collection data from 
weeks preceding the standardized timeline. 
Both species reached one to several dramat-
ic population peaks during May-November 
and most of these crests lasted one to two 
weeks until there was a noticeable decrease 
in the number of mosquitoes collected.

Spatial: The variation in seasonal trap 
collections across different traps sites 

Table 2. The Kruskal-Wallis non-parametric method was used to test for significant differences in the mean seasonal 
mosquito abundance between all the years 2010, 2013, 2016, and 2019 (input values as seasonal aggregates of mos-
quitoes collected at individual CDC light traps). Tukey’s test for post hoc analysis allowed multiple pair-wise com-
parisons (2010 vs 2013, 2013 vs 2019, etc.) to resolve which pairs of years had statistically significantly differences. 
The bolded test statistics (χ2, p-value) represent statistical significance between samples (n = df + 1).

Years compared

Ae. atlanticus Ae. infirmatus

 χ2 p-value df  χ2 p-value df

2010 - 2019 51.482 <0.001 3 10.748 0.013 3
2010 vs 2013 -55.603 <0.001 1 -21.949 0.158 1
2010 vs 2016 -59.427 <0.001 1 -3.346 1.000 1
2010 vs 2019 -14.285 0.864 1 -9.325 1.000 1
2013 vs 2016 -3.825 1.000 1 -18.603 0.444 1
2013 vs 2019 -41.318 <0.001 1 -31.273 0.008 1
2016 vs 2019 -25.143 <0.001 1 -12.671 1.000 1

Figure 3. Aggregated IDW surfaces with overlay of adulticide zones: The aggregates of total seasonal counts of 
(a) Ae. atlanticus and (b) Ae. infirmatus, collected at all trap site locations of 2010, 2013, 2016, and 2019, were used 
to create an IDW surface for each species. The symbology classification was set as equal intervals and includes both 
the minimum and maximum values of estimated number of mosquitoes (i.e. mosquito abundance) across the 
county. A shapefile of AMCD’s 2020 adulticide route zones was overlaid the IDW raster surfaces to outline zones 
with historical hotspots of mosquito populations.
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(Fig.  2b) indicated a high level of spatial 
and temporal heterogeneity of mosquito 
abundance throughout St. Johns County. 
Total mosquito counts for each trap site for 
the years 2010, 2013, 2016, and 2019 were 
compared (Table 2). Both species had a sta-
tistically significant difference in mean sea-
sonal abundance across the four years. For 
Ae. atlanticus, a Tukey post hoc test showed 
this difference was due to significant differ-
ences in the distributions of mosquito abun-
dance counts between either peripheral year 
(2010, 2019) versus the middle two years 
(2013, 2016). There was no significant dif-
ference in county-wide abundance with 2010 
vs 2019 or 2013 vs 2016. For Ae. infirmatus, 
the significance of the Kruskal-Wallis test 
was driven by a significant difference only 
between years 2013 vs 2019.

 IDW surface maps created with data 
from individual surveillance seasons showed 
shifting clusters of mosquito population 
hotspots with inconsistent intensities across 
the four years (data not shown). Standard-
ization of ArcGIS classification symbology 
for a single species clarified the differences 
in expected population abundances and 
distributions from year to year. The maps 
showed evidence of differences in county-
wide mosquito abundance between years; 
however, did not show evidence of any 
chronologically consistent shifts in mosquito 
distribution over the decade. Thus, an ag-
gregate of seasonal counts across all four 
years was used to create a hot spot map that 
defined three broad historical clusters of 
Ae. atlanticus and Ae. infirmatus (Fig. 3). An 
overlay of adulticide zones, used by the dis-

Figure 4. Spatial association of mosquito species at CDC light trap sites: Scatterplot of Ae. atlanticus versus Ae. 
infirmatus mosquito abundance counts (log[n+1] transformed) at individual CDC light trap locations for all traps 
from 2010, 2013, 2016, and 2019. If a trap location was used for more than one year, each year’s entry and mosquito 
count were counted as a new matched pair and were graphed as a separate scatter point. Results for Pearson’s test 
for linear correlation located on plot.
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trict to delineate areas for adulticide fogging 
missions, provides a map for areas to target 
control of these two species. Overall, the key 
clusters of these mosquitoes seem to overlap 
with noticeable differences in spread and in-
tensity. Although the hotspots of these two 
species may contrast within a single year 
(data not shown), the aggregated maps show 
an overall association of the spatial presence 
of these species. Pearson’s correlations did 
demonstrate a moderate positive correlation 
(Fig. 4) between the total seasonal abun-
dance of Ae. atlanticus and Ae. infirmatus col-
lected from the same site when compiled 
from all four years and across individual 
years (Table 3). Correlations with estimated 
abundance values that were extracted from 
locations of 2019 trap sites from the appro-
priate IDW surfaces yielded similar strengths 
of spatial correlation (Table 3). These linear 
trends indicate that the presence and popu-
lation growth trends of Ae. atlanticus and Ae. 
infirmatus were likely influenced by similar 
factors within the same geographic location.

Ecological drivers. Precipitation: One indi-
cator of a potential driver of mosquito popu-
lations was the occurrence of large spikes in 
collection counts that were preceded by ex-
treme weather events, e.g. hurricanes. Total 
seasonal rainfall was significantly correlated 
to average county-wide mosquito abundance 
(per all traps in one season) for Ae. atlanticus 
(R = 0.810, p = 0.005) and Ae. infirmatus (R 
= 0.850, p = 0.002) (Fig. 5a,b). Total weekly 
rainfall was inconsistently correlated to total 
mosquito abundance per week at both two 
and three-week lags in rainfall (Table 4). 
Outlier data points noticed in scatterplots 
were for the most part due to a week of heavy 
rainfall that also happened to be a peak rain-
fall week for the season. These outliers often 
drove the significant correlation and when 
removed from the data set the significance 
disappeared. This event happened most fre-
quently with Ae. atlanticus. In fact, seasonal 
precipitation peaks were often followed 
by major seasonal Ae. atlanticus population 
peaks. This was not as often the case for Ae. 
infirmatus which often experienced popula-
tion peaks long before or long after the on-
set of major precipitation events. All signifi-

cant correlations were positive, aside from 
tests with 2018 Ae. infirmatus when removal 
of a precipitation outlier resulted in both a 
newly significant negative coefficient of de-
termination at a three-week lag (R = -0.407, p 
= 0.043) and a switch from a significant posi-
tive to a significant negative correlation at a 
three-week lag (R= -0.437, p = 0.029).

Habitat composition: Population abun-
dance of Ae. atlanticus at 2016 CDC light trap 
locations had a strong positive linear corre-
lation to the percentage of buffer area filled 
by upland forests (R = 0.806, p = <0.001) and 
a strong negative correlation to the percent 
area covered by the LULC class of water (R = 
-0.704, p = <0.001) (Fig. 6). Population abun-
dance of Ae. infirmatus also had positive and 
negative correlations to percent upland for-
est (R =0.406, p = 0.021) and percent water 
(R = -0.385, p = 0.029), respectively (Fig. 7). 
Aedes infirmatus had an additional negative 
correlation to percent agriculture in the buf-
fer zone (R = -0.428, p = 0.015). The four 
other LULC classes did not share any signifi-
cant association with either species.

Table 3. Positive spatial association of mosquito spe-
cies: Pearson’s correlation was used to find best-fit line 
between the total Ae. atlanticus and total Ae. infirmatus 
collected at the same trapping location across all years 
(2010-2019) or within an individual season (2010, 2013, 
2016, and 2019) (observed). The same tests were per-
formed using data extractions from IDW maps made 
with collection records of individual surveillance sea-
sons (IDW estimates). These estimated abundance val-
ues were extracted using the coordinates of all forty-one 
locations of 2019 CDC light traps.

Observed

Year(s) R p-value

2010 0.674 <0.001
2013 0.626 <0.001
2016 0.496 <0.001
2019 0.781 <0.001
2010-2019 0.605 <0.001

IDW estimates

Year(s) R p-value

2010 0.599 <0.001
2013 0.671 <0.001
2016 0.539 <0.001
2019 0.781 <0.001
2010-2019 0.597 <0.001
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DISCUSSION

This study explored the spatial and tem-
poral patterns of two poorly understood 
mosquito species under surveillance by 
AMCD mosquito control operations. It was 
not surprising that precipitation was found 
to have an impact on seasonal and weekly 
population abundance trends (Weaver and 
Xue 2015, Weaver et al. 2013, 2020). Also, 
the land classes of upland forest, water, and 
agriculture were associated with the abun-
dance of one or both species collected at 
CDC light trap sites.

Aedes atlanticus and Ae. infirmatus appear 
to share a close spatial association without a 
matched temporal association. There was a 

clear impact of precipitation on the emer-
gence and population growth curves of both 
species, but Ae. atlanticus did seem to experi-
ence a more direct impact from weekly rain-
fall. It is possible that the seasonal fluctua-
tions of Ae. infirmatus are partially related to 
the emergence patterns of Ae. atlanticus. If 
Ae. atlanticus is naturally more abundant it is 
then more likely to exceed the action thresh-
old for fogging missions and both popula-
tions will be reduced even if Ae. infirmatus was 
not at a problematic level in the first place. 
This idea applies to the presence of other 
nuisance and vector species collected by any 
of the surveillance trap types used by mos-
quito control programs. Furthermore, there 
is simply a lack of sufficient literature that 

Figure 5. Seasonal mosquito abundance and precipitation relationship: A line graph depicting the total sea-
sonal precipitation and the total seasonal abundance counts of Ae. atlanticus (top) and Ae. infirmatus (bottom) 
averaged by number of traps sites used in an individual year, across all years 2010-2019.
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compares the biology of these mosquitoes 
and most taxonomic references simply state 
that these two species are “associated” with 
one another. However, it is likely that there 
are significant biological and ecological dif-
ferences which have yet to be investigated 
and would help explain the mismatches in 
temporal emergence and the disproportion-
ate population abundance trends.

Previous studies have successfully uti-
lized measurements of the life-cycle stages 
of eggs, larvae, or most commonly, adults, to 
create informative IDW models of mosquito 
distribution (Allen and Shellito 2008, Cleck-
ner et al. 2011, Sarfarz et al. 2012, Sumaye 
et al. 2010, Suganthi et al. 2015, Dunphy 
et al. 2019, Saffawati et al. 2019, Kahamba 
et al. 2020) which lends flexibility to some 
of the resource limitations that may inhibit 
a regional mosquito control district. A ma-
jor strength of spatial maps is that they can 
be understandable to key stakeholders and 
are applicable to real-time mosquito control 
operations, especially in relation to manage-
ment of vector-borne disease (Eisen and Lo-
renzo-Fuentes 2009, Eisen and Eisen 2011). 
Unfortunately, few papers describe a specific 
implementation of mosquito control strat-
egies based on IDW findings rather than 
simply promoting a generalized concept of 
potential applications. Sumaye et al (2012) 
created IDW surfaces with adult mosquito 

collections to directly aid development of a 
model for determining optimal deployment 
of mosquito control interventions (e.g. lure-
and-kill odor baited stations). Meanwhile, 
Regis et al (2013) used kernel density esti-
mation (akin to interpolated hotspot maps) 
of mosquito egg abundance to help evalu-
ate a pilot evaluation of a proposed inte-
grated control strategy. Their spatial maps 
identified priority areas for control efforts, 
communicated findings to field workers, 
and aided analysis of the ongoing impact 
on mosquito populations by the integrated 
control activities. The current IDW mapping 
protocol developed with AMCD mosquito 
trap records does present real-time implica-
tions for this district’s field operations by al-
lowing more targeted intervention strategies 
on a week-to-week basis that optimizes the 
capacity of a limited field technician staff. 
However, a realistic form of implementation 
would need to be considered in terms of the 
operational, administrative, and regulatory 
systems in place at the district.

Directly compared to this study’s objec-
tives, other publications have both utilized 
IDW to conduct spatiotemporal analyses and 
have also demonstrated the impact of cli-
matic and LULC variables on mosquito dis-
tribution (Suganthi et al. 2011, Sarfaz et al. 
2012). The IDW maps of Ae. atlanticus and 
Ae. infirmatus here demonstrated the spatial 

Table 4. The results of all Pearson’s correlation with comparisons of total weekly precipitation and total abundance 
counts for a given collection week.Weekly precipitation was matched to weekly abundance counts at two- and three-
week lags. All coefficients and p-value are listed, and significant correlations are bolded. * = removing outlier(s) 
made p-value insignificant, ** = removing outlier(s) made p-value significant, *** = removing outlier(s) made cor-
relation change direction.

Precipitation

Ae. atlanticus Ae. infirmatus

 2-week lag  3-week lag  2-week lag  3-week lag

Year R p-value R p-value R p-value R p-value

2010 0.734 <0.001 -0.056 0.785 0.226 0.267 -0.183 0.371
2011 0.114 0.580 0.342 0.087 0.153 0.455 0.336 0.940**
2012 0.229 0.261 0.255 0.209 0.152 0.458 0.445 0.019*
2013 -0.209 0.305 0.663 <0.001* -0.072 0.727 -0.066 0.749
2014 0.233 0.252 0.404 0.040 0.043 0.836 0.259 0.201
2015 0.504 0.009 0.096 0.640 0.237 0.255 0.176 0.400
2016 0.492 0.130 -0.097 0.637 0.034 0.868 -0.121 0.556
2017 0.347 0.082 -0.050 0.809 0.177 0.386** 0.074 0.719
2018 0.796 <0.001* -0.040 0.847 0.627 0.001*** -0.223 0.274**
2019 0.409 0.038 0.058 0.780 0.213 0.296 0.207 0.310
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heterogeneity of species abundance in St. 
Johns County while habitat composition 
analyses then clarified likely drivers of this 
spatial variation, for example the result that 
CDC light traps sites surrounded by upland 
forest had collected significantly more Ae. 
atlanticus and Ae. infirmatus. The simplified 
LULC class ‘Upland Forest’ in this report 
includes the subset class coniferous forest, 
upland hardwood forest, mixed, and tree 
plantations. Tree plantations are the pre-
dominate Level 2 LULC class for St. Johns 
County (data not shown) and it is worth-
while to further examine this relationship to 

upland forest further because of the likely 
county-wide risk of mosquito emergence and 
distribution. The negative correlation with 
water is rational because this LULC class was 
an umbrella class and included lakes, reser-
voirs, bays, estuaries, streams, waterways, en-
closed saltwater ponds, major springs, and 
slough waters. These are considered mov-
ing water or permanent water bodies, none 
of which are indicated to be the preferred 
ecological niche of Ae. atlanticus or Ae. infir-
matus (Burkett-Cadena 2013). The negative 
association with agriculture with only Ae. 
infirmatus is another curiosity. One notable 

Figure 6. Habitat composition: Aedes atlanticus: Scatter plots with best-fit lines displaying the association between 
seasonal abundance (log(n+1) transformed) of Aedes atlanticus at a 2016 CDC light trap site and percent composi-
tion of the buffer area covered by a land cover class.
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Figure 7. Habitat composition: Aedes infirmatus: Scatter plots with best-fit lines displaying the association be-
tween seasonal abundance (log(n+1) transformed) of Aedes infirmatus at a 2016 CDC light trap site and percent 
composition of the buffer area covered by a land cover class.
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limitation of all habitat composition tests is 
that there was lack of consideration of the 
percent of other classes in a buffer which is 
a potential statistical issue since the propor-
tion of a LULC class is inherently affected by 
the proportion of others.

This project compiled and utilized pub-
licly available databases and developed pro-
tocols to manipulate historical mosquito 
control datasets. In addition, there is a large 
volume of additional historical data that was 
left out of this project, including AMCD sur-
veillance reports from 2004-2009. One im-
portant research direction is to analyze the 
impact and effectiveness of direct mosquito 
control pesticide application efforts through-
out St. Johns County. This type of evaluation 
is lacking in the literature and could add 
real value to programs with fewer resources 
and less capacity. Also, the observed relation-
ship of mosquito collections to precipitation 
implicates the usefulness for a spatial study 
that specifically tracks and compares the his-
torical emergence locations of nuisance and 
vector species after extreme historical weath-
er events such as hurricanes. Recommenda-
tions for future projects are to develop stron-
ger statistical models using multiple linear 
regression to better represent the complex 
hierarchy of climate, environment, and 
mosquito species dynamics more accurately. 
Trends in spatial distribution might be best 
described over a longer time than 2010-2019 
or be better represented with spatial maps 
for continuous years. The last consideration 
involves developing a pragmatic integration 
of spatial density maps into real-time control 
operations and stakeholder participation. It 
is necessary for any interested program to 
account for the feasible quantity and geo-
graphic spread of light traps and to focus on 
reaching sufficient coverage and reliability 
in the areas with the greatest density of vul-
nerable residents.
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