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This paper presents a sequence of beach profile for a headlands and bay coast. Shape analyses of the embayed beach,
identification of the predominant wave direction, beach and nearshore profiles, sedimentology characteristics, hydro-
dynamic conditions at the beaches, morphodynamics and morphometric data for 17 beaches on central-north coast of
Santa Catarina, Brazil, were obtained. Beaches are classified in three main groups: (1) exposed; (2) semi-exposed; and
(3) sheltered. The exposed beaches had an indentation ratio smaller than 0.39 and the dominant south waves are
approximately parallel to the coast (angle smaller than 40°). The beaches can be divided into three mainly groups.
(a) Reflective beaches have coarse sand (0.59mm-0.94mm) and steeper nearshore slope (1:40) associated with a very
narrow coastal plain (<1Km). (b) Intermediate beaches with one nearshore bar have medium sand (0.30mm-0.45mm)
and gentle nearshore slope (1:100-1:200) and a developed coastal plain—island bars systems. (c) Dissipative beaches
have fine sand (0.20 mm) and a gentle nearshore (1:200) morphology. When two or more nearshore bars are present
the coastal plain contains foredune ridges. The semi-exposed beaches have a large indentation ratio (0.37-0.49) and
the wave has an approximate angle greater than 40°. They are partially exposed to southerly waves. There is a
alongshore beach morphodynamic change that is function of distance between headlands, shape of bay, wave breakers,
grain size and relative tidal range. When H,<H, in the diffraction zone, reflective conditions (coarse grain) or dis-
sipative/low tide terrace to mud flat conditions (fine grains) are possible. Generally, in the central position (H, = H,)
the beach is a dissipative non-barred system or low tide terrace (fine sand). In the case of medium sand, the beach
is reflective. Sheltered beaches are influenced only by diffracted waves or local wind waves. They are totally sheltered
from the more energetic ocean waves that come from the south. Normally, the wave approximates with an angle
greater than 50° and RTR is large. They can be divided into: (a) reflective (coarse and medium sand) and (b) dissipative
non-barred or low tide terrace (fine sediment). However, further research is necessary for sheltered beaches, because
it is very difficult to include them in the classification proposed in the literature. These types of beaches are in the
low limit between wave and tidal dominated environments and a small change in the wave height results in a mod-
ification from tidal to wave domain and vice-versa and for this type of beach the source of sediment and consequently
grains size define the beach shape and slope (concave or convex). In direction to a more universal classification will
be necessary intrudes the shape of beach in the parameters.

ADDITIONAL INDEX WORDS: Embayed beaches, Brazilian sandy beaches, sheltered beaches.

INTRODUCTION

Global studies of oceanic sandy beaches require many var-
iables responsible to understand the processes and its mor-
phodynamic behaviour. SHORT (1999) suggests five major pa-
rameters: tidal range, wave height, wave period, grain size
and beach length/embaymentisation which are incorporated
into seven equations that can be used to describe the major
features of beach systems. These equations include, among
others, beach type, beach slope, number of bars and embay-
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mentisation parameter. However, further studies on different
sandy coasts, especially those presenting headland and bay
geomorphology, are necessary for developing a global model
(SHORT and MASSELINK, 1999), owing to the range of expo-
sure to different wave and tidal conditions. In this case, the
range of alongshore beach morphology (beach profile se-
quence) is a result of distance from headland, shape of bay,
wave obliquity, indentation ratio, longshore grain size distri-
bution and nearshore slope. The propose of this paper is to
elucidate a beach profile sequence for the coastal zone of an
east coast swell environment with headlands and bay geo-
morphology.

ENVIRONMENTAL SETTING

The study area is located on the central-north coast of the
State of Santa Catarina between 26°30’ S and 27°20' S, lo-
cated on the coastal macro-compartment of the Crystalline
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Figure 1. Map of study area showing beach profile and shoreface mea-
surement program conducted on the Central-North coast of the State of
Santa Catarina, Brazil, between January 1994 and February 1996 (depth
is in meters). Note the beach classification in relation to the wave expo-
sition and beach orientation in relation to the north.

Scarps (MUEHE, 1998) (Figure 1). Northeasterly winds are
predominant, with secondary southwesterly winds, associat-
ed with the arrival of cold fronts (NOBRE et al., 1986). The
direction of more energetic incident waves is south-south-
easterly (ALVES, 1996). The local tide is microtidal, mainly
semidiurnal with small inequalities, with a mean range of
around 0.8 m and a maximum tide of 1.2 m (SCHETTINI et
al., 1996; CARVALHO et al., 1996; TRucoLo, 1998). The me-
teorological influence of sea level is very important as storm
surges can raise it to around of one (1) meter above the as-
tronomical tide (SCHETTINI et al., 1996; CARVALHO et al.,
1996; TRucoLO, 1998).

In this region, the coast is cut out with Pre-Cambrian crys-
talline rock outcrops, interrupting the Quaternary coastal
plain continuity (MUEHE, 1998). A series of confined bays
open to the ocean occurs, initially, towards the northeast,
such as the Camborit and Itapema/Porto Belo bights, and
towards the east, such as the Tijucas Bay. There are also
parabolic shaped embayments (Penha and Picarras beaches)
(HoeEFEL, 1998; KLEIN et al., in preparation). The coastal
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Figure 2. Overall methodology employed in this study.

plains consist of barrier island systems, beaches linked to the
basement, foredune/beach ridges, spits and “cheniers” plains
(CarUso and ArRAaUJO, 1997; CARUSO and ARAUJO, 1999; Ca-
RUSO et al., 1997). These are associated with relative sea-
level variation during the Quaternary (ANGULO and LESSA,
1998).

The continental inner shelf is narrow (between 30 and 45
Km), and between 2m and 50m deep (MUEHE, 1998; ABREU,
1998). Islands and rocky outcrops, formed by basement rocks,
are also present (MUEHE, 1998). The nearshore slope is a
result of the geological inheritance (ABREU, 1998; MENEZES,
1999; KLEIN et al., 1999). It is low near river mouths and
bays (1:200), while in regions of basement rock it tends to be
steeper (1:40) (MUEHE, 1998; ABREU, 1998; MENEZES, 1999;
KLEIN et al., 1999).

The beaches present a multitude of environmental settings
due to their distinct geographical orientation, level of expo-
sure to incident waves and sediment distribution (MENEZES
and KLEIN, 1997; MENEZES, 1999; KLEIN et al., 1999; KLEIN
and MENEZES, 2000). Generally, the beaches are relatively
sheltered from the more energetic southerly waves as most
of them are located between headlands that modify incident
waves to varying degrees (MENEZES and KLEIN, 1997; ME-
NEZES, 1999; KLEIN et al., 1999; KLEIN and MENEZES, 2000).
In the coastal classification proposed by HAaYEs (1979), based
on the mean tidal range and mean wave height parameters,
the beaches are wave-dominated in the exposed areas and
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Figure 4. (a) Morphometric variables calculated from beach profiles (sub-
aerial beach volume (V) [m3/m]; subaerial beach width (L) (m]; and subaer-
ial dimensionless beach shape (F) (-]; (b) wide of surf zone (y,)[m].

mixed-energy in the sheltered areas of the bays (TEMME et
al. 1997; KLEIN et al. 1997; KLEIN and MENEZES, 2000).

SAMPLING AND ANALYSES

Beach Exposure—Indentation Ratio and Identification
of Predominant Wave Direction ()

The method employed in this study is presented in Figure
2 and 3. The ratio of bay indentation (a) to headland spacing
(Ro) is a result of the obliquity of the dominant wave crests
to the headland alignment (B) (SILVESTER and Hsu, 1997).
The obliquity of the dominant wave crest to the headland bay
beach is defined as the angle between the shoreline of the
downdrift section of the bay and the headland alignment. As
seen in the inset of Figure 3, the highest indentation (a) is
measured normal from the control line (Ro) to the point of
largest retreat of the shoreline (SILVESTER and Hsu, 1997).
This is obtained by drawing a tangent parallel to the control
line, which is asymptotic to the beach (SILVESTER and Hsu,
1997). Figure 3 shows the relationship between a/Ro and B.

This information was obtained by aerial photo interpreta-
tion on 1:12.500 scale from years 1995, and charts on 1:
50.000 scale.

Table 1. Theoretical limit values of declivity of the beach face fof the
morphodynamic stages (KLemv, 1997).

Stages Q limit tanf limit
Dissipative Q0>6 tanp < 0.061 (3.5°)
Intermediate 1<Q<6 061 < tanf < 0.15
Reflective <1 tanf > 0.15 (8.5%)

Beach Exposure—Degree of Headland Impact

The degree of impact of end effects or embaymentisation is
predicted using the nondimensional embayment scaling pa-
rameter (') (MATENS et al, in press; SHORT and MASSE-
LINK, 1999). When deepwater waves enter an embayment
with a given width (C,), between headlands, the wave energy
will be redistributed along the embayment shoreline (S)),
such as:

8" = S%kCH, (1

Where k is the surf zone slope and H, is wave break. The
embayment shoreline (S)) can obtained by aerial photo inter-
pretation. Cellular circulation occurs when 8'is lower than 8,
transitional circulation for &' between 8 and 20, and normal
circulation for 3" greater than 20.

Beach and Nearshore Profiles

Between January 1994 and February 1996, a beach-profile
measurement program was conducted on the central-north
coast of the State of Santa Catarina (see Figure 1). In total,
64 beach profiles were obtained and 32 were almost monthly
monitored with a levelling instrument, as proposed by Bir-
KEMEIER (1981). The beach profiles were evaluated by the
Interactive Survey Reduction Program, ISRP (BIRKEMEIER,
1986). And in total, 1164 profiles were obtained; and all of
them were made one meter equidistant between successive
points by linear interpolation between the data points, using
the LOD_EQUI program (BRESTERS and REIJNGOUD, 1996).

From the profiles, the following morphometric variables
were calculated: subaerial beach volume (V) [m3/m]; subaerial
beach width (L) [m]; and subaerial dimensionless beach
shape (F) [-] (Figure 4). The x-axis extends seawards, and the
y-axis extends vertically upwards. The origin of the co-ordi-
nates is located at mean sea level at a fixed reference point.
The morphological variables are computed using the land-
ward boundary (x1) and the seaward boundary (x2) as rec-
ommended by TEMME et al. (1997). The landward boundary
(x1) is constant per profile. The locations of these points were
determined using the profile envelopes as shown in Figure 4.
The profile-envelope is defined by the maximum and mini-
mum height at each cross-shore distance. In these profile en-
velopes the points without morphological changes can be
identified (essentially zero). The location of x1 is chosen so
that this part of the profile is not included in the analysis.

—

Figure 3. Classification of beach state—indentation ratio, embayment scaling parameters, omega, breaker wave height and sand size (after SILVESTER
and Hsu, 1993; 1997; SHORT, 1999; MATENS et al.(in press); SHORT and MASSELINK, 1999).
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Table 2. Average results from morphodynamics and morphometrics parameters obtained for 17 beaches.

Beach Pn N M 0 Hb T Ws QO 1 RTR B* a(m) Ro a/Ro B’
Itajuba* 5-6 15 23 2 to 182 1.0 8.0 11.90 1.43 2.19 0.86 13 — — — <20
Taquarinhas® 46 16 22 178 to 358 1.0 8.0 14.00 1.36 1.08 0.73 4 637 1637 0.389 38
Taquaras* 47-48 17 22 158 to 338 0.8 7.0 12.30 1.22 0.67 1.06 2 637 1637 0.389 38
Estaleiro* 49 11 17 14 to 194 0.7 7.5 8.95 1.31 1.28 1.15 8 — — — <20
Estaleirinho* 50.1 13 23 4 to 184 1.0 7.5 11.20 1.57 1.13 0.79 17 — — — <20
Barra Velha** 1-4 39 23 13t0 193 0.8 8.5 6.21 2.18 2.26  0.98 41 — — — <20
Praia Brava** 20-23 15 20 6to 186 0.7 7.5 4.36 2.83 3.6 1.19 15 — — — <20
Tlhota** 51-52 17 22 345to 165 0.8 7.0 7.79 2.04 0.82 0.93 30 250 825 0.300 32
Navegantes™** 16-19 20 20 14 to 194 0.8 9.0 1.74 7.68 15.00 0.91 75 — — — <20
Mariscal*** 60-62 22 22 360 to 180 0.5 8.0 2.15 4.23 21.50 1.50 20 995 3500 0.284 36
Picarrast 7-12 50 19 157 to 337 0.4 7.0 4.06 2.40 3.80 2.02 6 1850 3900 0470 55
B. Camboriaf 29-44 14 27 142 to 322 0.5 6.0 1.61 10.00 38.00 1.66 3 750 2025 0.370 40
Itapemaf 53-56 37 20 324to144 0.3 7.0 2.81 3.65 19.90 3.32 19 3200 7350  0.435 51
Bombast 57-58 17 22 304to124 0.3 8.0 2.46 3.12 15.30 1.97 8 1600 3300 0.485 62
Armacaott 14-15 15 22 116 to 296 0.5 8.0 4.22 2.45 5.05 1.59 5 1800 4650 0.387 52
Laranjeirastt 45 16 22 83 t0263 0.2 6.0 3.47 1.54 3.83 3.24 5 318 662 0.480 55
ZimbrostT 63 24 23 117 to 297 0.1 3.5 7.59 1.44 7.43 6.98 10 1850 3800  0.487 68
* Expose-reflective, ** expose-intermediate, *** expose-dissipative with bars,  semi-exposed (three dimensional beach morphology), 11 sheltered. Profile

number (Pn), number of field works (N), months (M), beach orientation (6) [°], wave breaker height (H,) [m], wave period (T) [s], grain fall velocity (Ws)
[em/s], dimensionless fall velocity (€2), empirical dimensionless fall velocity (€),), relative tidal range (RTR), bar parameter (B)*, bay indentation (a) [m],
headland spacing (Ro) [m], indentation ratio (a/Ro); angle of more energetic wave approximation (') [°]; embayment shoreline (S,) [m]; embayment width
(C,) [m]; embayment scaling parameter (3'); beach slope (B) [°], nearshore slope (a), beach length (L) [m], shoreline mobility coefficient — standard
deviation beach length (L), backshore mobility coefficient (CVL = L/oL) [%], beach volume mobility (V) [m*m], standard deviation mobility beach volume
(oV), CVV (CVV = L/oL) (%], e beach form (F). Ro, a/Ro, B’ after KLEIN et al. (in preparation).

The seaward boundary, the location of the mean sea level (x2)
is used in all cases, as a consequence, only the subaerial parts
of the profile change are analysed (mobile subaerial zone).
The beach volume (V) is defined as the cross-sectional area
within the boundaries x1 and x2 per unit length of the shore-
line (SoNU and vAN BEEK, 1971). The width of the beach (L)
is defined as the distance between the boundaries x1 and x2.
The shape of the mobile beach is defined as Q/L.h,,,,, where
h,... is the maximum height of the profile. This parameter
describes the form of the profile. High values (about 0.7) can
be related to a convex profile and low values (about 0.3) for
a concave form. A linear beach profile is represented by a
value of 0.5 (FuceLLA and DoLAN, 1996).

Seventeen (17) perpendicular bathymetric profiles between
2 and 10 meters were obtained in order to figure out the
length (x,) and the slope of nearshore study area (see Figure
1 and 4). The depth was obtained with an ELAC-register and
the position by triangulation methodology.

Beach Type and Number of Bars

Beach type and number of bars were obtained by relative
tidal range (RTR), dimensionless fall velocity (1), empirical
dimensionless fall velocity ({),) and bar parameter (B¥).

The parameterisation of tidal effects was proposed by
(MASSELINK, 1993). This author found that a useful param-
eter (relative tidal range—RTR) to quantify tidal effects was:

RTR = TR/H, (2)

Where TR is a spring tidal range. When RTR < 3 the beach
is classified as a wave dominated type, a mixed wave-tide
beach type for 3 < RTR < 7, and a tidal dominated beach
(sand flat) for RTR > 15.

The parameterisation of wave dominated beach type was

obtained by dimensionless fall velocity parameter (GOURLAY,
1968; DeAN, 1973) adopted for natural beaches by WrRiGHT
and SHORT (1984):

Q0 = H/AW.T) (3)

Where W, is sediment fall velocity and T' is wave period.

The authors relater that when (<1, beaches tend to be
reflective (steep, barless), becoming dissipative when >6,
they tend to be flat and multibarred, and in an intermediate
state between the two end members (one or two bars) for
1<Q<5. The role of the three parameters H,,T and W_ (grain
size) in influencing the beach types is illustrated in Figure 3,
which shows the sensitivity to each parameter according
SHORT (1999). Increasing H, and decreasing T and W, favour
dissipative beaches, while decreasing H, and increasing T
and W, favours reflective beaches with intermediate beaches
lying in between (SHORT, 1999).

The empirical dimensionless fall velocity parameter was
obtained by relates the declivity of the beach face (tanB) with
dimensionless fall velocity parameter, once both vary accord-
ing to the characteristics of the waves (H,, T) and of the sed-
iment (W,). KRIEBEL et al. (1991) and MASSELINK (1993) an-
alysing Sunamura’s data (1984) proposed: tan = 0.15 ) 5.
Realising that tanP is a function of (), we substituted the
values proposed by WRIGHT and SHORT (1984) with the pur-
pose of determining the limit theoretical value of declivity for
the extreme morphodynamic stages (Table 1). KLEIN (1997)
proposed:

Q, = 0.0225/tanp? (4)

Table 2 shows the relationship between ) and (), for the
beaches in the study area.

! The wave climete was obtained by visual observation.

Journal of Coastal Research, Vol. 17, No. 4, 2001
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Table 2. Extended.

S, C; S,/C, 8 B « Ii oL CVL ' oV cvv F
open open open — 7 1:300 30 8 25 52 14 27 0.55
— — — — 9 1:40 31 4 14 61 13 21 0.52
2590 1390 1.86 150 10 1:40 29 4 15 56 9 16 0.57
1910 1580 1.20 165 8 1:20 31 6 19 54 14 25 0.48
820 790 1.03 21 9 1:40 37 7 19 7% 15 19 0.62
open open open — 7 1:250 25 5 22 37 6 15 0.46
3540 3000 1.18 60 5 1:100 24 6 33 26 16 63 0.50
1880 1100 1.70 27 10 1:150 14 4 26 16 4 25 0.50
9510 9360 1.00 60 3 1:200 32 8 24 26 10 40 0.37
5960 3440 1.73 295 3 1:70 39 4 10 39 6 14 0.44
10190 7650 1.33 136 5 1:250 25 4 17 25 6 23 0.45
6260 3440 1.82 123 3 1:185 17 6 32 36 5 13 0.50
15880 7610 2.09 201 3 1:550 31 3 skl 20 3 15 041
7020 2950 2.40 1590 3 1:35 40 3 8 35 3 9 0.48
6086 3094 1.96 239 4 1:100 32 5 15 36 8 21 0.41
1047 940 i 116 3 1:50 26 1 4 25 2 6 0.54
9087 4220 2.15 489 4 1:400 22 1 6 18 2 10 0.47

Finally, the occurrence numbers of nearshore bars was ob-
tained with the bar number equation (B*) (SHORT and AA-
GAARD, 1993):

B* = xJ/g - tanp T;2 (5)

and confirmed by photo interpretation. This equation indi-
cates that the number of bars in a microtidal environment,
increases as the nearshore slope (tanf), and/or the period of
wave during storm (T,)? decreases, and the nearshore length

2 The storm wave period was obtained from ALVES (1996).
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Figure 5. Indentation ration versus angle of wave direction for beaches
on the Central-North coast of the State of Santa Catarina, Brazil.

(x,) increases. If B*< 20, the beach does not exhibit bars. For
B* between 20 and 50 the beach exhibit one bar, between 50
and 100 there are two bars, between 100 and 400 there are
three bars, and for B¥>400 there are 4 or more bars.

BEACH PLANFORM AND MORPHODYNAMIC
CHARACTERISTICS

The parameters used to describe the beach planform and
beach morphodynamic characteristics are presented in Table 2.

The ratio of bay indentation (a) to headland spacing (Ro)
is a function of the obliquity of the dominant wave crest to
the headland alignment (B) (SILVESTER and Hsu, 1997) and
the degree of the beach wave exposure is also function of
these two variables. Large wave obliquity results in a larger
indentation and smaller wave exposure, whilst exposed
beaches exhibit a small indentation ratio (between 0.28 and
0.39) and small obliquity (less than 40°)(Figure 5). Generally,
semi-exposed beaches have a variable indentation ratio (be-
tween 0.37 and 0.49) and the wave obliquity between 40°-
62°, but with northwest-southeast orientation. Sheltered
beaches exhibit a variable indentation ratio (> 0.38) and
wave obliquity greater (>50°) with east-west orientation.
However, all beaches have a nondimensional embayment
scaling parameter (3') greater than 20 (normal circula-
tion)(Table 2).

Figure 6 and 7 shows the beach classification of dissipative,
intermediate to reflective, based on wave breaker height (H,),
sand grain diameter and beach slope.

Exposed Beaches

Several beaches in study area are may be classified as ex-
posed, such as: Itajuba, Taquarinhas, Taquaras, Estaleiro,
Estaleirinho, Barra Velha, Brava, Ilhota, Navegantes and
Mariscal (see Figure 5, 6 and 7 and Table 2). They have
north-south orientation (see Figure 1) and are wave-domi-
nated beaches (RTR < 3), low energy, and can be divided into
reflective, intermediate and dissipative (multiple bars). The
role of the parameters H,, T and W, (grain size) influencing
the beach type is illustrated in Figure 6, showing the sensi-

Journal of Coastal Research, Vol. 17, No. 4, 2001



818 Klein and Menezes

Exposed Beaches Semi-Exposed Beaches Sheltered Beaches
& T v o v Al . — o ——y T S
\ QISSIPATIVE v 1 DISSIPATIVE 1
A} \ \ . 1} \ \ * Mighet aaves \ v Y

| L . i g | + Stwiirgerons "

T A s M | ' \ \ | N ' \ \

H J (P g } ' w8 § v v

\ 3 ¥ :
A \ v > v :
I i * . 2 DY [, : Vo
4 N X v \ \ | A \
| \ v 1 N Vo | E IR
AY

k= \ X T, L N \ \ + \ )
. WTERNEOWIE
H & . NTERNEDATE »
H » Fme - mecim tang £ 0 z
H Ik M el H o e i o H
£ + Shat-tong penads B s + geusiegr AR g .
E H F < $ron-dong paneds H
: § NN [ - : %
3 3 | : 8 : g
K] | = N . $ 3 s
] | N s i |
H v \ i E

X N 1 3 -
N LN

REFLECTIVE
aq

= Coarsersans

.,
.
I

Rare—

‘ 2 f o5 028 01 o8 | \l—\;_ -
)‘ CoARsE " HEDIUM B FINE Lo : \1; ) a‘s c‘)s 0123 ) 0087 ': H ,5. o & i o
comrst EOIUM e FINE
SAND S1ZE tmm}
k GOARSE o MEDIUM e FINE SAND SIZE (mm)
SAND S2€ mm)
-+ amogao —+ oo [ S B Novegames * topema
[ JT—— é oaohos % Poasao O Mowo O Cambori
Toauas
o aras
* Zmbios D Ecero a A P
O Esomivno +  Bormbo

Figure 6. Beach classification based on breaker height and sand size for beaches on the Central-North coast of the State of Santa Catarina, Brazil.

tivity of these parameters (SHORT, 1999). Sediment size and height has been directly and positively correlated with beach
waves controls the beach shape and dynamics. Fine sand pro- sediment size (KING, 1973; BascowMm, 1951). However, the ex-
duces a lower slope (1° to 3°) on the swash zone and a wider posed and sheltered beaches from the study area do not show
surf zone (=100m) with potential high mobile sand, whilst correlation positively between grain size and wave height
medium to coarse sand beaches have a steeper slope (5° to (see Table 2 and Figure 6 and 7). There is a correlation be-
10°) and a narrower surf zone (< 50m). Traditionally, wave tween type of beach and grain size mainly for exposed and
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Figure 8. Relation between type of beach and coastal plain system for
exposed beaches (a) Reflective beaches; (b) dissipative beaches; and (c¢)
intermediate. (III—Pleistocene deposits, IV—Holocene deposits) (not to
scale)

semi-exposed beaches (at exposed area). Reflective beaches
are composed by coarse sands (0.59mm-0.94mm) and dissi-
pative beaches are composed by fine sands (0.20mm). Medi-
um sands (0.30mm-0.45mm)defined intermediate beaches.

SHORT et al. (1979), WRIGHT and SHORT (1984) and more
recently SHORT (1999), indicate that high energy beaches can
be composed by fine sand through coarse sediments (see Fig-
ure 6). SHORT and N1 (1997) found that there was no corre-
lation between wave height and sediment size, if anything
the higher energy beaches have finer sand. This relation in-
dicates that in headland bay beaches the average sand size
is inherited from geological source and can be not selected by
the prevailing waves (SHORT, 1999; KLEIN et al., 1999; MioT
DA SILVA et al., 2000).

Beach type can more directly be associated with geological
inheritance through its influence on sediment source and
type. In the study area reflective beaches have coarse sedi-
ments resulting from reworking of older deposits (fan deltas
or old barrier islands systems) (Figure 7 and 8a). Dissipative
beaches are associated with beach ridges with fine sediment
input (sand) through a river influx (Figure 8b) and interme-
diate beaches are placed where medium sand reworked from
old barrier islands (Pleistocenic deposits) and river sediment
input occurs (Figure 8c). There is a relationship between
nearshore slope and the types of exposed beach. Reflective
beaches normally present steeper nearshore slope (1:40) than
that intermediate and dissipative beaches (between 1:100
and 1:300).

Reflective Beaches Characteristics

The beaches of Itajuba, Taquarinhas, Taquaras, Estaleiro
and Estaleirinho are classified as exposed reflective beaches
(see Table 2). Principal beach characteristics observed at Ta-
quarinhas during the study time are presented in Figure 9,
as a representative example from exposed reflective beaches.

The general characteristics for all exposed reflective beach-
es during the study period were: backshore with one or two
well developed berms; no frontal dunes; the width of the surf-
zone between 10 and 30 meters; the wave breaker type are
surging (unbroken) and collapsing between 0.7 to 1 meters in
height; wave periods between 7 and 8 seconds; swash zone
slope between 7 and 10 degrees; spacing of beach cusps be-
tween 10 and 35 meters; beach step well developed and com-
posed of coarse material (sand, rocks fragments and shells);
beach scarp between 1.5 and 2 meters as a result of the
storms actions; converging swash together with the beach
cusps; swash zone with coarse to very coarse sand; nearshore
zone with a slope between 1:20 and 1:40; average subaerial
beach volume between 52 to 77 m3/m, with a variation coef-
ficient between 16 and 27%; average beach width between 29
and 37 meters, with variation coefficient between 14 and
25%; dimensionless fall velocity—()—parameter between
1.22 and 1.57; empirical dimensionless fall velocity between
0.67 and 2.19; and bar parameter between 2 and 17.

The exposed reflective sand beaches exhibited a large sub-
aerial volume. Figure 9 shows the beach profile envelope and
the subaerial volume and length change during the study
time (e.g. Taquarinhas). It exhibits a cyclic change in volume
and length. During storm period this beach presented a scarp
and a terrace. No bars are presented due a greater nearshore
slope (1:40). At Itajuba beach, nearshore slope was about 1:
300, much smaller than other beaches, but with the same
morphodynamic and morphometric characteristics as the oth-
ers reflective beaches discussed in this study (see Table 2).
In this case the grain size is the most important parameter
to define the reflective stage.

Intermediate Beaches Characteristics

Three beaches are classified as exposed intermediate
beaches in the study area: Barra Velha, Brava and Ilhota
Beaches (see Table 2). Figure 10 shows the principal char-
acteristics observed at Barra Velha beach.

The beaches mentioned above presented similar character-
istics during the study period. The backshore exhibited oc-
casionally one well developed berm (mainly on Brava beach);
well developed frontal dunes (Barra Velha); wide surf zone
between 35 and 68 m; plunging and spilling breaker with
height between 0.7 to 0.8 m and wave period of 7 to 8.5 sec-
onds; longshore bar and trough system, rhythmic and trans-
verse bars; swash zone with slope between 5 and 10 degrees;
spacing of the beach cusps range from 10 to 30 m and me-
gacusps from 140 to 200 m; strong rip currents with a similar
spacing; swash zone composed by medium sand; nearshore
slope between 1:100 and 1:250; average subaerial volume
from 16 to 37 m3/m with variation coefficient from 15 to 63%;
average beach width between 14 and 25 m with variation
coefficient from 22 to 33%; dimensionless fall velocity—Q—
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Figure 9. Principal beach characteristics observed at an exposed reflective beach during the study period (Taquarinhas beach). Note the narrow surf-

swash zone.

between 2.04 and 2.83; empirical dimensionless fall velocity
between 0.82 a 3.06; bar parameter change from 15 to 41.

The bar type varied according to the beach as possible to
see in the aerial photographs obtained in November, 1995
(Figure 11). Barra Velha beach showed rhythmic and trans-
verse bars. Brava beach had also longshore intercalated bars
with a bar parameter less than 20 (Table 2). Ilhota beach
exhibited intercalated bar parallel to the coast. This variation
was due to different morphodynamic stages.

Normally, the intermediate beaches are composed of me-
dium sand (0.30mm-0.45mm) with gentle nearshore slope (1:
100-1:200) (see Table 2). The coastal plain presents island
bars (barrier beaches and island bar) system (Barra Velha
and Brava).

Dissipative Beaches Characteristics

Navegantes and Mariscal are classified as exposed dissi-
pative beaches. The sediment size at Navegantes beach is

finer than that at Mariscal beach and the nearshore slope is
lower (see Table 2). Figure 12 exhibits the major beach char-
acteristics observed in a dissipative stage for Navegantes
beach.

During the study period the following conditions were ob-
served in dissipative beaches: very well developed frontal
dunes (mainly Navegantes) with parallel scarp after storms;
a surf zone width between 54 and 83 m; a plunging and spill-
ing wave breaker; a wave height between 0.5 and 0.8 m and
a period of 8 to 9 seconds; one bar (Mariscal) and multiple
bar system (Navegantes with 2 bars); a beach face with an
average slope of 3 degrees; spacing of the cusps between 15
and 24 m and megacusps between 165 and 300 m; stationary
strong megarip currents; a beach face composed of fine sand
(0.17 mm); a nearshore slop of 1:70 (Mariscal) and of 1:200
(Navegantes); an average subaerial beach between 26 and 39
m?m with a variation coefficient from 14 to 40%; an average
beach width between 32 and 39 m with a variation coefficient

Journal of Coastal Research, Vol. 17, No. 4, 2001
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Figure 10. Principal beach characteristics observed at an intermediate beach during the study period (Barra Velha beach). Note the rhythmic shoreline

(megacusps) and well developed rip channels.

from 10 to 24%; a dimensionless fall velocity between 4.23
and 7.68; a empirical dimensionless fall velocity between 15
and 21.5; and a bar parameter between 20 and 75.

The Navegantes beach presents a multiple-bar system,
which can be observed in the aerial photo (Figure 13 and
Table 2). This system is a response of gentle nearshore slope
formed by Itajai river sediment supply during the Quater-
nary period (ABREU, 1998). This area is backed by a very well
developed coastal plain (CArRUSO and ArRAUJO, 1999) com-
prising Holocene foredune ridges. The alongshore variation
in the bar form is a function of longshore ranges in nearshore
slope and consequently wave breaker (see Figure 1).

Semi-exposed Beaches

The beaches partially exposed to southerly waves are: Pi-
carras, Balnedrio Camborit, Itapema (see Table 2 and Fig-
ures 14, 15 and 16) and Bombas. They have Northwest—
Southeast orientation (see Figure 1). Additionally, the Tiju-

cas mud flat is introduced in this analysis to figure assess
the influence of the sediment source (river input) in the coast-
al type.

When indentation ratio and wave obliquity are large a
beach may be termed as parabolic beach (eg. Picarras and
Bombas) or bay beach (eg. Balneario Camboriu and Itapema).
The third case, with larger indentation ratio and fine sedi-
ment input (Tijucas bay), result in a tidal mud flat plan.

The semi-exposed beaches exhibit similar characteristics
(see Table 2). Their plan form is a result of the distance be-
tween headlands and wave obliquity (SILVESTER and Hsu,
1997). Generally there is an alonghore morphological varia-
tion (see Figure 14 to 16), that is a result from longhore var-
iation in beach dynamics. The northern part of the beaches
bay are more exposed (e.g profiles 7, 8 and 9—Picarras and
24, 25, 26, 27 and 29—Balneario Camboriu— Figures 14 and
16) while southern part of the bays are increasingly sheltered
(profiles 11, 12 to Picarras and 37, 38, 39 to Balneario Cam-
boriu). The plots of volume change also show that beach dy-
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Figure 11. Intermediate beaches with different types of bar system at: (a) Barra Velha beach; (b) Brava beach and (c) Ilhota beach (original scale 1:
12,500).
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Figure 12. Principal beach characteristics observed at a dissipative beach, during the study period (Navegantes beach). Note the wide low slope surf
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namics diminishes to the south in response to the lower
waves. A large diffraction zone behind the southern head-
lands occurs. HOEFEL et al. (1999) and TEMME ef al. (1997)
present similar results for Picarras and Balneario Camboriu
beaches, respectively. REA and KoMaRr (1975) and LEBLOND
(1979) confirmed the important role of refraction and diffrac-
tion in the determination of the shape of embayed beaches
with a numerical models.

In Itapema the beach morphology and volume variation is
relatively larger in the central area due to the presence of
two diffraction areas at both ends of the beach (Figure 16).
However, the variations in this parameters at Itapema beach
are smaller than other semi-exposed beaches.

Wave energy is low in the diffraction zone behind the
~ southern headland, where the wave action is mild, therefore

the relative tidal range (RTR) should be larger (Figure 17).
The larger the relative tidal range is, the more important
tidal effects become in respect to wave effects. The concept of
a relative rather than absolute tidal range provides an effec-

tive scaling for the mutual effects of waves and tides (HAYES,
1979; DavieEs and HAYES, 1984; MASSELINK, 1993; MASSE-
LINK and TURNER, 1999). The morphodynamics of a micro-
tidal sheltered zones, in an estuarine and bay beach, can be
in many aspects similar to that of a macrotidal beach (Mas-
SELINK and TURNER, 1999), since the difference in tidal
range is compensated by the variation in wave-energy
(NORDSTROM and JACKSON, 1990; SHORT, per. com.). In this
type of area the relationships between wave obliquity, inden-
tation ratio, grain size distribution (source) and relative tidal
range are very important for the three-dimensional beach
morphodynamic and profile sequence.

For a bay with large indentation ratio and fine sediment a
flat beach develops near the headlands, occasionally sand with
mud co-exists in this zone (swash zone and nearshore), due to
milder waves and sediment input from a river particularly (e.g.
Balneario Camborit beach). In this case, the sheltered zone
must be classified as a mixed energy enviroment (HAYES,
1979) and the length and volume of the beach change from

Journal of Coastal Research, Vol. 17, No. 4, 2001
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Figure 13. Multiple bars system at Navegantes beach (Original scale 1:12,500). Note the foredune ridge system on the coastal plain.
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sheltered to exposed zone (see Figure 14 to 16). With wave
increases, more sediment in the form of berm or bar takes
place. Frontal dunes can also be developed in order to dissipate
the wave energy during extreme events (beach buffer system).

Embayments can range from tidal flats to high-energy
beaches depending on the level of the waves versus tidal en-
ergy (SHORT, per. com.). An extreme example in the study
area is given at the river mouth in Tijucas Bay (Figure 18).
The combination of fine sediment input (mud) from Tijucas
River, low wave energy (sheltered zone) and gentle nearshore
slope (1:400) results in a subaerial beach (ridge) with coarse
sediment (chenier deposits), deposited during periods of high
energy (CARUSO and ARAUJO, 1997; SCHETTINI and KLEIN,
1997). Also present is a tidal flat with mud ridges in the in-
tertidal and supratidal zone. The resultant coastal plain is
composed of cheniers complex (CARUSO and ArRAUJO, 1997).
For the other semi-exposed beaches, the coastal plains are
composed of Quaternary beach ridges (Balneario Camboriu
and Itapema) due to the sea level change during the Quater-
nary period (CARUSO and ARAUJO, 1997; CARUSO et al., 1997,
CARUSO and ARAUJO, 1999) and sediment input from rivers.

The principal beach characteristics in semi-exposed beaches
observed during the study period were: backshore area with one
berm (exposed zone); surf zone width between 5 and 110 m
(sheltered to exposed zone); plunging and spilling wave breaker
type; wave breaker height between 0.1 and 0.5 m and period

between 6 and 8 seconds; beach face slope between 3 and 5
degrees; length of beach cusps range from 10 to 28 m; rip cur-
rents presented on the exposed zone; grain size range between
fine and coarse sand; nearshore slope range from 1:35 (Bombas)
to 1:550 (Itapema); average subaerial volume between 20 and
36 m3m with deviation of 9% to 23%; average beach width be-
tween 17 and 40 m with deviation of the 8% and 32%; dimen-
sionless fall velocity between—()—2.4 and 10; empirical dimen-
sionless fall velocity between 3.8 and 38; bar number parameter
between 3 and 19; and relative tidal range between 1.66 (ex-
posed) and 3.32 (sheltered area) (see Figures 14, 15 and 16).

The morphodynamic stage of the semi-exposed beaches
therefore ranges from dissipative/low tide terrace to reflec-
tive. Picarras beach shows reflective modal stage (convex to
linear beach profile with medium sand) in the north area (ex-
posed) and dissipative/low tide terrace (concave and flat
beaches profile with fine sand) in the south area (sheltered).
Balnedrio Camborid and Itapema Beaches exhibit dissipative
or low tide terrace morphodynamic stage, mainly in the sum-
mer, with a barless beach profile varying from concave to
linear. During lower low tide period a small seepage face oc-
curs mainly on foreshore zone from Balneario Camboriu
beach. In this beach during the summer time a ridge and
runnel system in low swash zone (low tide) and rip currents
occurs (HOEFEL and KLEIN, 1998).
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Figure 18. The tidal flat and mud ridge at the river mouth in Tijucas Bay.
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Table 3. General morphodynamic characteristics of headland bay beaches.

Exposed Exposed Exposed Semi-

Characteristics Reflective Intermediary Dissipative exposed Sheltered
Relative Tidal Range (RTR) 0.9 1 1.2 2.25 3.9
Wave break height (H,) [m| 0.9 0.8 0.7 0.4 0.3
Wave period (T) |s| 7.6 748 8.5 7 5.8
Approximate Surf Zone Width |m| 10-30 35-68 54-83 5-110 5-15
Wave breaking type Collapsing/ Plunging/Spilling Spilling Spilling Spilling

Surging Plunging Plunging Plunging
Surging
Rip currents Present Strong Strong and sta- Presents (change) Absent
tionary
Bars Absent 1 1to3 Absent (change) Absent
Beach slope (B) || 7-10 5-10 3 3-5 3—4
Inner Shelf Slope/Nearshore Slope («) 1:88 1:166 1:135 1:255 1:183
Beach form Convex to Linear Convex to Linear ~ Concave to Linear Change Change
Cusps length |m] 15-30 10-30 14-24 10-28 10
Megacusps length |m| Absent 140-200 165-300 Absent Absent
Foreshore grain size Coarse sand Medium sand Fine Sand Fine to coarse Fine to coarse
sand sand
Ws (cm/s) 12 6 2 2.73 5
Frontal Dunes Absent Presents Presents Absent (change) Absent (change)
Omega parameter (1) 0.60 2.4 6 4.79 1.8
Empirical Omega () 1.3 2.2 18.3 19.2 5.4
Average mobile beach length (L) [m]| 32 21 36 28 27
Standard deviation from average mobile 3 6 5 10 5
beach length (oL) [m]
Average mobile subaerial beach volume (v) 60 26 29 29 26
[m,/m]

Standard deviation from average mobile 10 11 8 8 9

subaerial beach volume (ov) |Im./m|

Sheltered Beaches

Armacdo, Laranjeiras and Zimbros beaches are classified
as sheltered beaches. They have west—east orientation (see
Figure 1). The volume changes in these beaches are very
small when compared with expose and semi-exposed beaches
(Figure 19). This happens as a result of constant wave cli-
mate in this type of beaches. Similar results for Santa Ca-
tarina Island area are presented by DIEHL (1998).

The sheltered beaches during the study period had the fol-
lowing beach characteristics: surf zone width between 5 and
15 m; plunging and spilling wave breakers; wave breaker
height between 0.1 and 0.5 m and period of 3.5 and 8 seconds;
beach face slope range from 3 and 4 degrees; 10 m beach
cusps length; grain size range from fine to coarse sand; near-
shore slope range from 1:50 and 1:400; average beach volume
between 18 and 36 m*/m with deviation between 6% and 21%;
average beach length between 22 and 32 meters with devia-
tion from 4% and 15%; dimensionless fall velocity between
1.44 and 2.45; empirical dimensionless fall velocity between
3.83 and 7.43; number bar parameter from 5 to 10; and rel-
ative tidal range between 1.59 and 6.98.

The larger the relative tide range has, the more important
became for tidal effects relative to wave effects or water level
change (see Figure 18). The morphodynamics of microtidal es-
tuarine/sheltered beaches are in many aspects similar to that
on macrotidal beaches (MASSELINK and TURNER, 1999), since
the difference in tidal range is compensated by the variation
in wave-energy (NORDSTROM and JACKSON, 1990; MAKASKE
and AUGUSTINUS, 1998). The shorter wave periods detected at

Zimbros beach were a result from its geographical position.
Generally, the waves were generated by local winds. This
beaches can be only classified in relation its morphology (pro-
file shape). HEGGE et al. (1996) proposed seven (7) different
morphology for sheltered beaches in Australia coast. They and
FucgeLLa and DoLAN (1996) suggested a relation between con-
cave profile and dissipative conditions and convex profile and
reflective beach type. But the results presented here showed
that it is difficult to include sheltered beaches in the morpho-
dynamic classification proposed by WRIGHT and SHORT (1983)
and SHORT (1999) using the dynamic approach (see Omega in
the Table 2). These types of beaches are in the low limit be-
tween wave and tidal dominated environments and a small
change in the wave height results in a modification from the
wave to tidal domain or vice-versa and also in the Omega pa-
rameter (SHORT, per. com.). For this type of beach, the source
of sediment and consequently grains size, define the beach
shape and slope (concave or convex). In direction to a more
universal classification will be necessary introduces the shape
of beach in the parameters. The results shows that for shel-
tered beaches the empirical Omega are more realistic (see Ta-
ble 2 and Figure 6 to compare). In this case the surf scaling
parameter should give a better morphodynamic beach classi-
fication, because it is a descriptive equation of the state of the
waves and beach gradient (SHORT, 1999). A non-dimensional
parameter to define the morphology should also be introduced
to compare the wave and tidal environment beaches at the
same scale (ELIOT, per. com.).
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Figure 20. The model sequence of beach profiles and types of beach for
headland bay morphology, in east coast east coast swell environmental, show-
ing examples of beaches from central north of Santa Catarina State, Brazil.

BEACH PROFILE SEQUENCE MODEL

Based on the descriptions for the three major types of
beach state, the average values for each beach parameters
can be summarised. This is presented in Table 3 and Figure
20. Table 3 provides the general morphodynamic and mor-
phometric characteristics of the headland bay beaches in mi-
crotidal-east coast swell environment with a wide shelf. Fig-
ure 20 shows a model sequence of beach profiles or alonghore
morphology variation and the types of beach associated with
headland bay beaches with east-coast swell environment.
Beach type and mobility is a function of distance between
headlands, shape of bay, wave exposure, grain size (source),
nearshore slope and relative tidal range.

Two types of reflective beaches can be observed. In exposed
areas, they have large quantity of subaerial sediment and high
mobility, due to the change in wave climate and consequent
beach erosion and accretion. During storm events, scarps
forms to 2 m height and the sediment deposits in the form of
a terrace, because the nearshore beach slope is too steep to
form bar systems (1:20 to 1:40). A bar system occurs only oc-
casionally on Itajuba beach (nearshore slope 1:300). These re-
flective beaches exhibit a convex to linear profile with one or

two berms composed of coarse sand. Normally, steep slope with
coarse sediments and well-developed beach cusps are present.

The reflective beaches in semi-protect and sheltered beach-
es are stable as described by SHORT (1979) and SHORT (1999),
as the wave climate range is smaller in the shadow zone (re-
sult of diffraction zone and more interaction with gentle
slope). The beaches have medium to coarse sand, and exhibit
convex to linear profile, with less sediment volume. Frontal
dunes are not present.

Intermediate conditions are more frequent on exposed
beaches with medium sand. They contain only one nearshore
bar that can be longitudinal, transverse or rhythmic, and the
mobile subaerial volume and its changes are less than on the
reflective beaches because the wave energy is dissipated
mainly on the bar (beach buffer system). After breaking at
the bar, waves reform and breaks again in the swash zone
with less energy. Strong rip currents occur and these are re-
sponsible for local rip embayment erosion as reported by
SHORT (1999). The beach profile is linear and with short to
well developed frontal dunes formed mainly by overwash pro-
cesses, e.g. Barra Velha (KLEIN et al., 1999).

The dissipative beaches occur in the three types of expo-
sition. In exposed areas, they are well developed, composed
by fine to very fine sand, with two (2) or more bars and well-
developed frontal dune. The surf zone is up to hundreds me-
ters wide. During storm parallel scarps in the dunes can be
developed as described by SHORT (1999). The beach profile is
linear and the subaerial volume change is small. In the semi-
exposed areas no bars in the surf zone are present and the
profile is from concave to linear with fine sand composition,
whilst a low tide terrace with small swash bar in the low tide
position can happen during the summer. Rip currents are
present in the exposed zone. Normally, the swash zone pre-
sent backwash ripple morphology similar exposed dissipative
beaches. Theses characteristics are representative of an ul-
tradissipative beach, but in minor scale of size than tidal
dominated beach classification proposed by SHORT and Mas-
SELINK (1999), SHORT (per. com.).

In sheltered areas, beaches are composed by fine to very
fine sand and the profile are concave, with narrow beaches
and the nearshore zones are composed of very fine sand with
mud. Normally, the nearshore slope is smaller than in re-
flective conditions.

The final type of profile not presented in the model, is a
intertidal zone with mud bars with subaerial coarse deposits,
which is a result of the combination of fine sediment input
(river), very slow nearshore slope and sheltered conditions.

CONCLUSIONS

Beach morphodynamics in a microtidal environment with
headland bay geomorphology can be classified with the mor-
phodynamic and morphometric parameters highlighted in
Figure 21. They are a function of: 1) Geological inheritance
(distance between headland and orientation; nearshore and
inner shelf morphology; coastal plain morphology; sediment
source); and 2) Hydrodynamic factors (Hb, T, oceanic wave
exposition and relative tidal range).

For a coast with headland bay, the alongshore range in
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chennier.

Beach morphodynamic parameters for beach classification in a microtidal environment with headland bay geomorphology, based on geological
inheritance and hydrodynamic factors.
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beach geomorphology is a function of headland distance,
shape of bay, wave obliquity, indentation ratio, grain size dis-
tribution and nearshore slope. Both models presented by
SHORT (1999, pg.8) and CARTER (1988, pg. 214) are possible
dependant on geological inheritance and hydrodynamic char-
acteristics of the study area.

The beaches are classified as: (1) exposed, (2) semi-exposed
or (3) sheltered. In the exposed beach, the indentation ratio
is small and waves approximate parallel to the coast. They
can be divided into three types. First, (a) reflective beach,
occurs with coarse sand and steep nearshore slope with very
narrow coastal plain. Steep backshore without berm near the
headland or with one or two berms far the headland can also
occur (Estaleiro to Taquaras). This type of beach is present
when the bedrock is exposed at the coast.

Secondy (b) intermediate beach have one bar with medium
sand and medium nearshore slope. Coastal plain developed
with island bars (Barra Velha and Brava). And, thirdly, (c)
dissipative beaches have fine sand and gentle nearshore mor-
phology with the presence of two or more bars. Coastal plain
is very well developed with foredune ridges (Navegantes).
The three dimensionality in these beaches is a function of
longshore variation in grain size and wave breaker height.

In semi-exposed beaches the indentation ratio is longer and
the wave obliquity is usually greater than 40°. A three-di-
mensional beach morphodynamics is presented and it is a
function of wave breaker height and grain size and relative
tidal range. When H,<H,, the diffraction zone may be in re-
flective condition with coarse grain or dissipative/low tide ter-
race to sand-mud flat condition with fine grains. Normally,
in the central position (H,=H,) the beach is dissipative with-
out bar or low tidal terrace (fine sand), but reflective with
medium sand. When the indentation ratio is larger and with
fine sediment input from river, beach and mud flat with mud
ridges (RTR is larger—eg. Tijucas) are possible. In this case,
the coastal plain is composed by chenier systems.

Only diffracted waves or locally-generated waves influence
sheltered beaches. Normally, waves approach the beach with
angle greater than 50°. RTR is larger (>2). Again, they can
be divided into: (a) reflective mode with medium to coarse
sand with convex to linear profileand (b) dissipative mode
non-barred or low tide terrace (fine sediment) with concave
to linear profile.

The present sequential beach profile model is a first ap-
proximation. Studies in other areas with the same geograph-
ical characteristics are necessary to provide more information
and the model validation. The present model can be applied
to define the type of coastline uses and when combined with
the parabolic model from SiLVESTER and Hsu (1997), it can
be used to make better nourishment and coastline designs
projects in this type of coastline.
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