The Coastal Education and Research Foundation (CERF) is a nonprofit corporation dedicated to the advancement of the coastal sciences. The Foundation is devoted to the multi-disciplinary study of the complex problems of the coastal zone. The purpose of CERF is to help translate and interpret coastal issues for the public and to assist professional research and public information programs. The Foundation specifically supports and encourages field and laboratory studies on a local, national, and international basis. Through the medium of scientific publications, television, and radio CERF brings accurate information to the public and coastal specialists on all aspects of coastal issues in an effort to maintain or improve the quality of shoreline resources.

Because CERF is concerned with broad environmental issues, our efforts concentrate on significant problems such as maintenance of good quality (potable) water with adequate supply, and hazards associated with potential beach erosion, flooding, and susceptibility of developed shorelines to storm surge and wave attack. By focusing attention on these potential man-made and natural hazards, it is hoped that our research efforts will help others improve the quality of life in diverse coastal areas. CERF thus aims to stimulate awareness of coastal (marine and freshwater shorelines) land and water problems; initiate and foster research and innovation to promote long-term coastal productivity; establish an educational forum for the debate of contentious coastal issues; and develop new principles and approaches for enlightened coastal management, and encourage their adoption and use.

CERF members provide a basis for cooperative investigation of biophysical resources found in open and naturally protected coastal regions, estuaries, large inland bodies of water bounded by shorelines, wetlands, and other coastal environments. Joint investigative efforts by faculty, students, and staff at various institutions span a wide and diversified range of interrelated topics that are relevant to solutions of today’s dynamic problems. It is hoped that these combined attempts to better understand the nature of coastal processes will help forestall what may become contentious issues of tomorrow.

Members are individuals, institutions, and corporations that support the aims of the foundation through personal and group efforts or by donations. Memberships are available in different categories with privileges.

Publications of the Foundation:

CERF Quarterly Journal: *Journal of Coastal Research (JCR)* (ISSN 0749-0208).

JCR Special Issues and Reports:

- No. 1 (1986): Late Quaternary Sea-Level Changes and Coastal Evolution (out of print)
- No. 4 (1988): The Effects of Seawalls on the Beach, N. C. Kraus and O. H. Pilkey (eds.). [$US 45.00]
- No. 7 (1990): Rational Design of Mound Structures. N. Kobayashi and M. A. Losada (eds.). [$US 45.00]
- No. 9 (1991): Proceedings of the Skagen Symposium (September 1990) [out of print]
- No. 12 (1994): Coastal Hazards, C. W. Finkl (ed.). [$US 60.00]
- No. 15 (1993): Beach and Surf Zone Morphodynamics, A. D. Short (ed.). [$US 45.00]
- No. 16 (1992): International Bibliography of Coastal Geomorphology, D. Sherman (ed.). [$US 45.00]
- No. 17 (1995): Holocene Cycles: Climate, Sea Level, and Coastal Sedimentation, C. W. Finkl (ed.). [$US 60.00]
- No. 18 (1993): Beach/Inlet Processes and Management, A. J. Mehta (ed.). [$US 45.00]
- No. 23 (1996): Understanding Physical Processes at Inlets, A. J. Mehta (ed.). [$US 45.00]
- No. 24 (1998): Island States at Risk, S. P. Leatherman (ed.). [$US 45.00]
- No. 29 (2001): Natural and Artificial Reefs for Surfing and Coastal Protection, K. Black et al. (eds.). [$US 45.00]

Contributions, bequests, and gifts to the Foundation are deductible for Federal income, estate and gift tax purposes.
CONTENTS

The Influence of Coastal Morphology on Shoreface Sediment Transport under Storm-Combined Flows, Canadian Beaufort Sea ... Arnaud Héquette, Marc Desrosiers, Philip R. Hill, and Donald L. Forbes 507
A Rip Current Model Based on a Hypothesized Wave/Current Interaction A. Brad Murray and Guillaume Reydellet 517
Technological Options for Adaptation to Climate Change in Coastal Zones ... Richard J. T. Klein, Robert J. Nicholls, Sachooda Ragoonaden, Michele Capobianco, James Aston, and Earle N. Buckley 531
The Influence of River Discharge on Salinity Intrusion in the Tanshu Estuary, Taiwan ... Wen-Cheng Liu, Ming-Hsi Hsu, Albert Y. Kuo, and Jan-Tai Kuo 544
Iron-Stained Quartz as Record of Recent Reworking of Older Sediment by Natural and Anthropogenic Processes, Rio Grande Delta, Texas ... Jean-Daniel Stanley, Giovanni Randazzo, and Thomas F. Jorstad 584
Using a Quadratic Model to Theoretically Describe the Nature of Equilibrium Shorerise Profiles Roger N. Dubois 599
An Error Assessment of Vector Data Derived from Scanned National Ocean Service Topographic Sheets ... Richard C. Daniels and Robert H. Huxford 611
Stratigraphic Evidence for Historical Position of the East Cambridge Shoreline, Boston Harbor, Massachusetts ... Ilya V. Buynevich, Duncan M. Fitzgerald, Lester B. Smith, Jr. and Amy J. Dougherty 620
Stability of the New River Spit, and the Position of Oregon’s Beach-Zone Line ... Paul D. Komar, Guillermo M. Diaz-Méndez, and John J. Marra 625
Planning for Beach Erosion: A Case Study, Playas de Rosarito, B. C. Mexico ... Roman Lizárraga-Arciniega, Christian M. Appendini-Albretsen, and David W. Fischer 636
Estimating Wave Elevation from Pressure Using Second Order Nonlinear Wave-Wave Interaction Theory with Applications to Hurricane Andrew ... Steven F. DiMarco, E. Meza, and J. Zhang 658
Rates and Processes of Marsh Shoreline Erosion in Rehoboth Bay, Delaware, U. S. A. Reed A. Schwimmer 672
High-Resolution Reconstruction of Recent Vegetation Dynamics in a Mediterranean Microtidal Wetland: Implications for Site Sensitivity and Palaeoenvironmental Research ... Philip E. F. Collins, Simon D. Turner, and Andrew B. Cundy 684
Neglected Effects of Eolian Dynamics on Artificial Beach Nourishment: The Case of Riells, Spain ... Maria Angels Marqués, Norbert P. Psuty, and R. Rodriguez 694
Pollen Record of the Last 500 Years from the Doninos Coastal Lagoon (NW Iberian Peninsula): Changes in the Pollinic Catchment Size Versus Palaeoecological Interpretation ... L. Santos, R. Bao, and M. F. Sánchez Goñi 705
Coastal Storms and Shoreline Change: Signal or Noise? ... Michael S. Fenster, Robert Dolan, and Robert A. Morton 714
Shoreline-Position Forecasting: Impact of Storms, Rate-Calculation Methodologies, and Temporal Scales ... Maria G. Honeycutt, Mark Crowell, and Bruce C. Douglas 721
Coastal Salt Marsh Systems in the U. S.: A Review of Anthropogenic Impacts ... Michael J. Kennish 731
Long-Term Sea-Level Changes in Hong Kong from Tide-Gauge Records ... Xiaoli Ding, Jason Chao, Dawei Zheng, and Yongqi Chen 749
Tecolutla and Nautla Deltas, Veracruz, Mexico: Texture to Evaluate Sediment Entrapment on Deltaic Plains and By-passing onto the Gulf of Mexico Margin ... Hiroko Okazaki, Jean-Daniel Stanley, and Eric E. Wright 755

DISCUSSION

Departments

Coastal Calendar ... 765
Book Reviews ... 766