
Journal of Coastal Research 721-730 West Palm Beach, Florida Summer 2001

Shoreline-Position Forecasting: Impact of Storms,
Rate-Calculation Methodologies, and Temporal Scales

Maria G. Honeycutt'], Mark Crowell'], and Bruce C. Douglas§

tUniversity of Delaware
Graduate College of Marine

Studies
700 Pilottown Road
Lewes, DE 19958, U.S.A.

:j:Federal Emergency
Management Agency

Mitigation Directorate
500 C Street, SW
Washington, DC 20472,

U.S.A.

§Department of Geography
University of Maryland
College Park, MD 20742,

U.S.A.

.tflllllll:.
~eusss
~ ~ "-..,;; ;.~

ABSTRACT .
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Despite the considerable research that has sought to describe past and predict future shoreline change, little consensus
has emerged on the best methodology for forecasting future shoreline positions. While a certain degree of heterogeneity
in approach is warranted given the variability in coastal geomorphology and sediment-transport processes, the pre­
diction error associated with each method has not been evaluated in great detail.

In this study, measured shoreline positions from Delaware and New York were used to calculate long-term erosion
rates and make predictions to subsequent, known positions. Rates were calculated using end-point and linear-regres­
sion methods, including and excluding storm-specific shorelines. Those rate computations that included storm-specific
shorelines yielded consistently poor predictions (average factor-of-three increase in error) compared with non-storm
erosion rates, regardless of rate-calculation method. Linear-regression predictions, on average, performed better than
end-point rate predictions, reducing error by over 70% in New York and 34% in Delaware for rates including storm
shorelines, and between 4 and 31% for non-storm data (DE and NY, respectively). Predictions (hindcasts) were also
made to 19t h century shoreline positions using rates computed with modern, non-storm data. The positions predicted
along relatively undeveloped stretches of the coast were within the 95% confidence interval associated with the pre­
diction. Hindcasts made in areas characterized by heavy development and/or beach nourishment projects were poor,
as would be expected given the recent alteration of the natural sediment-supply system. For all locations, inclusion
of 19t h century data reduced uncertainty in forecasts of 21st century shoreline positions by roughly 44%. These results
show that forecasts derived from linear-regression rates using non-storm, 19 t h and 20 t h century data produce the
lowest prediction error and uncertainty in the long-term trend.

ADDITIONAL INDEX WORDS: Shoreline change, erosion rate, coastal storms, end-point rate, linear-regression rate,
error in prediction, hindcast.

INTRODUCTION

Over the past 40 years, coastal populations have swelled
as a result of the convergence of a number of factors. Among
these are a general increase in population from the post­
WWII baby boom, a more affluent society, and the develop­
ment of an infrastructure capable of transporting and sup­
porting greater densities of coastal inhabitants and construc­
tion. In conjunction with a relative dearth of hurricanes and
nor'easters since the 1960's (particularly on the U.S. east
coast), these factors have led to burgeoning near-shore de­
velopment.

In recognition of the hazards of living on the coast, many
coastal states have begun to manage and sometimes restrict
development in areas of erosion hazard. In addition, nearly
all coastal states have, at a minimum, undertaken efforts to
calculate long-term rates of erosion and use these data (often
in map format) to control development through land-use
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management. Increased awareness of the detrimental im­
pacts of coastal hazards spurred Congress in 1994 to pass
legislation requiring the Federal Emergency Management
Agency (FEMA) to conduct a study to determine whether the
agency should map coastal erosion hazard areas and use
these data in the implementation of the National Flood In­
surance Program (NFIP) (CROWELL et al., 1999b). The study
was completed in early 2000, and is currently under Con­
gressional review.

The increase in coastal development has stimulated study
of the impact of storms on coastal structures, and has led to
improved federal and state building codes and regulations.
Houses constructed in conformance with performance stan­
dards put forth in the NFIP and local floodplain management
ordinances and building codes are generally faring well in
severe storms (MAHONEY, 1990; FEMA, 1997, 1999). Although
the useful lifetimes of these larger, stronger structures have
increased, they are surviving only to become threatened by
the effects of long-term erosion. Shoreline retreat is a wide­
spread problem; 80-90% of non-engineered shorelines along



Table 1. Abbreviations used in the manuscript.

the U.S. Atlantic coast are experiencing net erosion to some
degree (GALGANO, 1998).

Accurate forecasts of coastal erosion, therefore, are critical
to coastal managers and others charged with protecting the
significant public investment at the coast. Analyses to deter­
mine shoreline-change rates at discrete intervals along the
coast form the core of these forecasts. Considerable hetero­
geneity in the methods of data compilation and analysis, from
the data used to the rate-calculation technique, exists among
the coastal and Great Lakes states (CROWELL et al., 1999a).
While the variability in coastal morphology and presence of
engineered shore-protection projects warrant some of these
differences, few studies have quantified the typical prediction
error associated with each method.

Calculation of Shoreline-Change Rates

Shoreline-change rates are calculated by monitoring the lo­
cation of a representative shoreline indicator (e.g., wet-dry
line, berm crest, mean high water line, bluff line) over time.
Shoreline-change maps are generated by compiling historical
shoreline data (e.g., NOS T-sheets, aerial photos) and recent
surveys, incorporating the data into a digital medium, and
correcting data for datum changes, distortion, or other errors
(for a more detailed description of this process, see ANDERS
and BYRNES, 1991; CROWELL et al., 1991). Shoreline-change
rates are typically calculated from these maps by plotting a
line perpendicular to the numerous shorelines and measuring
the amount of movement over time, which is defined by the
dates of the plotted shorelines. Since the general trend in the
U.S is long-term shoreline retreat, including the areas eval­
uated in this study, the convention for the remainder of the
paper will be to refer to shoreline-change rates as 'erosion
rates.' In those areas or time intervals characterized by ac­
cretion rather than retreat, the erosion rates will be negative.

Generally, two methods are used to calculate erosion rates:
end point and linear regression. In end-point (EP; see Table
1) rate calculations, the total horizontal change between two
shorelines (usually the oldest and the most recent) is mea­
sured. This distance is then divided by the number of years
elapsed between the shoreline-position measurements, the
temporal span (TS). With linear regression (LR), a best-fit­
ting straight line is determined that minimizes the sum of
squares of the differences between the measured and calcu­
lated shoreline positions. All shoreline positions can be used
in the calculation of the best-fit line.

Other approaches relying on higher order functions, such
as the Minimum Description Length (MDL) of FENSTER et al.
(1993), have also been used to model shoreline change. CROW­
ELL et ale (1997) applied this model to sea-level data used as
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a surrogate to demonstrate that simple linear regression pro­
vided results equal to or better than the MDL technique.
Higher order methods may be appropriate to use in areas
where non-linear coastal processes dominate, such as along
southeastern U.S. barrier islands affected by cyclical tidal­
inlet migration, but highly inaccurate results are possible.

Data Included in Shoreline-Change Analyses

Approaches differ on the issue of whether to use all avail­
able data to calculate erosion rates or selectively remove a
subset of the data based on a priori knowledge of some factor
affecting data quality. As mentioned previously, the use of
EP rates automatically excludes most shoreline-position
data, and has been shown to produce highly variable predic­
tions depending upon which points are used (GALGANO et al.,
1998). With linear regression, all or most of the data points
can be used, potentially reducing the impact of one or two
anomalous values on forecast accuracy.

Shoreline-change data sets often include widely divergent
shorelines mapped following the occurrence of great storms.
Some argue that storms are a natural component of shoreline
retreat, and as such, those mapped positions should be used
in erosion-rate analyses (FENSTER and DOLAN, 1994, 1999).
Other research suggests that natural post-storm recovery of
the beach during the subsequent decade may even negate the
effects of the storm, returning the shoreline to the position it
would have occupied had the storm never taken place (MOR­
TON et al., 1994; GALGANO, 1998). Further, inclusion of storm­
specific shorelines may add uncertainty and a negative bias
to forecasts (GALGANO et al., 1998; DOUGLAS et al., 1998; DOUG­
LAS and CROWELL, 2000).

In addition to questions surrounding the role of storm-spe­
cific shorelines, the use of historical positions measured in
the 19t h century has also come under question. The primary
sources of these historical data are NOS T-sheets, which have
I-sigma measurement uncertainty of approximately 9 m (root
mean square error) (CROWELL et al., 1991). Despite this level
of accuracy, there have been efforts made to de-emphasize
the historical data in erosion-rate analyses (DOLAN et al.,
1991; FENSTER et al., 1993). Although the prediction error as­
sociated with long-term versus short-term data has not been
characterized fully, several studies have shown that the lon­
ger the temporal span of the data, the lower the uncertainty
of the long-term trend (TANNER, 1978; GALGANO and LEATH­
ERMAN, 1991; CROWELL et al., 1993, 1997; BYRNES and HILAND,
1995).

Natural Variability in Shoreline Position

In addition to secular shoreline recession associated with
increasing sea level, non-linear changes in shoreline position
can occur over monthly, seasonal, and interannual time­
scales. In Delaware, the position of the HWL can vary by
roughly 5-20 m between winter and summer months (BOSMA
and DALRYMPLE, 1997). Similarly, regions along the south
shore of Long Island experience seasonal changes on the or­
der of 20 m (SMITH and ZARILLO, 1990). Decadal-scale vari­
ability on Long Island is thought to be related to wave focus­
ing by shoreface sand ridges, interaction of the sand ridges
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with the nearshore bar, and/or onshore sediment transport
from the ridges (SCHWAB et al., 1999). In order to minimize
the impact of seasonal and monthly variability, a common
practice is to conduct surveys of the HWL following a neap
high tide in late summer.

Clearly, the positions recorded in the shoreline database
used in this study reflect individual snapshots in time, where
the shoreline represents the cumulative impacts of sediment­
transport processes operating over a variety of time scales.
As discussed previously, some of the shorelines reflect im­
mediate post-storm conditions, which can be verified inde­
pendently with tide-gauge data or damage reports. The re­
maining shorelines are not storm-specific, but they are influ­
enced by other processes that are difficult to quantify or re­
move completely. For the purposes of this paper, we ignore
the implications of these residual processes; our analysis is
intended to demonstrate patterns in prediction error associ­
ated with rate-calculation techniques and use of storm-spe­
cific shorelines.

Purpose of the Study

In this study, we use real shoreline data from Delaware
and New York to address several unresolved issues concern­
ing erosion-rate analyses. Specifically, we examine error in
forecasts of future shoreline positions, looking for trends as­
sociated with the use of:

• EP versus LR rate-calculation methods;

• Storm-specific shorelines in the rate calculation; and
• Varying temporal spans of input data for calculation of ero­

sion rates.

METHODS

Historical shoreline data from Delaware and the south
shore of Long Island, New York, were obtained from a data­
base compiled by Dr. Stephen LEATHERMAN of Florida Inter­
national University (Figure 1). This database contains mul­
tiple shorelines depicting positions of the high water line, dig­
itized from NOS (and predecessor-agency) T-sheets, ortho­
photos, aerial photographs, and GPS surveys. To minimize
random profile variability, a common practice is to average
shoreline positions for a portion of the coastline (FOSTER and
SAVAGE, 1989), typically for distances on the order of hun­
dreds of meters. For each state, positions along a 500-m seg­
ment of the shoreline were averaged to create a composite,
shore-perpendicular transect, which was then used for de­
tailed analysis. Care was taken to avoid selecting data from
areas influenced by hard shoreline-protection structures, in­
lets, and other dynamic features (e.g., prograding spits). For
example, data from within the mapped arcs of erosion for
Shinnecock (NY), Moriches (NY), and Indian River (DE) in­
lets (GALGANO, 1998) were avoided (Figure 1).

All possible combinations of shoreline positions in each
transect were taken to calculate erosion rates using both EP
and LR methods (Figure 2). The number of years elapsed be-
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Figure 2. Experimental design. The dates for known shoreline positions are listed, with storm-specific shorelines underlined. (A) In the first iteration
of the EP-rate calculation, the shoreline change between the first two positions (1845 and 1929) is calculated, with the Temporal Span calculated from
the number of years elapsed between measurements (here: 84). With that rate, predictions are made to all subsequent positions, with the Prediction
Interval representing the time elapsed between the predicted year and the last date from the rate calculation (arrows). In the second step, only the
ending year for each successive EP-rate calculation changes. The start year is shifted up one position for the second iteration, and so on. For LR rates,
three or more sequential positions are used, continuing through several steps and iterations. At least one position is withheld to serve as a prediction
point. (B) To hindcast, the oldest shoreline position is predicted using a LR rate calculated from all 20t h century, non-storm positions.

tween the oldest and most recent shorelines used to calculate
the rate is referred to as the temporal span (TS) of the data
(Figure 2a). Once the erosion rates for each temporal span
were calculated, they were used to predict subsequent known
positions (Figure 2a). The difference between the date of the
last shoreline used in the rate calculation and the predicted
year is termed the prediction interval (PI). The erosion rate
is multiplied by the PI, and this predicted change in shoreline
position is subtracted from the actual amount of change. The
difference is called the Error in Prediction (EIP), and was
determined for each erosion rate and concomitant predictions
of subsequent shoreline positions.

For both EP and LR rates, separate calculations were made
using the entire dataset of shoreline positions, and for a sub­
set consisting of only non-storm shorelines. Designation of a
"storm-specific shoreline" was based on a priori knowledge
that a significant storm had occurred within a few months to
a year or two of the measurement, which is in turn based on
historical accounts of damage and evidence of multi-year re­
covery. Tide-gauge data showing extreme water elevations
(two standard deviations above the tidal mean) were also
used as independent verification of storm conditions (ZHANG,

1998).
In addition to forecasting later shoreline positions, we used

a similar approach to hindcast 19t h century positions (Figure
2b). All 20t h century, non-storm data were used to calculate
a LR rate, which was then used to predict the position of the
1870 shoreline in New York, or the 1845 or 1850 shoreline in
Delaware. The intent was to test the reliability of these older
data for erosion-rate analyses; are those positions consistent
with the shoreline-change trends that we observe in the 20t h

century?

RESULTS

19th Century Data

Before assessing the error in forecasts of future shoreline
changes, results from the hindcasting analysis provide infor­
mation on the degree to which the 19t h century data are con­
sistent with the recent shoreline positions. The hindcast for
the Cotton Patch Hill, Delaware, transect is shown in Figure
3(a). The predicted 1845 position is, for all intents and pur­
poses, the same as the actual position, suggesting a high de­
gree of reliability for the older data. Although the predicted
position also falls within the 95% confidence interval (Cl) of
the data used in the rate calculation, the width of the CI at
this location is nearly 200 m. (For a discussion of how the
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Figure 3. (a): Shoreline positions and hindcast, Cotton Patch Hill, Delaware. (b): Shoreline positions and hindcast, Fenwick Island, Delaware. Triangles
mark shoreline positions (relative to 1845 or 1850) used in the calculation of the LR rate (LR trendline shown as solid line). Filled circles are positions
excluded from LR rate, namely storm-specific shorelines (1929, 1962, 1970) and the 19t h century position (1845 or 1850). Dashed lines are the 95% CI for
the data.

95% CI is determined and how it may be used in erosion-rate
analyses, see DOUGLAS and CROWELL, 2000). Nine additional
transects from Delaware and seven from Long Island were
tested to determine whether the initial results presented
above are representative of the region as a whole (Table 2).

Although there is considerable variability in the prediction
error on Long Island (both under- and over-shooting the 1870
position), all of the hindcasts fell within the 95% CI, and a
few predictions were within 30 m of the actual shoreline po­
sition. Transect 5, where the CI is more than 700 m, was
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Table 2. Hindcasting results for New York and Delaware transects. For
each transect, the Error in Prediction (EIP' in meters) is shown, as is
whether or not the predicted 19th century position fell within the 95% CI.
Width of the CI at the 19th century position is listed, calculated from the
20 th century, non-storm positions and resulting LR rate.

Transect ElP (m) Within Cl? Cl Width (rn)

New York
1 13.0 m y 452.6
2 21.5 y 332.5
3 27.9 y 1319.9
4 -48.5 y 145.9
5 -254.8 y 716.8
6 -58.8 y 157.2
7 44.7 y 219.4

Mean -36.4 477.8
Delaware

1 -48.0 y 185.4
2 61.4 n 120.3
3 -115.2 n 94.7
4 -72.9 y 180.3
5 -0.03 y 198.5
6 -118.3 n 176.5
7 -64.4 y 134.8
8 -51.5 y 236.8
9 -24.9 y 140.4

10 -117.9 n 89.6
Mean -55.2 155.7

located updrift of the Moriches Inlet jetty, along Westhamp­
ton Beach. The large error may be related to the proximity
of this transect to the jetty; the beach appears to be accre­
tional over the last 60 years. The limited number of shore­
lines available along some stretches of Long Island reduced
the quantity of data for the rate calculation (1 to 3 degrees
of freedom), often resulting in confidence intervals consider­
ably wider than the actual beach (e.g., Transect 3). The av­
eraged transect used in subsequent portions of the study was
located near the southwestern end of Fire Island, where the
most data are available.

In Delaware, the hindcasts also had highly variable values
for the EIP, although most tended to undershoot the 19t h cen­
tury position. Width of the 950/0 CI was narrower and more
consistent than what was observed in Long Island, owing to

the three to five degrees of freedom for the LR-rate calcula­
tion (more 20 t h century, non-storm shorelines present in the
Delaware dataset). The four hindcasts that failed to fall with­
in the 959(J CI were all composed of late 20 t h century data
showing a minimal erosion trend (Figure 3b). Although none
of these profiles are located adjacent to hard shoreline-pro­
tection structures, they are all adjacent to heavily developed
coastal communities, some of which have histories of beach
nourishment. The six profiles passing the hindcast test were
located along undeveloped segments of the coastline (e.g.,
state parks). Because the first transect presented in this sec­
tion reflects the behavior of a natural shoreline and suggests
high reliability of the 19t h century position, it was considered
a sufficiently representative transect and used in the re­
mainder of the study.

Forward Predictions

Utilizing one averaged transect each from Delaware and
New York, all possible combinations of shoreline positions
were used to calculate erosion rates, with predictions made
to all subsequent shorelines. The analysis was conducted on
all shoreline data, and then again on a subset consisting of
only non-storm shorelines. The EIP was calculated for each
forecast, and the results are presented in Table 3.

The mean EIP is the arithmetic mean of all EIP values,
positive or negative. A non-zero value indicates a tendency to
systematically overestimate (-) or underestimate (+) ero­
sion. In all but two sets of predictions (Delaware, LR), erosion
was underestimated to varying degrees (Table 3). The mean
of the absolute value for EIP was also calculated in order to
determine the average magnitude of the error, regardless of
which direction the forecast erred. The root mean square
(RMS) average was also determined to show the magnitude
of error for a majority of the predictions (i.e., two-thirds of the
absolute EIP values were at or below the RMS value).

End-Point and Linear-Regression Rates

The results in Table 3 show the overall decrease in predic­
tion error when linear-regression rates are used in lieu of
end-point rates. Focusing on the mean absolute EIP, predic-

Table 3. Average prediction error for New York and Delaware shoreline data. All possible combinations of shoreline positions were used to calculate erosion
rates and make predictions. Both end-point and linear-regression methods (minimum of three or four data points) were used, with and without hrioum
storm-specific shorelines. In the linear-regression sections, the number of predictions generated is listed (e.g., n = 20). The Error in Prediction (EIP) was
calculated by subtracting the predicted position from the actual; therefore, a positive EIP indicates that more erosion actually occurred than was predicted.
Mean EIP represents average error of all EIP values, positive or negative. Mean absolute EIP is the average of the absolute value of the error. RMS ofabsolute
error was also calculated for comparison with the mean absolute EIP; two-thirds of the EIP values are below the RMS value.

Linear Regression (rn)

End Point (m) (3 or more points) (4 or more points)

Mean RMS Mean RMS Mean RMS
Mean Absolute Absolute Mean Absolute Absolute Mean Absolute Absolute
ElP ElP ElP ElP ElP EIP ElP ElP ElP

New York
storm 94.6 128.1 236.2 16.2 (n = 80) 35.4 53.7 17.3 (n 55) 26.3 38.4
non-storm 9.8 17.8 21.7 3.2 (n = 20) 12.3 14.2 0.1 (n = 10) 9.3 10.1

Delaware
storm 27.8 74.3 102.1 21.8 (n = 83) 48.9 64.1 23.8 (n = 56) 39.9 49.7
non-storm 0.2 19.2 23.2 -1.4 (n = 20) 18.5 20.9 -1.7 (n 10) 20.4 22.2

Journal of Coastal Research, Vol. 17, No.3, 2001



30

25

'JJ.e 20.=~
U

=a 15QJ
~c.-
~

0 10
~
QJ

,.Q

8 5=Z
0

rv\0 ';b\0 /~ \0
~

Shoreline-Position Forecasting

~ 00\0 ,rv\0 ,'c~ rv\0~

Error in prediction (m) bins

727

Figure 4. Storm and non-storm prediction error in Delaware. Histograms show the number of predictions where the EIP fell within the specified 20-m
range of values. The skewness, the degree to which data vary from a normal distribution (represented by a value of zero), is shown for the storm and
non-storm predictions. Those predictions exceeding the specified ranges (positive EIP only) are grouped together in the "More" category.

tion error in New York decreased by 72o/rJ for the storm-shore­
line dataset when LR rates with a minimum of three data
points were used, and by 790fJ when at least four shorelines
were used. The reduction in error for non-storm data was
31(10 and 480fJ for minimum-of-3- and 4-point LR rates, re­
spectively. In Delaware, the error decrease between EP and
LR rates for storm data was 34(kJ and 46~J (3- and 4-point
rates, respectively), but the trends for non-storm data are not
as clear. While the error decreased by 4(kJ from EP to 3-point
LR rates, there was a 6(kJ increase when the minimum-of-4­
point-LR rates were used. These findings alone indicate that
the rate-calculation methods are roughly equivalent for these
specific data, however the limited number of predictions pos­
sible using linear regression (n = 10) may be an important
factor.

Use of Storm-Specific Shorelines

As evident from the data in Table 3, removing storm shore­
lines from the analysis reduced the EIP considerably in both
states, regardless of the rate-calculation method. In terms of
the mean absolute EIP, the forecast error for LR data in New
York was reduced to approximately 10 m, approaching the
known accuracy of the data. In Delaware, the decrease in
error is also considerable. However, as noted previously, the
error is reduced by a factor of two or three to approximately
20 m for LR predictions, roughly twice the known accuracy.
Clearly, the inclusion of storm-specific shorelines introduces
a high amount of variability, and thus uncertainty, into ero­
sion forecasts, but it is not the only contributing factor.

Another way of visualizing these results is presented in
Figures 4 and 5. All EIP values for EP and LR predictions
were combined (in other words, the minimum number of
shorelines for LR is reduced to two to include EP rates), but
still categorized as either storm or non-storm predictions. The
range of the error for storm data is wide, from -100 m to

over 200 m in both states. While there is a significant cluster
of predictions with low EIP values, indicative of good erosion
forecasts, there is also a large peak near +40 m in Delaware
and at +80-100 m in New York, indicative of relatively poor
forecasts. In contrast to the storm data, which appear to have
a weakly bimodal distribution, the non-storm data have a
nearly normal distribution in both states. The skewness of a
dataset characterizes the degree of asymmetry of a distribu­
tion around its mean. In other words, the closer the value to
zero, the closer the data approximates a normal distribution.
Skewness values were calculated for both datasets in each
state, and are also shown in Figures 4 and 5. The qualitative
assessment that non-storm data have a more normal distri­
bution is supported by the lower skewness values.

DISCUSSION

Caveats on the Forecast Error Estimates

Raw values were presented for the calculated error in ero­
sion forecasts based on real shoreline-position data. Attempts
were made to normalize the EIP to some time factor, such as
TS or PI associated with each prediction. While there were
trends showing a negative correlation between increasing TS
and absolute error, and a positive correlation between in­
creasing PI and absolute error, the variables were not sepa­
rable; by virtue of the limited dataset, long TS almost always
necessitated short PI, and vice versa. Because of these issues,
and the suitability of confidence intervals and other statis­
tical tools for showing uncertainty within a dataset, we elect­
ed to present the results in terms of the straight forecast
error.

Average values for the forecast error are somewhat inflated
as a result of our experimental design. The averaged tran­
sects from Delaware and New York each contain ten shore­
line positions, three of which are known storm-specific shore-
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Figure 5. Storm and non-storm prediction error in New York. Refer to Figure 4 for explanation.

lines. At least one shoreline position had to be withheld from
the rate calculations in order to have a position to predict to.
When considering the non-storm data, only six of the seven
existing positions could be used to calculate the erosion rate.
Forecasts for management or other purposes, which are likely
to use all non-storm data to calculate the LR trend, will al­
most certainly be better; the results presented here can be
considered conservative error estimates. Conversely, in areas
where fewer shoreline positions are available, the error es­
timates and forecast uncertainty (in the form of confidence
intervals) are likely to be higher than the results presented
here.

Rate-Calculation Methodology and Storm Impacts

In agreement with the results obtained by CROWELL et al.
(1997) and GALGANO et al. (1998), linear regression was found
to produce superior predictions over end-point rates. The
trend is clear despite the limited number of possible predic­
tions made with LR compared with EP. Given a larger da­
taset, or some weighting of the averages to the number of
predictions, we would expect the decrease in error between
the methods to be even more pronounced. The lack of a sig­
nificant decrease in error in Delaware for the non-storm data
likely reflects this data limitation. However, another impor­
tant factor for non-storm data is that EP rates encompassing
the longest possible TS yield fairly good predictions (CROWELL
et al., 1993, 1997), an effect observed in our analysis.

Our results show that while there is some reduction in er­
ror attributable to the use of LR rates, the most important
factor in improving erosion forecasts is the exclusion of
storm-specific shorelines. In New York, the best results were
found not just with LR rates, but LR rates based on non­
storm data.

Why does the use of storm-specific shorelines lead to such

poor forecasts? GALGANO et al. (1998) demonstrated that ar­
bitrary use of storm shorelines in calculating end-point rates
results in extremely poor predictions of shoreline change.
Linear regression, shown here to provide better forecasts, as­
sumes that the process being modeled behaves in a linear
fashion. Long-term erosion has been linked with the secular
trend of sea-level rise on the U.S. Atlantic coast (ZHANG, 1998;
LEATHERMAN et al., 2000), which would indicate that this pro­
cess could be a large component of the behavior observed
here. Long-term change is precisely the type of behavior we
seek to model, and it is this behavior that is of critical im­
portance for numerous coastal management tools (e.g., con­
struction setbacks).

As mentioned previously, shoreline change also exhibits
quasi-periodic variations on seasonal or interannual scales
(e.g., migration of tidal inlets or shoreface sand bodies), all of
which are reflected to some degree in each measurement of
shoreline position. Inspection of the confidence-interval re­
sults from Long Island (Table 2) shows widths two to three
times greater than those calculated for Delaware even when
19t h century data are included, reflecting residual variance in
the recorded shoreline positions. These results, in light of cur­
rent research investigating the influence of antecedent geol­
ogy and shoreface sand-supply on coastal evolution (SCHWAB
et al., 1999), suggest that non-linear components are likely to
be critical factors controlling short-term shoreline change on
Long Island. Over the long-term (> 60-100 yr), we expect
that the linear component attributable to sea-level rise
should increase in importance sufficiently to be reflected in
the shoreline-change analyses.

After secular and quasi-periodic processes mentioned
above, great storms are the third component of our model of
shoreline change, and their infrequent, unpredictable nature
cannot be adequately described by any type of linear equa-
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Table 4. Width ol95(y,. confidence intervals, excluding and including 19th
century data. First tZDO columns show mean C/ width at 19th century (1845
or 1850 in Delaware, 1870 in New York) or 21st century (2060) dates, based
on LR analysis including only 20 th century, non-storm shorelines. Values
listed are the arithmetic mean o] the Cl widths for all transects listed in
Table 2. Second pair o{ columns show C/ width once the IS'" century data
are included in the LR irendline calculation.

1845/50/70 CI 2060 CI 1845/50/70 CI 2060 or
Transect (-19th cen.) (--19th cen.) (+ 19th cen.) (+ 19th cen.)

New York 477.8 m 431.5 175.7 224.2
Delaware 155.7 106.7 72.3 70.3

tion. Large-scale excursions of the shoreline from the long­
term trend are valuable data for management purposes, po­
tentially serving as a basis for additional setbacks beyond
anticipated long-term erosion (DOUGLAS and CROWELL, 2000),
analogous to the 'factor of safety' concept in engineering.
However, the recovery of the shoreline to a position close to
that predicted by a LR trend within a few years to a decade
of the event (GALGANO, 1998), suggests that the storms are
only important in describing short-term shoreline fluctua­
tions. These positions reflect a different component of the
model of shoreline change and, as demonstrated here and in
DOUGLAS and CROWELL (2000), including them in the deter­
mination of the long-term trend can introduce large and un­
necessary errors into erosion forecasts.

Importance of 19th Century Data

The hindcasting analysis revealed that 19t h century posi­
tions are, for the most part, consistent with the trends ob­
served in the 20t h century. Exceptions to this observation
were found in areas where there has been an apparent
change in the magnitude of erosion, whether due to a history
of beach nourishment or some other geologic or sediment­
transport process (e.g., antecedent geology, natural changes
in sediment supply). In these instances, which given the pat­
tern of coastal development could become the rule rather
than the exception, there is some justification for not using
the older data in erosion forecasts. However, the old positions
would be critical for determining the long-term trend and the
likely response of the shoreline should the erosion pattern
change again (i.e., beach nourishment ceases, a shoreline-pro­
tection structure is not maintained and fails, sediment supply
changes, etc.i.

Statistically, the 19t h century data are essential for deter­
mining the uncertainty in erosion forecasts for the 21s t cen­
tury. As was seen in Table 2, the width of the 95% CI at the
1870 position in New York and the 1845 or 1850 position in
Delaware was usually larger than the entire beach when only
20t h century, non-storm data were used to calculate the ero­
sion rate. Using the same data, the CI for the shoreline lo­
cation in 2060 is approximately the same size (Table 4). If
the 19t h century positions are included in the analysis, we
expect the width of the CI to decrease at that time interval.
In addition, the CI for 2060 is also reduced considerably,
down from 107 m to 70 m in Delaware, a 35%1 decrease in the
possible location of the shoreline. This decrease in uncertain­
ty includes CI widths from those transects where the 19t h

century positions were found to be inconsistent with the mod­
ern. Clearly, the old data are not only important in deter­
mining the long-term behavior of the shoreline in some cases,
but are critical in helping to constrain estimates of shoreline
location well into the future.

CONCLUSIONS

An analysis of real shoreline-position data from Delaware
and New York has shown that inclusion of storm-specific
shorelines drastically increases the error in forecasts of fu­
ture positions. While there are certainly cases where end­
point rates may yield good forecasts (e.g., long temporal span,
with storm shorelines omitted), linear-regression rates gen­
erally provide superior predictions. In the absence of major
changes to sediment-transport processes during the period of
measurement, 19t h century shoreline positions were found to
be accurate within the 95% CI of 20t h century data and sig­
nificantly decreased uncertainty in erosion forecasts.

Given the limited data available for determining shoreline­
change trends and a priori knowledge of extreme events or
other changes along the coast, the best erosion forecasts will
be those derived from linear-regression rates using non­
storm, 19t h and 20t h century data. Putting accurate informa­
tion concerning the magnitude and direction of shoreline
change (and the degree of uncertainty inherent to these fore­
casts) into the hands of coastal managers will grow in im­
portance as development and redevelopment increases into
the next century.
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