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ABSTRACT _

FENSTER, M.S.; DOLAN, R., and MORTON, R.A., 2001. Coastal Storms and Shoreline Change: Signal or Noise?
Journal of Coastal Research, 17(3),714-720. West Palm Beach (Florida), ISSN 0749-0208.

A linear regression (studentized) residual analysis was used to identify potential shoreline position outliers and to
investigate the effect of the outliers on shoreline rate-of-change values for transects along the Outer Banks, North
Carolina. Results from this analysis showed that, over a 134 year period, storm-influenced data contribute statistically
significant information to the long-term signal. Consequently, storm-influenced data points do not appear to be tem
poral outliers and thus, do not need to be excluded from a long-term analysis of shoreline changes. Furthermore,
projections of the upper and lower confidence intervals (CIs) for the regression line to the year 2010 (24 year extrap
olation) showed that including or excluding outliers had minimal effects on shoreline position predictions.

ADDITIONAL INDEX WORDS: coastal storms, shoreline rate-or-change, shoreline movement, statistical analysis, out
liers.

INTRODUCTION

In this paper we pose the questions, "When do tropical and
extratropical cyclones cease to influence the long-term shore
line migration history of storm-influenced coasts?" In other
words, "Do storm-influenced shorelines create outliers in
shoreline change data sets that aperiodically bias the long
term shoreline trends or, conversely, do these data contribute
information about long-term shoreline migration history?"
Moreover, is it appropriate to eliminate storms from shore
line change data bases in an effort to increase the linearity
of a trend as suggested by DOUGLAS and CROWELL (2000)
and HONEYCUTT et al. (in press)? Or, perhaps, do these data
points contribute information to help describe a potentially
non-linear system that is influenced by the frequency and
magnitude of storms?

Geologists have long known that storms control shoreface
retreat (SWIFT, 1968; LEATHERMAN et al., 1977; BOYD and
PENLAND, 1984), provide sand for storm washovers and flood
tide deltas (SWIFT, 1975; NIEDORODA et al., 1985), and pro
duce facies in the rock record indicative of storm-dominated
coastal and shallow marine depositional environments (HAM
BLIN and WALKER, 1979). At the other end of the temporal
spectrum, coastal storms can substantially alter the shoreline
position immediately after passage of the cyclone (DOLAN et
al., 1991), but it is unclear when a shoreline becomes a "post
storm" shoreline (i.e., having completed "recovery"). Temporal
scale is a central issue involved in addressing the questions
posed above. It is well known that the time scale over which
we observe processes and responses can influence our per-
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ceptions of system dynamics and our conclusions regarding
cause and effect relationships within those systems (LEO
POLD et al., 1964; SCHUMM and LICHTY, 1965; CHORLEY and
KENNEDY, 1971; and SCHUMM, 1977). Moreover, AGAR
(1980) and DOTT (1983) have raised questions regarding the
role of average, continuous, day-to-day processes versus rel
atively rarer, large-magnitude processes in producing sedi
mentary rock sequences.

In order to understand better the role of aperiodic coastal
storms in influencing shoreline change, we consider (1) what
constitutes a temporal outlier in shoreline change analysis
and (2) the basic types of errors associated with shoreline
position data. The occurrence of outliers within data sets is
one of the oldest and most persistent problems in data anal
ysis. Outliers can be considered observations that were gen
erated by mechanisms distinct from those of the family of
observations. Results generated by mathematical maximiza
tion procedures, such as regression, discriminant analysis,
and principal component analysis, are particularly sensitive
to errant data and the use of such data can lead to incorrect
results and faulty interpretations (e.g., STEVENS, 1984).

Two main categories of outliers exist with respect to shore
line data; temporal and spatial (Figure 1). Temporal outliers
include those shoreline position/time data points that appear
to deviate markedly from other members of the sample used
to compute a rate-of-change at one transect location. Outliers
can be expected to differ greatly in magnitude (on y or in the
space of the predictors) from the other observations (inliers)
or from a statistical estimate (HAWKINS, 1990). In the tem
poral domain, outliers can bias or distort estimates of the
long-term trend. Such outliers commonly result in regression
sensitivity and/or wield undue influence on a regression
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Figure 1. Two common types of outliers (black circles) in shoreline
change data sets: (A) Temporal outliers in which a shoreline position is
"signficantly" removed from other shoreline positions in time and (B) Spa
tial outliers in the shoreline rate-of-change values along the shore. The
dashed line in (A) represents the regression line including the outlier and
the solid line represents the regression line excluding the outlier.

equation (including the slope or rate-of-change). Spatialout
liers are those which show unusually large or small rate-of
change values at individual transect locations along the
shore. Common spatial outliers include shorelines influenced
by tidal inlets (FENSTER and DOLAN, 1996) or anthropogenic
activities (MORTON, 1979). The two main types of temporal
outliers include coarse outliers and inherent outliers. Coarse
outliers (a.k.a., measurement and execution errors) usually
involve operator blunders and are generally large and irreg
ular in occurrence. Sources of coarse or gross outliers include
mistakes in data input, incorrect computations, misreading
of data, or negligence. Inherent outliers can result from sys
tematic sources which result in samples with unusually large
or low values and are displaced in a constant direction. Sourc-

For these analyses we use the null hypothesis that episod
ic, large magnitude meteorological forcing events, such as
those associated with storms, do not directly control shoreline
movement over the long-term. Rather, long-term shoreline
changes occur as a result of the synergistic activity of day to
day processes or through the influence of longer-term pro
cesses such as sea-level rise or fall (independently from
storm-related processes) or changes in sediment supply. Un
der this hypothesis, storms tend to (1) displace the shoreline
systematically landward or seaward from its pre-storm po
sition and (2) to produce shoreline position/time data that
deviate from the "true" long-term trend as estimated from a
time series of measured shoreline positions. Following the
storm, the shoreline returns to near its pre-storm position
(DOUGLAS and CROWELL, 2000; HONEYCUTT et al., in press).
The alternate hypothesis envisages that non-storm, day to
day and long-term processes, unrelated to storms, maintain
shoreline position while storms control the long-term shore-

es include miscalibrated instruments, distortion in data (e.g.,
aerial photographs), or processes, such as storm set up or set
down, which move the shoreline consistently either landward
or seaward (DOLAN and FENSTER, 1995). Additionally, in
herent errors can result from the natural variability of a pop
ulation. In this case, the data points may reflect the distri
butional properties of a correct model describing the data
(e.g.,. normal distribution). The outliers may simply represent
data from the tails of this population.

Data outliers are not always obvious or easily detectable.
In some cases, however, outliers can be readily detected or
are intuitively obvious upon examination of the data. Various
outlier detection methods have been designed to identify
quantitatively and isolate the outliers (diagnostic methods for
detection in large data sets) (e.g., HAWKINS, 1980). Once de
tected, the decision to include or delete outliers from an anal
ysis is not always straightforward. Two main approaches can
be considered to deal with outliers: (1) remove the outliers
and risk distorting reality; and (2) include the outliers which
may reveal something essential about reality. If inclusion is
desired, the type of outlier should determine the type of treat
ment necessary. In turn, the treatment selected commonly
will be a function of how we view the outliers relative to the
types of questions being asked. In addition, some robust
methods can be used to make inferences using outliers, or the
influence of an outlier can be reduced by weighting proce
dures.

Since regression analysis is often used to compute shore
line rates of change over periods ranging from decades to cen
turies, we ask the following questions:

(1) Can temporal outliers be detected in the relatively small
sample shoreline position data sets that are used to com
pute shoreline rates of change at specific locations or
transects?

(2) What are the physical processes responsible for producing
outliers?

(3) Are there patterns in the distribution of outliers that can
be used to assess large sets of shoreline data?

(4) Should we use or exclude the outliers from rate-of-change
calculations?
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Table 1. Storm-influenced shoreline positions and corresponding dates.
National Ocean Service historical maps are denoted by NOS T and aerial
photographs by AP. Storms which occurred about a week prior to photo
grammetric flights are indicated by date, duration, average wind speed and
deep water wave height (H(J (After DOLAN et al., 1991).

Date of Prior Storm Duration Ave. Wind H,
(max = one month) (hrs) Speed (kts) (m)

Cape Hatteras

Date Type

1852 NOST
1917 NOST
01 Jul45 AP
10 Oct 58 AP
13 Mar 62 AP
13 Dec 62 AP
03 Oct 68 AP
04 Jun 74 AP
21 Oct 80 AP
21 Aug 81 AP
14 Jul 82 AP
27 Oct 82 AP
26 Jan 83 AP
27 Apr 83 AP
20 Sep 84 AP
18 Aug 86 AP
01 Oct 86 AP

NA
NA
None
01-03 Oct 58
07-08 Mar 62
None
None
04 Jun 74
None
None
None
22-26 Oct 82
21-22 Jan 83
24 Apr 83
13-14 Sep 84*
17 Aug 86
None

29
44

15

64
36

9
24-48

22

23
44

18

37
18
26
20
27

3.1
9.1

1.8

7.2
2.1
2.6
2.4
3.4

* Hindcast estimate from NOAA weather maps

METHODS

Residuals and Outliers

where SPi is the ith shoreline position, and §Pi is the corre
sponding fitted value.

Figure 2. Map of the study area at Hatteras Island, North Carolina.
Base maps 20 and 21 (rectangles) and examples of transects (dashed
lines) are indicated on the map.

(2)
e i

l (1 (x, - x)2 J~
MSE 1 - l;;: + ~ .; - x)2 ~

r, = ------;:=:::::;;:::========;;:

Although a qualitative definition of an outlier is presented
above, quantitative definitions of an outlier vary. For exam
ple, outliers can be considered extreme observations that are
larger in absolute value than other residuals by three or more
standard deviations from the mean (KLEINBAUM and Kur
PER, 1978; MONTGOMERY and PECK, 1992). For this study,
we used the more conservative standard deviation of ± 1.8
and ± 2.2 standard deviations, corresponding with a 90% and
95% confidence interval, respectively (compared to 99% for ±
3 standard deviations) in order to identify and produce a
greater number of outliers. Outliers in this study are expect
ed to be from a "heavy-tailed distribution" in which the shore
line positions in the "tails" of a population of shoreline posi
tions are a function of extreme meteorological forcing, such
as storm events, rather than from erroneous data due to
faulty analysis or incorrect readings.

To ascertain whether the shoreline positions constitute ex
treme values, we calculated residuals from two base maps
(20 and 21), each comprising 72 transects spaced at 50 m
intervals, along the Outer Banks of North Carolina (DOLAN
and FENSTER, 1995; Figure 2). The temporal data incorpo
rated at least 13 shoreline position/time data points and
spanned the period 1852 to October 1986 (Table 1). To avoid
problems associated with spatial autocorrelation, we selected
transects nearly 600 m apart (DOLAN et al., 1992). This ap
proach ensured that the shoreline position at each location in
time is independent and identically distributed (DOLAN et al. ,
1992). In order to compare and contrast the residuals from
each transect directly, we calculated "studentized" residuals
(MONTGOMERY and PECK, 1992):

(1)e i =SP i - SPi , i = 1, 2, 3 ... , n

With respect to linear regression techniques, residuals can
be conceived of as the deviation of the data (observed) from
the fitted (predicted) values, and are a measure of the vari
ability not explained by the regression model (KLEINBAUM
and KUPPER, 1978; MONTGOMERY and PECK, 1992). Resid
uals are defined as:

A linear regression (studentized) residual analysis was
used to identify temporal outliers and to investigate the effect
of the outliers on shoreline rate-of-change values. Once iden
tified, we used the definition above to determine if the tem
poral outliers were storm- or non-storm-influenced. Further
more, to establish what effect the inclusion or exclusion of
outliers has on shoreline position predictions, we projected
the upper and lower confidence intervals (CIs) for the re
gression line to the year 2010 and compared the predictions
of the two scenarios (DOLAN and FENSTER, 1995).

line trends. For this analysis, storm-influenced data points
would not be detected as outliers. For the analyses presented
here, storm-influenced data points are defined as those in
which a storm with deep water wave heights 2:: 1.8 m had
occurred less than two weeks prior to a photogrammetric
flight.

Journal of Coastal Research, Vol. 17, No.3, 2001
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(4).-. (1 (x, - X)2)
C.l. = SPi ± (t n-2,td2) MSE ~ + 1 Sxx

beach nourishment projects. Table 1 lists the hindcasted
storm-influenced shoreline positions and corresponding
dates. Furthermore, we extrapolated the regression lines to
the year 2010 to test predictions using storm and non-storm
data (DOLAN and FENSTER, 1995). Upper and lower CIs were
calculated and projected to the year 2010 using:

A.

Date

where tn~2,0'/2 is the t-statistic for n shoreline positions at a
confidence level of a/2 and Sxx is:

Upper and Lower CI 95%

Regression

o nonstorm-Influenced SP

• storm-influenced SP

n

Sxx = 2: (Xi - XJ2.
i=1

(5)

STUDY AREA

The width of the CIs is a minimum for Xo = x, and widens
as Ixo - xl increases since the best estimates of Y (shoreline
position) will be made at X values (date) near the center of
the data; and the precision of the estimation is likely to de
cline towards the boundary of the x (time) (MONTGOMERY
and PECK, 1992). This phenomenon suggests that the worst
estimates of shoreline position will occur near the earliest
and latest dates.

Prediction
Uncertainty
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Date
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where r, is the ith studentized residual, n is the number of
shoreline positions, x is the date of the ith observation, x is
the mean date, and MSE is the mean squared error:

Figure 3. Plot of regression lines and confidence intervals for transect 21
13, Hatteras Island, without storm-influenced data (A) and with storm
influenced data (B). Note that the prediction uncertainty does not vary
considerably between the two data sets.

Studentized residuals are standardized (each ei is divided
by its estimated standard deviation) to produce a mean of 0
and a constant variance equal to one, regardless of the shore
line position relative to the location of Xi (in this case date).
Comparing the studentized residuals to the t-statistic yields
a level of confidence for outlier detection. Since studentized
residuals were computed rather than residuals, and given
that the population variance is unknown, the t-statistic was
used to test the outliers for significance and to derive the
critical region in which outliers exist at the 90% CI (i.e., ±
1.8 standard deviations) and the 95% CI (i.e., ± 2.2 standard
deviations).

Hatteras Island, North Carolina was selected for study be
cause it is impacted by both tropical and extra-tropical
storms, and previous studies have yielded rich data-sets of
hindcasted storm attributes and shoreline positions (Figure
2; DOLAN et al., 1988; DOLAN et al., 1991; DOLAN et al., 1992;
FENSTER et al., 1993). Hatteras Island is part of an open
ocean, wave-dominated, long, linear barrier island system
(HAYES, 1979; INMAN and DOLAN, 1989). Shoreline move
ment is dominated by longshore and cross-shore sediment
transport resulting from wave action. The mean wave height
is approximately 0.65 m, however, the wave climate is tem
porally and spatially variable (INMAN and DOLAN, 1989).
Previous studies have shown that 25% of all winds are from
the northeast, under the influence of (winter) Arctic and po
lar air masses (THOMPSON, 1977; JENSEN, 1983; LEFFLERet
al., 1990). The predominant summer wave approach is south
erly, under the influence of tropical maritime air masses and
cyclonic low pressure activity (FENSTER and DOLAN, 1993).
Between 1942 and 1984, the area was subject to storms with
winds capable of generating deep-water wave heights in ex
cess of 1.6 m every ten days, on average; 3.4 m every three
months; one of at least 5.2 m every three years; and one
greater than 7 m every 25 years. In addition, the period of
maximum storm frequency (51% of all storms) occurred be
tween December and March, with an average of 4 storms per
month (DOLAN et al., 1988).

(3)
1 n

MSE = - 2: (SP i - SPiP.
n i=1

In order to test the reliability of shoreline predictions ex
cluding and including outliers, we fit a linear regression line
on historical shoreline data from transect 21-13, both ex
cluding (Figure 3A) and including (Figure 3B) storm-influ
enced data. We chose transect 21-13 because it was not in
fluenced by secondary processes associated with capes, inlets,
and rivers, or by anthropogenic factors such as groins and

RESULTS

A histogram showing the distribution of the studentized
residuals from all transects analyzed within base maps 20
and 21 of Hatteras Island is plotted in Figure 4. A summary
of the statistically significant studentized residuals from
these transects is provided in Table 2. Only 7 of 144 shoreline
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Table 2. Summary statistics o] significant studentized residuals lor tran
sects 600m apart [rom base maps 20 and 21, Hatteras Island, North Car
olina.

DISCUSSION

10

5

Confidence Intervals

According to the null hypothesis presented above, which is
similar to that presented by DOUGLAS and CROWELL (2000)
and HONEYCUTT et al. (in press), the exclusion of storm-in
fluenced data points reduces prediction variability. The re
sults shown in Figure 3 indicate that the range of uncertainty
for shoreline predictions is greater in cases excluding storm
influenced data (prediction uncertainty in shoreline position
at 2010 = 45 m; Figure 3A) compared to cases including such
data (prediction uncertainty in shoreline position at 2010 =
40 m; Figure 3B). Consequently, these data do not support
our null hypothesis or those of DOUGLAS and CROWELL
(2000) and HONEYCUTT et al. (in press). Additionally, the in
ability of storm-influenced data to bias shoreline forecasts is

Base Map- Outlier Shoreline Studentized
Transect Date Position (m) Residuals

20-1 1917 299 -1.812*
20-13 1917 305 -2.460**
20-25 1917 338 -2.205**
20-37 1917 345 -2.996**
20-49 1852 382 1.868*
20-49 1917 353 -2.535**
21-1 1945 320 -2.278**
21-37 1945 415 2.028*
21-49 1917 279 -2.906**
21-61 1917 200 -2.886**

* t-statistic significant at 90(YrJ CI for two-tailed test, 11 df (> 1.796)
** t-statistic significant at 95(Yr! CI for two-tailed test, 11 df (>2.201)

points significant at the 95%) CI are 1917 map dates; the oth
er value is a 1945 non-storm-influenced date. At the 90% CI,
only 3 significant values were plotted in addition to those
from the 95% CI: two map dates (1852 and 1917) and a 1945
non-storm-influenced date. The 1917 map date was the most
persistent outlier. It cannot be confirmed whether this is a
"process" related outlier because the shoreline position was
mapped over an unspecified period of time, at an unknown
date in that year. In addition, the shoreline shown on 1917
T-sheet may have been poorly (inaccurately) mapped in this
area or the map may have been poorly produced when drafted
by the National Ocean Service (NOS). The 1945 value is the
only aerial photograph derived position depicted as a possible
outlier; this position was not storm-influenced (Table 2). In
addition, the 1945 residuals at the two transects (21-1 and
21-37), spaced about 1.8 km apart, lie on opposite sides of
the regression line. This result indicates one position is land
ward of the estimate (21-1) while the other (21-37) is sea
ward of the estimate. This finding demonstrates the ability
of the shoreline to show highly variable temporal trends over
relatively short spatial regions or, once again, for the shore
line to have been mapped from poor quality data. Of partic
ular importance to the study of outliers, and contrary to ex
pectations for this wave-dominated coastline, is the result
that storm-influenced data do not yield significant variability
unaccounted for by the regression model.

32-2 -1 0 1
Studentized Residuals

0'1 ' , ',' I ',' , , I ' , ',' I ',' ,i

-3

20

25

Residual Analysis

The results presented in Table 2 suggest that storm-influ
enced data points are not outliers. Six of the seven data

positions « 5%) were identified as potential outliers at the
95% CI. Three additional values were significant at the 90%
CI « 7%) (Table 2). Only one transect contained two outliers
(20-49). Only two of the 10 identified outliers occurred over
the period of photogrammetric data and the remaining out
liers occurred over the period of map and chart data. Linking
the individual outliers to the storm information clearly shows
that storm-influenced data points are not outliers (compare
Tables 1 and 2).

Figure 3 shows the regression lines and the 95% confidence
bands for transect 20-13, projected to the year 2010. As stat
ed quantitatively above, the curvature of the confidence
bands indicate that the estimates are most precise at the av
erage value of x (x, date) and become less meaningful away
from the average date. According to equation (4), the factors
that cause the confidence band to increase in range include
an increase in MSE, a minor increase with a reduction in the
number of data points, n, a decrease in Sxx, and a data set
with points located far from x (mean date).

The confidence bands shown in Figure 3 indicate that we
can be 95% confident that the true estimate is located in this
interval. Figure 3A does not include storm-influenced data
points while Figure 3B includes all data points. Inclusion of
the storm data decreases the uncertainty involved in pre
dicting the shoreline's position for the year 2010 and does not
significantly increase the variability of an estimate of future
shoreline position. In addition, the R2 value increased only
slightly from 0.68 to 0.72 after excluding storm data (insig
nificant at the 95% confidence level). These results support
the alternate hypothesis that storms influence or control the
long-term shoreline trends.

Figure 4. Histogram of studentized residuals from base maps 20 and 21,
Hatteras Island. Note the relatively low number of extreme values.

.....,
C

~ 15
u
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revealed by insignificant changes in the rates of shoreline
change (Figure 3A = -0.48 m/yr; Figure 3B = -0.52 m/yr)
and the R2 values (Figure 3A = 0.72; Figure 3B = 0.68).
These results suggest that the impact of an individual "pow
erful" storm (e.g., the March 1962 storm) or the cumulative
and synergistic effect of many (small and/or large) storms
most likely influence the long-term shoreline migration his
tory at this location (FENSTER and DOLAN, 1994). For ex
ample, in 1968, six years after the 1962 Ash Wednesday
storm, the shoreline at this location along the Outer Banks
moved seaward to its "original" 1958 (storm-influenced) po
sition-only to return to the exact March 1962 shoreline po
sition immediately following a relatively small magnitude
1974 storm (Table 1; Figure 3B).

Along this storm-influenced coast, shorelines move system
atically landward under the influence of storm-related pro
cesses, but rarely have the opportunity to fully "recover" to a
"pre-storm position." These data support the observations of
DOUGLAS and CROWELL (2000) which show post-storm ac
cretion continuing for a decade or more along the Delaware
coast before "returning" to a storm-influenced erosional con
dition at a later date. The persistence of these short-term
changes at a particular reach (i.e., post-storm recovery) will
depend on many factors including the duration and intensity
of an individual storm and the frequency of successive
storms. In this context, it is difficult to discern when storms
cease to influence a coast because the erosion/accretion "cy
cles," which may persist for a decadets), tend to control or
influence shoreline migration. These data suggest that
storms are not temporal outliers in shoreline change data
sets but drive a relatively non-linear system. Finally, the re
sults from the Outer Banks demonstrate the ability of the
linear regression method to minimize the influence of ex
treme values or outliers-especially as compared to the end
point rate method since adding more points (DOLAN et al.,
1991) and increasing the time span decreases uncertainty in
rate-of-change estimates (DOLAN et al., 1991; CROWELL et al.,
1993).

CONCLUSIONS

This paper represents an attempt to understand the link
between coastal storms and the response of the shoreline to
those storms over periods of tens to hundreds of years. Does
separating erosion/recovery events due to great storms
(noise) lead to a better understanding of long-term erosion
trends (the signal)? Should we omit storm-influenced data
from shoreline change analyses because shoreline positions
are "very inconsistent with a linear trend model of shoreline
retreat for an extended time interval that can reach even 10
years or more" as suggested by DOUGLAS and CROWELL
(2000)? Should we revisit MORTON'S (1978) suggestions to use
photographs of shorelines taken during calm weather and un
der similar tidal conditions and consider the types and mag
nitudes of errors associated with using storm-influenced data
in long-term shoreline trend analysis? Or, does the frequency
and magnitude of storms control or, at least, influence long
term shoreline changes and, therefore, substantially contrib-

ute to the signal? If the latter is true, when do storm-influ
enced data points produce noise (systematic error)?

In contrast to DOUGLAS and CROWELL (2000) and HONEY
CUTT et al. (in press), our research suggests that, based on
analyses of a reach along the wave-dominated Outer Banks
of North Carolina, the exclusion of storm-influenced data
points is neither warranted nor prudent because such values
do ,not constitute outliers, and they do not increase substan
tially the range of uncertainty surrounding predicted future
shoreline positions. The added value of reducing uncertainty
with the inclusion of more data points outweighs the poten
tial advantages of excluding storm-influenced or storm-dom
inated data points.

Two conditions used in this analysis may not always apply
to other data sets: (1) coastal reaches where storms playa
lesser role in shaping and modifying beaches and (2) reaches
that clearly (physically or quantitatively) display non-linear
long-term shoreline movement (assumption of linearity fails).
For example, large departures from the mean position
(storm-influenced shorelines) on a relatively stable beach rep
resent noise and are not part of the signal, whereas on beach
es of moderate to high erosion, the storm-influenced shore
lines are part or most of the signal because those beaches do
not fully or temporarily recover to their pre-storm position.
The most obvious examples where immediate post-storm
shorelines produce a signal and not noise are muddy beaches
and bluffs that show no recovery from a storm impact. Con
sequently, several matters deserve additional investigation:
Further work using larger data sets covering a variety of hy
drodynamic conditions will be needed to clarify whether this
result stems from the cumulative effect of synoptic-scale
storms. Attention needs to be given to quantifying the uncer
tainty ranges for many transects over large coastal reaches
for data-sets comprising storm- and non-storm-influenced
data, with and without outliers, to determine the influence
of coastal storms on shoreline predictions. Alternative outlier
detection methods (for outliers on y or shoreline position),
such as the Winsorized t, would be valuable in confirming
these findings (HAWKINS, 1980). Furthermore, a test of in flu
ence should be conducted, such as Cook's measure of distance
to determine the extent to which isolated data points (in the
time or x direction) influence shoreline rates of change. In
addition, this analysis should be applied to data-poor regions.
In summary, we recommend:

(1) Visually examining scattergrams of shoreline position/
time data to detect and isolate coarse errors (outliers)
which may have occurred during measurement or exe
cution. Delete coarse errors.

(2) Retaining shoreline positions that closely followred)
storm events in wave-dominated coastal environments.
The systematic error incorporated into such points does
not appear to create outliers (i.e., storms control shoreline
movement), and shoreline predictions are not substan
tially altered.
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