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Accurate representations of beach morphology are required to address a number of research and management ques­
tions, including estimation of beach volume change. In this study, variogram modelling and ordinary kriging were
used to determine short-term changes in beach morphology and sand budget, based on daily surveys of 16 beach
profiles along a 500-m section of Mangawhai Beach, New Zealand. Beach elevation data were de-trended by fitting
planar trend surfaces. Experimental variograms displayed a high degree of spatial continuity and there was little
ambiguity involved in fitting models. Kriged beach elevations were re-combined with the trend to construct beach
surfaces. Beach volume confidence intervals were derived from the trend residuals of sampled beach elevations. The
difference-of-means test was used to identify statistically significant changes in beach volume from the daily profile
data. On average, statistically significant changes in beach volume were detected every 5.8 days. At least 8 equally
spaced profiles were required to reproduce the beach morphology to a similar level of accuracy as the complete data
set. Sample location was equally important as the number of samples in minimising estimation errors. The questions
of how often and how intensively to sample for monitoring beach sand resources can be answered by conducting a
pilot geostatistical study and by considering the objectives of a particular study. Geostatistics provides tools to make
informed decisions about beach monitoring.

ADDITIONAL INDEX WORDS: Profiles, trend-surfaces, variograms, kriging, morphology; sand budget.

INTRODUCTION

Beach profiles are commonly used to quantify changes in
beach morphology, the assumption being that a single profile
is representative of the three-dimensional (3D) morphology
of a beach segment. How good this assumption is in reality
largely depends on the longshore variability in the shore-nor­
mal beach profile. Beach morphology is complex due to spa­
tial and temporal variations in wave energy, sediment sup­
ply, sediment size and composition, rhythmic topography and
the occurrence of natural (e.g., reefs, headlands and estuaries)
and constructed ie.g., groynes, jetties) features that locally
influence the magnitude and direction of sand transport.

Accurate representation of beach 3D morphology is re­
quired to address a number of coastal research and manage­
ment problems. In the research domain, the accuracy of nu­
merical models of coastal processes (e.g., wave shoaling and
sediment transport) not only depends on the mathematical
definition of the processes and boundary conditions, but also
accurate representation of beach and shoreface morphology.
Beach profiles are also used to validate model predictions of
sand transport and consequent changes in beach state.

In the realm of coastal management, accurate sand volume
estimation is required to monitor rates of beach erosion and
accretion, and on developed coasts, the maintenance of a min­
imum beach volume is a strategy used to mitigate storm ero-
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sion and inundation hazards. Beach re-nourishment is a com­
mon 'soft' engineering approach to reconstructing eroded
beaches, and the design and performance monitoring of a re­
nourishment project requires very accurate sand volume es­
timation. In the United States, an average volume error of
less than 12.2 m' m I beach is required to satisfy the 10-20lki

cost contingencies associated with re-nourishment projects
(GROSSKOPF and KRAUS, 1994). The coastal environment is
also an important source of construction aggregates. Quan­
tifying the size of the resource and monitoring the physical
effects of sediment extraction is another application where
accurate estimation is required.

In this paper spatial estimation techniques are used to
model beach 3D morphology and to assess the accuracy of
beach volume estimates. A critical aspect of spatial estima­
tion is quantifying the total error, which has 2 components:
measurement error and estimation error. The estimation er­
ror is the difference between an estimate and the true value
at an unsampled location (IsAAKs and SRIVASTAVA, 1989).
To estimate the value of a variable (e.g., beach elevation) at
an unsampled location, including the estimation error, in­
volves modelling its spatial continuity. This is addressed by
a branch of applied mathematics known as geostatistics
(CRESSIE, 1990).

Minimising the estimation error is important if statistically
significant changes in a spatial variable are to be detected
and is influenced by the temporal and spatial characteristics
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Figure 1. Example variogram. At the model range (a) the semi-variance
or sill value approaches the overall sample variance. The sill may include
a nugget effect (CJ, indicating a spatial discontinuity near the origin. In
the absence of a nugget effect the sill is equal to the scale (C) of the
variogram.

of the sampling. For example, on an accreting beach it is like­
ly that a significant change in sand volume will be measured
over weeks or months because the apparent change in beach
volume is large in comparison to the estimation error. How­
ever, at smaller time scales (i.e., hours-days) it is more dif­
ficult to detect significant changes in sand volume because
the magnitudes of the volume change and the error are sim­
ilar. Also, because beach longshore shape is not uniform, the
accuracy of a beach volume estimate will be determined by
the location and number of samples (e.g., beach profiles).

Environmental agencies charged with beach monitoring
need to optimise the allocation of their often limited resourc­
es. Therefore, from a resource manager's perspective, what is
an appropriate strategy to minimise data requirements for
accurate modelling of beach 3D morphology? In this paper,
the utility of geostatistical methods to model short-term
changes in a beach sand budget are evaluated using a de­
tailed beach profile data set from Mangawhai Beach, North­
land, New Zealand.

GEOSTATISTICAL ESTIMATION

Distinguishing features of geostatistical estimation include
modelling the spatial continuity of a variable, using tools
such as the semi-variogram (variogram), and customising the
spatial estimation algorithm (i.e., ordinary kriging) using the
variogram model (ISAAKS and SRIVASTAVA, 1989). Geosta­
tistical techniques were first applied in the 1950's to the prob­
lem of gold ore reserve estimation (CRESSIE, 1990). From this
early applied work, geostatistical theory was developed and
from it grew the spatial estimation technique known as krig­
ing (MATHERON, 1963).

Although geostatistical methods have subsequently been
applied to many areas of science where spatial estimation is
required, their application to coastal research problems has
only occurred in the last decade or so. In an early study,
PHILLIPS (1985) used variograms to optimise the spacing of
elevation measurements along beach profiles. Long-term var­
iations in rates of shoreline accretion and erosion, including
their estimation errors, have been analysed by DOLAN et al.
(1992) using geostatistical methods. FRENCH et al. (1995)
adopted a geostatistical approach to map spatial variations
in short-term sedimentation rates in a tidal wetland. CARTER
and SHANKER (1997) modelled the small-scale morphology of
braided river channels to improve predictions of river hydro­
dynamic behaviour. To help predict the inundation of coastal
lowlands by storm surges MASON et al. (1997) used geosta­
tistical techniques to construct digital elevation models of a
196 km" intertidal flat from remotely-sensed elevation data.

The regionalised variable is a key concept in geostatistics
and has properties of both a random and purely deterministic
variable. Unlike truly random variables, regionalised vari­
ables (e.g., beach surface elevation) display spatial continuity,
however spatial variations in the value of a regionalised var­
iable are so complex that its value at an unsampled location
cannot be predicted in a purely deterministic manner (IsAAKs
and SRIVASTAVA, 1989). In geostatistics, the use of a station­
ary random function model recognises the uncertainty in pre­
dicting the value of a spatial variable at an unsampled loca-

tion. The extent to which the stationarity assumption is sat­
isfied will determine how well geostatistical tools, such as the
semi-variogram, describe the spatial continuity of a sample
data set.

The Experimental Variogram

The spatial continuity of a regionalised variable is deter­
mined by sampling its value at different locations and con­
structing an experimental variogram. The experimental var­
iogram approximates the 'true' spatial continuity of the phe­
nomenon being considered. The extent to which this is
achieved largely depends on how representative the sample
data set is of the regionalised variable. In turn, the combi­
nation of weights assigned to nearby samples by ordinary
kriging, to estimate a value at an unsampled location, de­
pends on the model of spatial continuity fitted to the exper­
imental variogram. Consequently the construction, interpre­
tation and modelling of the experimental variogram are cen­
tral to any geostatistical study.

If we initially assume a uniform spacing of data in a par­
ticular direction, the experimental semi-variance C)'h), equal
to half the averaged squared difference between pairs of data
points (X), is calculated for increasing horizontal separation
vectors or lags (h) by:

1 N<h)

'Yh = 2N(h) ~ (Xi - X;+h)2 (1)

where Nth) is the number of comparisons between pairs of
points separated by h. At lag zero, points are compared with
themselves and so "Yh is zero. As the separation distance in­
creases, the value of the regionalised variable at each location
becomes less similar and "Yh increases. At some separation
vector there is no longer a relationship between pairs of sam­
ples and the semi-variance approaches the value of the over­
all sample variance (Figure 1). The distance at which this
occurs is called the range (a). The value of "Yh when the semi­
variance approaches the sample variance is called the sill,
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Figure 2. Variogr am models commonly fitted to spa tia l data.

tri al-and-error ie.g., cross -va lidation ), or from qualita tive in­
formation about th e regional ised variable (ENW,UND and
SPARKS, 1991).

The variogra m model must conform with severa l mathe­
matical constraints, in particular the condition tha t a func­
tion is positive-defini te . The positive-definite condition en­
sures a unique, sta ble solution to the set of simultaneous lin­
ear equations required by ordinary kriging and gua ra ntees
that indi vidu al kri ging weights exceed or equa l zero, sum to
one and tha t th e estimation er ror will have a positi ve vari­
ance (ISAAKS and SHIVASTAVA, 1989 l. There are seve ra l com­
monly used variogra m models that a re known to be positi ve­
definite and that can be combined or 'nested' to model com­
plex patterns of spa tial conti nuity (Figure 2). Sever al basic
vari ogram models, including the sphe rica l, exponentia l and
Gaussian models, incorporate a sill and range. The nugget
model specifies a constant sem i-variance at all lags. At sma ll
lags, the linear, spherical and exponent ia l models have sim­
ilar initial slopes , however th e linear model is only positive­
definite in one dimension .
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which is the tot al possibl e variation in the reg ionalised var­
iable for any given h. The range defin es a local neighbour­
hood within which sample data provide information about th e
valu e of the regionalised variable at the estimate location
(DAVIS, 1986). The assumptions of th e random function mod­
el become increasingly tenuous at large separation dist an ces
and in practic e th e maximum lag used to construct an exper­
imental va riogram is approximately half the maximum dis­
ta nce betwe en samples. In some situations the semi-variance
at very small lag inte rvals may be qu ite large, causi ng a jump
or discontinuity at th e origin, which is term ed th e nu gget
effect (C.,). The variogram scale (C) is equal to th e sill value
when the nugget effect is zero. The sill (C + Co) is th e total
possible va ria tion in the depend ent variable and th e ratio of
th e nu gget effect to th e sill value is th e relative nu gget effect.

In real -world situation s th e spacing of data is not regul ar
and only a small proportion of th e data pairs are likely to
coincide with a discrete separation vector. To overcome th is
limitation, toler anc es in th e sepa ra tion dist an ce and dir ection
are used so tha t while th e number of lag pairs is adequa te it
is not so large th at th e pattern of the spa tial cont inuity in a
particular direction is blurred. When th e angular toler anc e is
large (i.e., 900

) , an omni-direction al variogram is produced,
which summarises th e spa tial continuity of th e enti re data
set .

Anisotropy

Directi onal variogra ms may reveal significant differ ences
in the ran ge and/or sill in differ ent directions. Th is aniso tropy
in th e spa tia l conti nuity of th e variable is either geometric
(i.e., variogram ran ge changes), zona l (i.e., variogram sill
changes) or a mixture of both . The axes of ani sotropy can be
identi fied by trial and error , by mapping th e two-dimens iona l
semi-variance surface, and from kn owledge of th e spatia l
phenom enon under consideration. Qualitative informa t ion
about th e phenom ena being studied can significantly improve
th e esti ma tion. In this study, the re is appa re nt zona l and
geometric anis otropy in th e beach elevation data. The appa r­
ent zona l anis otro py is a consequ ence of th e lower variance
of beach eleva tion in th e longshore dir ection. The anisotropy
ratio, defined by the rel ative ran ges of th e dir ection vario­
grams, provides a measu re of the statistica l distance between
samples and th e estima te location. When the ratio is high ,
sa mples along the axis of maximum spa tia l continuity may
have a larger weighting tha n samples th at appea r closer in
Euclidean spa ce.

The Model Variogram

Exper imental variograms provide estima tes of spatia l con­
tinuity at discrete lags and in particular direction s (the omni­
dir ection al variogram being an exception). However , spatial
esti mation at un sampled locations requires semi-varia nce
values not coincident with the discret e lags and directions
sa mpled by the experimental variogra mts ). Ther efore, to com­
pute th e statist ical dist an ce betw een an estima te and nearby
samples , a model of spa tial continuity is fitt ed to th e exper­
imental variogram (ISAAKS and SRIVASTAVA, 1989). Models
can be fitt ed using some form of least squares criteria , by
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where IC] is a rectangular matrix containing the covariances
between all sample locations and themselves, lwl is a column
matrix of unknown weights, [DJ is a column matrix of co­
variances between all sample locations and the location of the
estimate and [C] 1 is the inverse of matrix [C]. The ordinary
kriging system accounts for two important aspects of spatial
estimation: the statistical distance between samples and the
estimate (i.e., lDJ) and sample clustering (i.e., [C]-l). ISAAKs

In this study, nested Gaussian and spherical variogram
models were found to best describe the experimental vario­
grams of residual beach elevation. The residual elevation (ZR)

is the elevation with a trend (ZT) removed. The spherical
model is linear at small lags, with the slope sharply declining
near the sill. The slope near the origin reaches the sill at two­
thirds of the variogram range. The spherical model is often
termed the ideal variogram shape and is analogous to the
normal distribution used in statistics (CLARK, 1979). The
Gaussian model is a transition model used to model extreme­
ly continuous spatial phenomena (i.e., very smooth functions)
and approaches the sill value asymptotically (ISAAKS and
SRIVASTAVA, 1989).

The variogram model range also provides a basis for deter­
mining the relevance of nearby samples to estimation at a
particular location and defines the search neighbourhood. In
the presence of anisotropy, perpendicular directional vario­
grams are used to define the size and orientation of the
search ellipse.

Ordinary Kriging

Ordinary kriging is a spatial estimation technique that has
certain statistically optimal properties. The goal of ordinary
kriging is to produce unbiased estimates of a spatial param­
eter (i.e., average error equal to zero) having, on average, the
smallest possible error variance (i.e., ordinary kriging vari­
ance), including an explicit statement of this error. The min­
imisation of the error variance distinguishes kriging from
other spatial estimation techniques such as inverse-distance,
triangulation and nearest-neighbour (IsAAKs and SRIVASTA­
VA, 1989).

Ordinary kriging incorporates the concept of a stationary
random function, which provides a framework by which to
estimate the value of the spatial variable at an unsampled
location using a weighted linear combination of the available
samples (i.e., ~ weights = 1.0). The ordinary kriging weights
are determined from the variogram model fitted to the ex­
perimental data. In the absence of a nugget effect, ordinary
kriging is an exact interpolator in that the value of an esti­
mate at a sampled location will be identical to the observa­
tion (i.e., sample weighting = 1). Ordinary kriging also ac­
counts for data clustering by reducing the weighting applied
to samples in close proximity with similar values.

The ordinary kriging equations can be written in matrix
notation as:

[C] = lwl . [D]

and the weights given by

iwl = IC] 1. [D]

(2)

(3)

and SRIVASTAVA (1989) provide a detailed discussion of the
derivation of the ordinary kriging equations.

The extent to which the ordinary kriging variance is an
accurate measure of the true estimation error depends on
how closely the variogram model approximates the actual
spatial continuity of the regionalised variable. In particular,
the modelled sill value must be a good estimate of the true
variance of the regionalised variable. The ordinary kriging
variance is sensitive to changes in the variogram model sill
(ENGLUND and SPARKS, 1991). Therefore the sample data
underpinning the variogram model is of key importance. Con­
sequently, there is some debate about the usefulness of the
ordinary kriging variance as a measure of the true estimation
error (DOLAN et al., 1992; ISAAI<.s and SRIVASTAVA, 1989).

Cross-validation

Cross-validation is a tool that is used to discriminate be­
tween variogram models in the extent to which they describe
the spatial continuity of a variable. In a cross-validation
study, individual sample values are temporarily discarded
and their value is estimated by ordinary kriging from other
nearby samples. In this manner, cross-validation mimics the
estimation process and quantifies the true estimation error
at sampled locations. Cross-validation provides useful spatial
information about the performance of a variogram model.

Sample clustering is a major limitation of any cross-vali­
dation exercise (ISAAKS and SRIVASTAVA, 1989) because the
results are strictly applicable only to sampled locations. Also,
sample clustering means that many nearby samples will be
redundant ii;e., spatial auto-correlation) and the cross-vali­
dation estimation errors will be unrealistically low. In many
applications (e.g., ore reservoir estimation) there is often a
bias in sample locations that may lead to quite misleading
conclusions being drawn from a cross-validation study. In the
present study, the effect of sample clustering is partly offset
by: (1) sampling across the entire cross-shore range of beach
elevations at regular longshore intervals; and (2) the fact that
the beach surface can be directly observed. Cross-validation
is used in this study as a guide to assess the performance of
variogram models fitted to the experimental data.

STUDY LOCATION

Mangawhai Beach is located on the east coast of the North­
land Peninsula, New Zealand (Figure 3). The wave climate
at Mangawhai is characterised by infrequent storm waves
and low north-east swell (significant wave height [HJ < 1
m), The highest waves are associated with sub-tropical cy­
clones (maximum wave height > 8 m). Tidal currents are
weak « 0.2 m S-l), and wind-driven currents and waves
drive sediment transport on the inner shelf and shoreface
(HILTON, 1995).

Using WRIGHT and SHORT'S (1984) classification, beach
morphology at Mangawhai 'flips' between a straight beach
and longshore bar and a mildly rhythmic beach and longshore
bar with weak rip cell circulation. Both beach states were
observed during the field experiment. During storms, sand is
eroded from the beach and the longshore bar is largely de­
stroyed, with storm sedimentation occurring as a wedge im-
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Figure 4. Significant wave height and period recorded by an ENDECO
wave buoy deployed offshore from Man gawhai Beach in 35-m water depth
(6 Mar ch- 20 April 1996). The buoy was serviced immediately prior to
Cyclone Bet ty.
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Figure 3. Location of the daily beach profile surveys at Mangawhai
Beach , on th e eas t coast of th e Northland Peninsula, New Zealand.
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mediately offshore from the bar. Swell waves subsequently
transport sand onshore, rebuilding the beach (HICKS and
GREEN, 1997; SMITH et al., 1997). Beach sediments are well­
sorted, fine-medium sands with median particle diameters of
0.2-0.25 mm .

The experiment was conducted within a 500-m longshore
by 600-m cross-shore (to 13-m water depth) segment of the
beach-shoreface during March-April 1996 . The aim of the ex­
periment was to improve knowledge of shoreface morphody­
namics, including small-scale bedforms (SWALES et al., 1999).
As part of this work, 16 intertidal beach profiles , which were
spaced at 33-m intervals alongshore, were surveyed daily. An
ENDECO directional wave buoy was also deployed directly
offshore in 35-m water depth. The longshore spacing of pro­
files was determined from analysis of earlier profile data,
which showed cross-shore variograms with 30-40-m ranges.
Good definition of longshore changes in beach elevation was
ensured by spacing profiles at 33-m intervals. These daily
beach profile data are analysed in this paper.

During the six-week experiment, Mangawhai Beach un­
derwent a cycle of gradual beach accret ion by swell wave s (H,
= 0.3-1.0 m, significant wave period [Ts] = 4-10 s), rapid
erosion during the Cyclone Betty storm of 30- 31 March 1996
(H, = 3.5 m, T, = 6-13 s) and subseque nt beach accretion by
swell waves (H, = 0.3-1.1 m, T, = 3-10 s) (Figure 4).

MET HODS

Beach Profile Measurements

Shore-normal beach profiles were surveyed from survey
pegs located on the foredune crest using the method of EM­
ERY (1961). Beach profile elevations were surveyed on aver ­
age at 5-m intervals, to the nearest 0.01 m, by measuring
elevation changes relative to the sea-hori zon between two
graduated 1.6-m poles . Elevations were reduced to mean sea
level (MSL) using Mangawhai Trig. station 2941 (+ 14.98-m

MSL ), which is located on a dune at the northern end of th e
experimental area. Profile features such as berms, drainage
channels, sand waves and major breaks in slope wer e sur ­
veyed. The beach profiles were surveyed daily between March
7-21, 23-30, April 1- 3 and on April 11, 15 and 19.

Geostatistical Estimation

There are several steps to the geostatistical est ima tion pro­
cedure employed in this study: (1) beach grid definition; (2)
de-t rending daily beach elevation data; (3) modelling experi­
mental variograms; (4) cross -validation; (5) ordinary kri ging
of beach elevation trend residuals; (6) combining th e kriged
trend re sidual eleva tions with th e planar trend; (7) daily
beach volume estima tion; and (8) assessment of un certainty.

Beach Grid Defini tion

A 100-m (cross-shore) by 500-m (longshore) beach grid was
used in the geostatistical modelling. Th e seaward extent of
profile surveys varied from day-to-day du e to variations in
tidal range and wave condit ions . To minimise edge effects, a
seaward grid boundary was selected on the basis that sam­
pling always extended to, or beyond, the grid boundary (Fig­
ure 5). The landward boundary of the grid coincided with the
foredune toe, which is approximately 4 m above MSL. In the
south-west corner of the experimental grid, an outl ying area
of high dune (4- 8 m above MSL ) was excluded from the study
becaus e these elevation data degraded the de-trending pro­
cedure and the subsequent geostatistical analyses. Also, sur­
vey data showed that this area of high dune was not part of
the active beach during the experiment.

The beach surface (Figure 6a ) has two components: a re­
sidual (stochastic) compon ent (Figure 6b) and an under lying
trend (Figure Gc), which is mainly composed of the shore­
normal beach slope. Ordinary kriging requires th at th e re­
gionalised variable is stationary. De-trending enables the
spatial continuity of the beach elevation data to be modelled,
and used to customise the ordin ary kriging algorithm.

J ournal of Coasta l Resear ch, Vol. 18, No.2, 2002
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Experimental Variograms

The geostatistical software package VARIOWIN 2.2 (PAN­
NATIER, 1996) was used for analyses of the spatial continu ity
of the residual beac h elevation data and variogram model­
ling. Spatial continuity was highest in the longshore direction
and lowest in the cross-shore direction. Anisotropy axes were
identified from experimental variogram surfaces, which sum ­
marise the sample semi-variance at different lags in all di­
rections . The perpendicular anisotropy axes were found to
fluctuate wit hin narrow directiona l bands (:t 10°), orientated
with the beac h grid.

Geostatistical analyses applied to the residua l elevation

confidence interval) and longsh ore (average b, :t 4.8%, 95%
confidence interval) trend surface components.

Figure 6. Three-dimensional beach surface (a) composed of (b) a sto ­
chastic elevation component and (c) an underlying planar trend.
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Figure 5. Beach grid with point elevation measurements for the 2 April
1996 survey. The blanked area in the south-west corner excludes an ar ea
of high dun e that was not part of the active beach during the experim ent.

where bo is a constant, bl is the cross-shore (x) slope and b2

is th e longshore (y) slope.
Also, fit t ing a higher order trend surface te.g., quadratic) to

the beach elevation data was discounted beca use of the in­
herent ill-condition of the matrix of sum of squares and cross ­
products [X). Inversion of [X) is use d to solve for the matrix
of trend surface coefficients [bl. The matrix condit ion number
is a measure of the re lative error of the computed solution.
If the trend surface coefficients [b] are known to t-digit pre­
cision and the condition number of [X] = 10c, then the inverse
[Xl-I matrix solution may be vali d to only t-c digits (CHAPRA
and CANALE, 1998). The matrix inve rse ([Xl-I) an d condition
number, for each data set, were solved usi ng the MATLAB®
softwa re library (THE MATHWORKS INC., 1995). The matrix
condition numbers were of the order 105- 106 , and subse­
quently all matrix eleme nts were calculated at double preci­
sion (1014 ) so that the trend surface coefficients were va lid to
at least eight significant figures.

To simplify subsequent geostatistical analyses and to en ­
able direct comparison of residu al elevations between surveys
an average trend surface was calculated for the entire daily
beach elevation data-set. The average trend relationship was
further simp lified by altering th e constant (ba) in equation (4)
such that all re sidua l elevations were always positive. The
resu lting average trend surface coefficients were ba = 3, b l

= -0.0333241 and b2 = -0.0028218. This average trend sur­
face is a good approximation to the daily trend surfaces, with
small variations in the cross-shore (average b, :t 1.9%, 95%

The underlying trend in each daily beach elevation data­
set was modelled by fitting a least squares planar trend sur­
face (GOODMAN, 1983; UNWIN, 1975). Although cross -shore
profiles can be approximated by non-linear functions, thei r
greater detail was unwarranted, as the aim of the de-trend­
ing procedure is to prod uce stationary trend residual beach
elevations. The planar trend surface equation predicts the
trend component (Z'(") of the beach surface at a location (x.y)
such that:

Journal of Coastal Research, Vol. 18, No.2, 2002
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semi-varia nce has a small positi ve value or nu gget effect. Th e
fitt ed nu gget values for March 25 ("ih = 0.012, 5.5% of cross­
shore sill) and Apri l 2 ("ih = 0.002 , 1.8% of cross-shore sill)
are small rel ative to th e va riogra m sill. Th e sa me nugget val­
ues wer e assumed for the longshore variogram s. Th e larger
nugget va lue for March 25, which indi cates sma ll-scale st ruc ­
ture not sa mpled by the surveys, is consistent with th e more
complex beach morphology imm ediately prior to the storm.

Th e Gaussian model is less robu st th an the spherica l mod­
el, with respect to the condition of th e ordinary kri ging ma­
trices. However , th e stability of the Ga uss ia n model is much
improve d by th e addition of a sma ll nugget constant (i .e., 1/ff
relative nugget value ) (POSA, 1988), In th e present st udy, the
fitt ed Gaussian models incorporate nugget const ants.

Th e U.S. Environmental Protecti on Agency kr iging soft­
ware package GEO-EAS 1.2.1 (ENGLU NDand SPAHKS, 1991),
which is used here for ordinary kr iging of residual eleva tion
est ima tes, does not implement zona l anisotropy (i .e., direction
dependent sill). Conse que ntly , variogram models were nested
to incorporate the sills fitted to th e direction al va riograms.
Usin g the Apr il 2 data as an exa mple (Figure 7b), th e cross­
shore model ran ge is 44 m and t he sill "ih = 0.114 . Th e cross­
shore sill value is the sum of th e longshore sill (i.e., 0.049),
the difference in directi onal sill values (i.e., 0.063) and th e
nugget effect (Co = 0.002). Th e longsh ore va riogram model
requires t wo ran ges to describe th e nested struc t ure. Th e
first range (86 m ) is derived from th e model fit to th e data.
Th e second range (5000 m) is sufficiently large so tha t th e
first model st ructure is not alte re d by th e second st ru cture
at distances less than th e fitted ran ge, while sa tis fying the
requirement for a sill a t "ih = 0.114 in the cross -shore direc­
tion .
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Figure 7. Gauss ian variogra m models, with nugget effect, fitted to th e
directional exper imenta l variogra ms of trend res idua l beach elevat ions
for (a ) Mar ch 25 and (b) April 2 surveys.

Cross-Validation

data are demonstrated using pre- storm (Ma rch 25) and post­
storm (April 2) examples, typical of the experimental period.
Anisotropic axes for March 25 and April 2 were (5°/95°) and
(10 °/100°) re spectively, with direction defin ed counte r-clock­
wise from eas t (0°). By trial and error , a cross-shore lag of7.5
m ± 3.25 m (angu lar toleranc e ± 10°) and longshore lag of 30
m ± 15 m (angular tolerance ± 300) were found to produc e
smooth experimental variograms. At smaller angular toler­
anc es the experime ntal va riograms displayed a marked 'saw­
tooth' appearance as the number of data pairs fluctuated be­
tween lags.

Variogram Modelling

Variogram models wer e fitted to the experime ntal data
with emphasis placed on the fit at sma ll lags. Gener ally, the
kriging weights reflect the statistical distance between the
samples and the estima te location so that a 'good' model fit
near the variogram origin is important (ENGLUND a nd
SPARKS, 1991). The experimental variograms all displ ay ed
sills, with the sill value in the longshore direction consis ­
tently being about 50% of the cross-shore value.

Figure 7 shows the Gaussian models fitted to th e March
25 and April 2 experimental variograms. At the origin, the

GEO-EAS was used to cross-validate th e models fitt ed to
the experime ntal variogr am s. Th e variogra m model ran ge(s)
define th e dim en sions of th e sea rch ellipse and the number
of nearby samples used depends on the rela t ive nugget value.
ENGLUND and SPAHKS (1991) recomm end using eight sam­
ples when t he relative nugget va lue is zero and up to twenty
samples whe n the relative nugget value exceeds 50% of the
sill. In the pr esent study, th e relative nu gget values average
3% (maxi mum 14%), so a maxim um of 12 samples (minimum
6) wer e used to estima te residua l elevations at un sampled
locations. To improve es timation near th e grid boundary,
cross-va lida tion included data outside the beach grid. Th e re­
sults of the cross-va lida tion for the March 25 and April 2
examples are presented in the results.

Ordinary Kriging and Surfa cing

GEO -EAS was used to es tima te residual beach elevations
and th e erro r varia nce at 5100 locations on a 2-m (cross­
shore) by 5-m (longsho re) grid. A polygon boundary file was
used to exclude the 6960 m" area of high du ne in th e south­
west corn er of the grid. Th e kr iged residuals wer e th en re­
combine d with th e aver age trend surfa ce to cons truct th e dai ­
ly bea ch grids .
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Beach Volume

RESULTS

vations were again used to derive 95% confidence intervals
for the complete and partial data sets.

Figure 8. Spatial dist ribution of ordinary kri ging over- (+ ) and und er ­
es t imation (X) of cross -validated trend residual beach elevat ions for th e
(a ) March 25 and (b) April 2 surveys . For sca le, th e la rgest elevat ion
errors were :!:0.2 m.
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Cross-validation

Cross-validation res ults for the exa mple March 25 and
April 2 data sets show how th e fitted variogram models per­
form ed across th e beach gr id. Whi le the average cross-vali­
dation errors of both data sets are negligib le, the standard
error of the March 25 results (± 0.006 m) are three times
larger than the standard error for Apri l 2 (±0.002 m ), Linear
regr ession of th e samples and estimates also shows that the
Apri l 2 variogr am model (r" = 0.98) is a slightly better pre ­
dictor of re sidu al beach elevation than th e March 25 model
(r" = 0.94). Th e nugget model fitted to the March 25 data
(i .e., relative nu gget "Yh = 5.5%) is three times larger than
that fitt ed to the Apri l 2 data . As a result, the cross-valida­
tion errors are larger .

Th e spatial distribution of under - and over-estimation is
also different for both the March 25 and April 2 variogram
models (Figure 8). The mapped cross-validation residuals for
March 25 show that the magnitudes of under -estimates are

Longshore Profile Spacing

The effect of altering longshore profi le spacing on th e ac­
cur acy of modelled beach sur faces was analysed for th e
March 25 and Apr il 2 data set s. Th e geostatistical methods
previously describ ed wer e used to model beach surfaces a nd
derive es timation errors using 16, 8, 4 and 2 beach profi les
evenly spaced along th e 500-m length of beach grid. The fit­
ted trend- surfaces fell within th e 95% confidence interval for
th e aver age trend surface, which was used to de-trend the
data. The longshore variogram for th e two profile case could
not be modelled, requiring assumptions to be made about th e
spatial continuity of th e data : a constant sill value , defin ed
by the cross-shore variogr am and a 600-m longshore range
(to provide enough nearby samples). The trend residual ele-

Beach Volume Estimatio n Er ro rs

Daily beach volumes above th e base of the grid (- 2.1-m
MSL ) wer e es t ima ted usin g th e SURFERQ" software pack age
(GOLDEN SOFTWARE, 1995). Volumes are est imated using the
trapezoida l rul e, Simpson's rul e and Simp son's 3/8 ru le. The
average volum e derived from th ese three numerical methods
was tak en as the est imated beach volum e. The differ ences in
beach volum es calculate d by th e individual methods were al­
ways less th an 0.2% of the average volum e.

Th e trend residual elevations wer e used to est imate 95%
confidence interv als (two-tailed t-test) for the dail y a verage
trend residual beach elevations. Thi s approach is rea son abl e
given that: (1 ) measurements are distributed acro ss the en­
tire range of beach elevations a nd even ly spaced alongshore
so th at th e samples are representative of th e beach surface;
and (2) sample sizes are large ti.e., n = 176- 347 ) so that tis
robu st.

Th e daily beach volum e estima tion errors (± V m') wer e
calcul ated as the product of th e average trend residual 95%
confidence intervals and the plan ar surface area of th e beach
grid (42,525 m"). Th e differ ence of means, two-tailed, t-test
was used to te st th e statist ical significance of observed dail y
changes in aver age residua l elevation during the period of
gradual beach accre tion from 7- 30 March 1996. The null hy­
pothesis ii.e., no statist ical differ ence in re sidual beach ele­
vations at 0.05 significance level) has a rejection region wher e
ItI ~ 1.96 (degrees of freedom > 120). The test was also ap­
plied to partial profile data sets to determine the effect of
profile spacing and sa mple size on the average numb er of
day s required to det ect statistical differences (i .e., increa ses)
in daily beach volum es. To det ermine th e number of days
between beach surveys required for obse rved changes in av­
erage resid ua l elevations (and hence beach volume) to become
sta t istically different, a t-matrix for all combinations of dif­
ferenc e-of-means results was constructed. The location of a
particular beach survey in th e tim e-seri es is important. Thi s
is becau se whether or not the observed changes in average
dai ly residual elevations are statistically different depends on
the rate of change in beach volum e as well as on the pooled
estimation error .
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Ta ble 1. Beach elevation and volum es, 9.5% confidence in tervals and dif­
[erence or means test results [or period or gradual sand accretion before
Cyclone Betty.

Difference of
Means t-test

Elevation Volume
No. of days to

Survey 95'jf C.l. 95'!f· C.l. detect volume
Date N ( :!: m ) ( ::: m') cha nge

March 7 233 0.045 1905 1
March 8 270 0.063 2679 1
March 9 254 0.047 2011 15
March 10 219 0.044 1854 7
March 11 213 0.043 1820 5
March 12 232 0.040 1701 4
March 13 227 0.042 1786 10
March 14 222 0.046 1948 9
March 15 33 1 0.037 1573 8
March 16 325 0.038 1633 8
March 17 347 0.034 1425 7
March 18 214 0.044 1875 6
March 19 220 0.041 1739 5
March 20 217 0.041 1739 4
March 21 229 0.045 1909 2
March 22 no survey
March 23 194 0.047 2016 2
March 24 203 0.050 2109 7
March 25 188 0.049 2088 6
March 26 187 0.055 2330 5
March 27 191 0.055 2347 4
March 28 199 0.052 2203
March 29 176 0.051 2169
March 30 204 0.050 2126 Cyclone Betty
Ma rch 3 1 no survey
April 1 188 0.043 1816
April 2 258 0.035 1493
April 3 259 0.036 1527
April 11 3 12 0.03 1 1331
April 15 190 0.041 1761
Apri l 19 296 0.031 1323

mu ch larger than the over -esti ma tes. Th e largest residua ls
ti.e; ± 0.2 rn ) occur along: (1) the beach berm, which is aligned
diagonally across the cen tre of th e grid; and (2) along the
foredune toe,

By compa rison , the April 2 cross-validation residual s are
uni forml y small across the beach grid and again the largest
residuals occur along th e foredune toe, Th e clusteri ng of the
largest residua ls ii.e, ± 0.2 m) near the grid boundary dem­
onstrate s the importance of adequate sample den sity, even
when the variogram model is a good descrip tor of the spatia l
continuity of the regionali sed variable, Th e super ior perfor­
mance of the April 2 model is du e to its rela tively smalle r
nu gget va lue, which in turn reflect s the less compl ex beach
morphology at the time.

Beach Volume Changes

Table one summarises th e resu lts of the difference of means,
two-tai led, t-test for observed daily changes in average (trend)
residual beach elevations . The average error in daily beach el­
evation (95% C,l. ± 0.045 m) was equivalent to a volumetric
error of 1914 m" or about 1.0% of th e average beach grid volume
above - 2.1-m MSL. The difference of mean s test showed that

Swales

Ta ble 2. Compa rison or Gaunsian rariogron: models [it ted /0 complete
and par tia l data sets, March 25 and April 2 S ll / H 'YS.

No. of Nugget
Scale ("{h I Range t m:

Profiles <"{hi Cross-shore Longs hore Cros s-shore Longsh ore

March 25

16 0.0120 0.220 0.096 45.:l 86.0
8 0.0 120 0.215 0.101 40.5 88.9
4 0.0140 0.255 O.I RO 49 .5 250.0
2 0.0005 0.133 :l 1.4

April 2

16 0.0020 0.112 0.049 4:l .6 ss.s
8 0.00 18 0.118 0.058 45 .7 112.2
4 0.00 10 0.119 0.079 40.2 154.8
2 0.00 10 0.156 42.9

during the period of gradual beach accret ion increases in beach
volume could be detected on average every 5.8 days. After the
Cyclone Betty storm of March 30-31, daily reductions in aver­
age beach elevations were detected.

Longshore Profile Spacing

The effect of increased profile spacing on the modelled var ­
iogram param eters is presented in Table 2. The variogram mod­
els based on the full and partial dat a sets were similar for April
2. By comparison, the model par ameters fitted to the March 25
residual elevation data diverged when the number of profiles
used was less than eight. General trends in the model par am­
ete rs observed with increased profile spacing included reduction
in the nugget value, increased scales and ranges in the long­
shore axis and smaller variations in the cross-shore range (Fig­
ur e 9). At least eight profiles were required to fit variogram
models similar to th e complete data set.

Figure 10 shows t he effect of profile spacing on modelli ng
3D beach shape for the March 25 sur vey. The kriged beach
sur faces based on 16 and 8 pr ofiles are simila r. Inaccuracies
in modelling the beach berm a re evident when the nu mber
of pr ofiles is halved again. Desp ite the poor representation of
beach 3D shape, estimated beach volumes based on two pro­
files are only 3% (Ma rch 25) an d 6% (April 2 ) more than the
kri ged volumes based on sixtee n profiles.

Th e effect of profile spacing a nd sa mple size on det ection
of statistically significan t changes in residual elevat ion dur­
ing the period of gradua l beach accre t ion before Cyclone Bet­
ty is shown in Tabl e 3. Reducing the number of profiles from
16 to 8 increased th e average period required to detect chang­
es in beach elevation from 5.8 to 7 days. It was not possible
to detect change s in beach elevation when less than five pro­
files were used . In all cases the number of days requi red to
reject th e null hypoth esis (i.e" average daily beach elevations
a re equa l) exceeded the record length ti.e.. March 7-30 ), Al­
though the calculated t-values depend on the pooled estima­
tion error, which reflects the sa mple size, th e sample location
is also im portant. This can be see n by conside ring two cases
with pairs of pr ofiles 1 m and 1000 m apart. The standar d
error about the average elevation will be less for th e 1-m case
than the 1000-m case because the sample variance increases
with the separation distan ce.
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No. of Profile Average Average No.
Profiles Spacing (m) Sample Size Days

16 31 230 5.8
8 71 130 7.0
6 100 94 7.4
5 125 82 8.1
4 167 63 > record len gth
2 500 29 > record len gth

(- 0.8-m elevation change) (Figure 12). Between March 7- 29
the beach volume increased by 6284 m" and averaged 300 m"
d- I or 0.007 m" m- 2 d- I (Figure 13).

The Cyclone Betty storm removed 7630 m" of sand from
th e beach grid. Beach morphology immediately after Cyclone

Figure 10. Kriged beach surface for March 25 based on variogram mod­
els fitted to (a) 16 or 8 profiles, (b) 4 profiles and (c) 2 profiles. The long­
shore profile spac ings are 33, 71, 167 and 500-m res pectively.

Table 3. Average num ber of days required to detect statistica l di fferences
in beach volume based on sample size.
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Figure 9. Effect of profile spacing on variogram models fitt ed to (a)
(C)cross-shore and (b) longshore experimental var iogram s (symbols). Mar ch

25 beach survey.

Beach Morphology and Sand Budget

Figure 11 depicts the cycle of gradual beach accretion, rap ­
id storm erosion and subsequent post -storm recovery ob­
served during the experiment.

The daily profile surveys began on March 7, immediately
afte r storm erosion, with the beach depleted of sand (Figure
Ll a). Over th e next 10 days the bar on the lower beach mi­
grated 40 m onshore, which formed a berm at th e high tid e
level. Landward of the berm a 0.3-m deep wash-over channel
formed, which drained to the sea at th e southern end of the
beach (Figure l l.b). Onshore sand tran sport under swell
waves continued to build the beach berm and eventua lly in­
filled th e wash-over drain age channel. By the end of March
th e berm had increased substantially in size, forming a 15-m
wide horizontal plat form on th e upp er beach, flanked by sub­
tle rhythmic topography with regul ar 100-m longshore spac­
ing (Figure l l c). Although th e dai ly increases in the beach
sand volume prior to Cyclone Betty were small and incre­
mental, the cumul ati ve effect on beach morphology was sub­
sta ntial. Most of th e sa nd that accumulated on the beach was
associat ed with berm cons truction (+ l-m eleva tion change),
with some of thi s sa nd supplied by erosion of th e lower beach

Jo urnal of Coastal Research , Vol. 18, No.2, 2002



348 Swales

Figure 11. Cha nges in beach morphology during period of beach accret ion: (a) Mar ch 7, (b) March 17, (c) March 30; stor m erosion (d) April 1; an d
subsequent post-st orm beach accretio n (e) April 19.
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Figu re 13. Changes in beach volume, March 7-Apri I 19, 1996, with 95%
confidence intervals shown.

planar de-trend of the beach elevation data was sufficient to
produce sta tionary residuals most of the time . Onshore sand
transport and berm construction prior to the storm was reflected
in the emergence of a non-planar trend in cross-shore vario­
grams at large separa tion distances. By fitting the variogram
model to smaller lags, the effect of the higher order trend was
negated. In any case, the ill-condition of the input matrices in-

Figure 14. Contour map of beach erosion resulti ng from the Cyclone
Betty Storm , March 29-April 3, 1996.

Figure 12. Contour map of beach accretion betw een 7-29 March und er
low swell waves prior to Cyclone Bet ty.

Betty (Figure 11d) was similar to that at the beginning of the
experiment. Comparison of pre - and post-storm beach surfac­
es shows that sand that had accum ulated on the upper beach
was eroded (- I -m) and a large quantity of sa nd (+ O.8-m) was
deposited on the lower beach, which filled th e concavities
formed by rhythmic topography (Figure 14). In the two weeks
.after Cyclone Betty, a high-tide berm was re-constructed
(Figure 11e) with the beach sand volume increasing at a sim­
ilar rat e (318 m" d- 1) as before th e storm.

DISCUSSION

Geostat istical Es timation

The ability to customise kri ging, by modelling th e semi­
vario gram as well as explicit definition of estimation errors
provided by the ordinary kriging variance and cross-valida­
tion , ar e defining characteri stics of geostatistical estimation.

In many real-world applications, the stationarity assumption
of ordinary kriging is seldom met. Data de-trending is therefore
an important component of a geostatistical study, particularly
since how closely the variogram model approximates the 'true'
pattern of spatial continuity is conditioned by the de-trending
procedure. The effect of non-stationarity on the experimental
variogram was demonstrat ed by PHILLIPS' (1985) geostatistical
study of beach profiles. However, in that study a bulldozer in­
advertently 'de-trended' the beach surface and a much clearer
pat tern of spatial continuity emerged. In the present study, a
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dicated that filtering the profile data with a higher-order trend
was not justified.

UNWIN (1975b) has shown that data clustering induces ill­
conditioning in the system of equations used to derive trend
surface coefficients. In this study, samples are clustered in
the respect that they are concentrated along shore-normal
beach profiles. However, it is unusual to have regularly
spaced samples and in fact this is the objective of spatial es­
timation. CARTER and SHANKAR'S (1997) suggestion of piece­
wise application of linear trends to data sub-sets may over­
come the inherent problem of matrix ill-condition and the
need to filter polynomial trends in some applications.

In the present study, the experimental variograms of the
beach elevation trend residuals displayed a very high level of
spatial continuity and are similar to results obtained by
PHILLIPS (1985) in his variogram study of a sandy beach.
Consequently, there is very little ambiguity involved in var­
iogram modelling and very good fits to the experimental data
were obtained. By comparison, in FRENCH et al.'s (1995) geo­
statistical study of tidal marsh sedimentation, experimental
variograms displayed considerable scatter, which reflected
the more variable pattern of estuarine sedimentation.

The Gaussian models fitted to most of the experimental
variograms are indicative of a very continuous natural phe­
nomenon. Consequently, the proximity rather than the num­
ber of nearby samples is important to the estimation. This
leads to some sampling redundancy, as clustered samples
may carry no more weight than a single sample. The consis­
tently lower variogram sill in the longshore direction is ex­
pected because the longshore grid-axis is orientated approx­
imately with the beach contours (i.e., low elevation variance).
However, there is enough complexity in longshore beach
shape to produce appreciable differences in the semi-variance
at lags less than the range (MASON et al., 1997).

The analysis of longshore profile spacing shows that at
least 8 profiles were required to accurately model the exper­
imental variogram and beach morphology. Although differ­
ences in daily beach volumes based on 16 and 2 profiles were
small (i.e., :::; 6%), the ability to detect statistically significant
short-term changes in average beach elevation, and hence
beach volume, is determined by sample size and location.

The average rate of daily beach volume accretion during
the experiment (0.007 m" m:" d") is an order of magnitude
smaller than both the average daily estimation error (0.04 m"
m ? d- 1) but similar to the survey measurement error (0.004
m" m ? d"), without accounting for errors due to small-scale
topography. Therefore, it is not surprising that statistically
significant daily increases could not be consistently detected.
The average point elevation error (0.045 m) is still likely to
be much smaller than the errors induced by small-scale to­
pography. BRAMPTON (1990) has argued that a height accu­
racy of 0.1 m on sand beaches is reasonable given the 'noise'
level caused by rapid spatial and temporal changes in beach
topography (MASON et al., 1997).

Implications for Beach Monitoring

Mangawhai is an important source of construction sand for
Auckland (pop. ----1.1 million), which is New Zealand's largest

city. Nearshore sand-mining, in water depths of 3-8 m, has
occurred in the 25-km Mangawhai-Pakiri embayment since
the 1940's and at least 2.73 X 10° m" of sand has been ex­
tracted since 1966. The present rate of sand extraction is 110
X 103 m" yr- 1

, and there are questions regarding the sus­
tainability of this mining (HESP and HILTON, 1996; HILTON,
1989). Environmental impact assessments of the sand ex­
traction have in the past largely relied on determining long­
term trends in shoreline stability. This work has been based
on the analysis of 8 beach profiles that have been surveyed
on average every 6 months since 1978. The profiles were es­
tablished shortly after a series of storms that severely eroded
many east coast beaches, including Mangawhai Beach (RESP
and HILTON, 1996).

Separate analyses of the beach profile record have reached
opposite conclusions: (a) the profiles indicate a long term
trend of net beach accretion; and (b) the profiles show an
episodic cycle of storm erosion and subsequent beach accre­
tion, along an otherwise stable or eroding sandy coast. The
former interpretation has been used to argue that nearshore
sand extraction has had no adverse effect on the coastal sand
system (HESP and HILTON, 1996).

The present study highlights the inadequacies of using in­
dividual beach profiles to make inferences about 3D beach
morphology and sand budgets. Accurate representations of
beach-shoreface morphology are required for numerical mod­
elling of waves and sediment transport. Considerable varia­
tions in longshore beach morphology do occur over relatively
short spatial and temporal scales. On beaches that display
rhythmic topography this variability is exacerbated. In the
present experiment, 8 profiles were required to accurately
model beach morphology and to obtain beach sand volumes
with acceptable estimation errors. The geostatistical analyses
attempted with 2 profiles produced quite misleading results
because naive assumptions about the spatial continuity of the
beach surface were necessary.

An alternative approach is to monitor the behaviour of a
beach segment and use geostatistical tools, such as variogram
modelling and ordinary kriging, to accurately model beach
morphology and sand budget. The sampling strategy will de­
pend on the spatial structure of the beach surface and the
objectives of a particular study. For example, monitoring the
performance of a beach re-nourishment project may require
more intensive and frequent sampling than monitoring long­
term beach trends. The present study also shows that how
often a beach can be monitored to detect changes will be con­
strained by the estimation error. These questions of how of­
ten and how intensively to sample can be answered by a pilot
geostatistical study. Variogram modelling can be used to de­
termine the spatial structure of the beach surface and cross­
validation used as a guide to model performance. This infor­
mation can then be used to customise the monitoring require­
ments for a particular beach.

Statistical analysis of the Mangawhai data set has shown
that detecting short-term changes in a beach sand budget is
more difficult during phases of beach accretion in comparison
to the obvious effects of storm erosion. The average time in­
terval between surveys to detect statistically significant
changes in beach volume will also depend on the sampling
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strategy because the volume estimation error is a function of
the location and number of samples. The sampling strategy
will ultimately depend on the objectives of a particular study.
Geostatistics provides the tools to make informed decisions
about monitoring beach behaviour.

CONCLUSIONS

The present study has a number of implications for monitor­
ing short-term changes in beach morphology and sand budgets.
Firstly, data de-trending is an important aspect of any geosta­
tistical study to satisfy the stationarity assumption. Also, how
closely the variogram model approximates the 'true' pattern of
spatial continuity is conditioned by the trend model. In this
study, a planar trend model was sufficient to produce stationary
elevation data most of the time. The ill-condition of the input
matrices precluded fitting higher order trends. Secondly, exper­
imental variograms of beach elevation data display a high level
of spatial continuity. Consequently there is little ambiguity in­
volved in variogram modelling and in most cases good fits to
the experimental data will be obtained. Thirdly, it is difficult to
detect short-term changes in beach volume during periods of
accretion, in comparison to periods of storm erosion, because
apparent volumetric changes are an order of magnitude lower
than the estimation error and of a similar order as the mea­
surement error. In this study it was possible to detect significant
increases in beach volume on average every 5.8 days during 3­
weeks of gradual sand accretion by swell waves. Lastly, an al­
ternative approach to beach monitoring using individual profiles
is to monitor a beach segment. Geostatistical tools can be used
to model beach morphology and to obtain accurate estimates of
beach volume. The sampling strategy will depend on the com­
plexity of beach morphology and the objectives of a particular
study.
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