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ABSTRACT _

MAA, J .P.-Y.; Hsu, T.-W.; TSAI, C.-H., and J UANG, W.J., 2000. Comparison of wave refraction and diffraction models.
Journal of Coastal Research, 16(4), 1073-1082. West Palm Beach (Florida), ISSN 0749-0208.

Six numerical models: (l )RCPWAVE, (2)ReflDif-l, (3)RDE, (4)PBCG, (5)PMH, and (6)MIKE 21's EMS module, were
examined for their performance on the simulation of water wave shoaling, refraction, and diffraction. Experimental
data for waves traveling across an elliptic shoal were used as a standard for comparison. Although the last four
models (i. e., elliptic or hyperbolic model) are capable of simulating strong wave diffraction, reflection, and resonance,
those capabilities were not compared because RCPWAVE, Re£'Dif-1, and the physical model experiment are only
capable of simulating water wave shoaling, refraction, and weak diffraction. The Re£'Dif-1 had excellent accuracy in
the prediction of wave height; the predicted wave direction, however, was not good. The RCPWAVE had accuracy
problems in both wave height and direction. The next three models (RDE, PBCG, and PMH) all performed very well
on the simulation of wave shoaling, refraction, and diffraction, and they practically provided the same results for the
case study presented. The EMS module for Mike 21 was slightly different than the previous three. Regarding the
simulation of the passing-through boundary, the PMH model was better because of the nearly exact solution for this
boundary. The MIKE 21's EMS module had a faster computing pace, but no output for wave directions and was
incapable of including tidal current effects were the major drawbacks.

ADDITIONAL INDEX WORDS: Numerical models, model comparison, wave tran sformation, mild slope equation, el­
liptic equation solver.

INTRO DUCTION

Linear water wav e transformation (refract ion, diffraction,
shoaling, reflection, and reso nance) can be described using
the Elli ptic Mild Slope Equation (EMSE, BERKHOFF et al.,
1982 ), or the extended mild slope equation (MASSEL, 1995;
CHAMBERLAIN and PORTER, 1995; PORTER and STAZlKER,
1995 ). Approaches in those currently available numerical
models for solving the wave t ransformation process can be
divi ded into four categories : (1) using a parabolic approxi­
mation to simplify the EMSE; (2) usi ng a hyperbolic ap proach
to replace the EMSE and seeking for the solution at the
steady state; (3) using an interation method to solve the
EMSE; and (4) us ing a direct method to solve the EMSE.

The first approach is restricted to no wave reflection and
weak diffract ion (RADDER, 1979 ). This kind of model (e.g .,
ReflDif-1 from KIRBY an d DALRYMPLE, 1991; RCPWAVE from
EBERSOLE et al., 1986 ) can be solved much faster. This is
because of the nature of the parabolic partial differential
equation and less rest ri ct ion on gri d size (i .e., less than one
fifth of the wav e length ) for this approach . Thus its im ple­
mentation has been recommended for open coasts without
structure to cause strong diffraction and reflection. Under
this category, numerous studies have bee n conducted during
the past decades (e.g ., KIRBY, 1986a; 1986b; 1988; DALRYM-
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PLE et al., 1989; MAA an d WANG, 1995) . The calculated re­
sults were mainly applied for studying longshore sediment
tr ansports and shoreline responses. The calculated wave di­
rections from this kind of model, however, have not been ex­
te nsively verified, and this is one of the objectives of this
study.

Weak diffract ion can be roughly defined as the change of
wave direction at any place in the study domain being less
than 30 degrees from the incident wave direction, which is
usually selected parallel to the x axis. Whe n the change is
more than 45 degrees, it is called strong diffraction. Exam­
ples of strong diffraction can be found when waves approach
the back of a breakwater or an island. In this case, a change
of wave direct ion on the order of 90 degrees can be found.
Notice that the Ref/Dif-L's capability on this iss ue has been
improved to a maximum change of 45 degrees .

The next three categories are usually limited to small study
domains. This is because the grid size requirement for solving
the EMSE , or the hyperbolic equation, is small (less than 1/ 10

of wave lengt h ), and thus, the computation matrix is too big
to be solved economically for la rge study domain s, e.g., 50
wave lengt hs and more. However, if the study domain has a
complicated geography and/or bathymetry, or if there is
strong wave diffract ion and/or reflectio n , and accurate results
are needed, models in the next three categories are necessary
because of the capability to simulate the extra ph enomena :
strong diffraction and reflection.
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Table 1. Function capability for the selected models.

Maa et al.

RDE PBCG

Shoaling
Refraction
Diffraction
Reflection
Resonance
Spectral
Bottom Friction
Current Effect
Step slope and Bottom curvature
Passing-through B.C.

Yes
Yes
Yes
Yes
Yes
P
Yes
P
Yes
2n d

Yes
Yes
Yes
Yes
Yes
P
Yes
P
Yes
2n d

MIKE 21' EMS PMH Ref/Dif-l RCPWAVE

Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Weak Weak
Yes Yes No No
Yes Yes No No
P P p* P
Yes Yes Yes Yes+
No P Yes P
P Yes P P
Sponge Layers High Order N/A N/A

P: Although possible, this feature has not been implemented.
P*: The new version, Ref/Dif-S, deals with spectrum waves, but wave-wave interaction is still excluded.
1st: For the passing-through boundary condition, this level indicates that there will be errors caused by introducing wave reflection if the wave angle rJ
(Figure 1) is more than 10 degrees.
2n d : This level means that there will be errors caused by introducing wave reflection if rJ is more than 30 degrees.
High Order: This level allows rJ = 90 degrees without introducing reflective waves.
Weak: The model will fail if the wave angle turns more than 30 degrees from the computing x direction. For the ReflDif-l model, however, 45 degrees is
still possible because of the treatment given by KIRBY (1986b).
Sponge layer: This layer can be used to absorb wave energy, and thus, is similar to that allowing waves to pass through.
+: The effect of bottom friction is an add-on process by MAA and KIM (1992).

BASIC MODEL EQUATIONS

The following governing EMSE, with the enhancement for
large bottom slope, bottom curvature (MASSEL, 1995), and
bottom friction, is the basic equation used in most models,
except the EMS module for Mike 21.

d
2

<p d
2

<p eo(dh d<p dh d'P) ( ifd )- + - + - - - + - - + k 2 1 + ~ + - <p
dX2 dy2 h dX dX dy dy ncr

~ = el(kh)[(:~r + (:rJ + e2~~)C:~ + ~~) (2)

eo, e1 , and e2 are three functions of relative depth (kh), 'P is
the velocity potential function in the study domain for a sim­
ple harmonic wave flow, i = (-lY\ fd is a friction coefficient
(DALRYMPLE et al., 1984), rr = 21Tfr is the wave frequency,
k, = 41T2/gT2 is the deep water wave number, T is the wave
period, g is the gravitational acceleration, n = (1 + 2kh/sinh
2kh)/2, k = 21T1L is the local wave number, L is the local wave

was developed to work with the Gaussian elimination method
(RDE model, MAA and HWUNG, 1997; MAA et al., 1998b).
With this approach, the program coding is simple and
straight-forward. Thus, program maintenance and upgrades
are easy.

Since there are so many models available, it would be help­
ful if a demonstration of the strengths and weaknesses of
each selected model was provided. To achieve this goal, mod­
els (RDE, PBGC, PMI-I, EMS module for Mike 21, Ref/Dif-1,
and RCPWAVE) from each category were selected based on
availability and necessity (Table 1). A brief description of
each selected model was given first, and then, the perfor­
mance of each model on wave shoal, refraction, and diffrac­
tion across the elliptic shoal experiment carried out by BER­
KHOFF et ale (1982) was examined.

In the second approach, which deals with a transient mild
slope equation (COPELAND, 1985; MADSEN and LARSEN,
1987; ISOBE, 1994) and looks for the results at steady state,
there are two models selected in this comparison: (1) MIKE
21's EMS module, and (2) the PMH model (HSU and WEN,
in review). The differences between this category of models
and other EMSE models are (1) the treatment of passing­
through boundary conditions, (2) the different algorithm for
solving the governing equation, (3) the difference in the gov­
erning equation, and (4) the direct inclusion of the wave
breaking process in the model because of the iteration in time
domain. Otherwise this approach should give the same re­
sults as those from the other EMSE models. The computing
speed and accuracy, of course, depends on the criterion se­
lected for convergence.

The next two approaches deal with the EMSE directly. For
better handling of irregular harbor geometries, finite element
methods (e.g., BEHRENDT, 1985; CHEN and HOUSTON, 1987)
have prevailed for the past decade. These kinds of models,
however, are relatively difficult to maintain and upgrade, and
thus, are excluded in this comparison. Because of the small
grid size requirement, the finite difference methods can also
be used to obtain an excellent approximation of a complex
geometry. Iteration methods prevailed when using the finite
difference approximation because of the reasonable computer
memory requirements, e.g., Multi-grid method (LI and AN­
ASTASIOU, 1992), Conjugate Gradient method (PANCHANG et
al., 1991), Generalized Conjugate Gradient (GCG) method
(LI, 1994a), and Preconditioned Bi-conjugate Gradient
(PBCG) method (MAA et al., 1998a). Although the convergent
rate is usually good, it may degrade if the computation do­
main is not simple. Because the computing pace for models
in this category is not as good as that from the model given
next, only the PBCG model was selected for comparison.

The last approach, using the Gaussian elimination method
(DONGARRA et al., 1979) to directly solve the EMSE, was only
possible recently because a special book-keeping procedure

=0

where

(1)
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Figure 1. Bathymetry of the Elliptic Sho al. Incident wave information
is given a t th e right boundary. Dashed box shows are a with detailed wave
vect ors . Center lin es show wher e th e wa ve height profiles will be com­
pared.

(7)

(6)
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where A is the amplitude function and S is the phase func­
tion. For normally incident waves, the phase should be the
same at all entrance grid points. For convenience and without
loss of generality, we may choose S = 0 for this condition.
For oblique incident waves, the phase function can be calcu­
lated as follows where XL is a local one-dimensional coordi­
nate, L is the wave length at the boundary location, and e is
the angle between the wave direction and the normal vector
of the boundary.

The solution of Eq. 1, velocity potential function, 'P, is a
complex variable. The absolute value of'P can be used to find
the local wave height according to Eq . 6. The local wave
phase can be obtained as S = tan:" ('Pi ' 'Pr)' where the sub­
scripts i and r represent imaginary and real parts of a com­
plex variable, respectively. The local wave numbers, k, and
k, can be calculated as as/ax and oS/oy, respectively. Finally
the local wave direction can be obtained as e = tan- l (k., k . ),

where ao = 0.9945, a , = 0.8901, and b, = 0.4516 are three
constants which can be slightly tuned to find the largest
range of r3 which gives the least wave reflection.

Although at a grid point where the given wave condition is
specified, the actual velocity potential function is still un­
known because of the possible scatter waves generated from
the study domain. The outgoing scatter waves should pass
through the boundary unaffected, and thus, Ot = 1.

For a given monochromatic wave with wave height, Hg,pe­
riod, T, and direction, e(reference to the given boundary, see
Figure 1), the given wave velocity potential can be calculated
as (BEHRENDT, 1985 )

= iak'P)1 - (~r+ 2ik'Pg,

- ::tiOtk'P + 2ik'Pg, 1st order on ::tx direction

(
1 02'P)- ::tiOtk 'P +-- + 2ikmg2k 2 iJy2 T ,

2nd order on ::tx boundary (3)

o'P . ( 1 a2'P)- == ::tlOtk 'P +-- + 2ik'P'oy 2k 2 o X 2 '

on ::ty boundary (4)

where k, and k, are wave number components in the x and
y directions, respectively. This condition can be used as (1)
total reflection (with 'Pg = Ot = 0), (2) partial reflection, (with
'Pg = 0, and 0 < Ot < 1), (3) total passing through (with 'Pg =
0, and Ot = 1), or (4) given boundary condition (with 'Pg =
given, and Ot = 1). Here Ot = (1 - R)/(1 + R) and R is the
wave reflection coefficient and 'Pg is the given wave velocity
potential. Because the angle, r3 (and thus, k. ), for waves ap­
proaching a boundary is unknown in prior, k, has to be re­
placed by (k2 - k/ )"'. Thus, the original boundary condition
(the second line in Eq . 3) is a nonlinear equation and its first
and second order approximations are displayed in the 3rd
and 4th lines ofEq. 3, respectively. Because of the similarity,
only the second order approximation is given for the y direc­
tion boundary condition, i.e., Eq. 4. Equation 3 is applicable
to the boundary segments that are perpendicular to the x­
axis, where the positive sign is for tho se segments that have
the water grid point on their left side. Equation 4 is appli­
cable to those boundary segments that are perpendicular to
the y-axis, and the positive sign is for those segments that
have the water grid point on the bottom. When using the
second-order approximation for a total or partial passing­
through boundary condition, reflective waves will be intro­
duced when r3 is more than 30 degrees, even assigned Ot = 1.
Improvements by using the third-order approximation (Eq .
5) given by KIRBY (1989) are possible if needed. With that
improvement, r3 can be increased up to 70 degrees without
causing severe wave reflection when specifying Ot = 1.

o'P + b, a3'P = +iOtk(a +~ 02'P)
ox k2oxo2y - o'P 2k 2 oy2 + 2ik'Pg,

on ::tx boundary (5)

length, h is the water depth, ah/ax and ah/ay are bottom
slopes in the x and y directions respectively, a2h/ax2 and a2h/

oy2are bottom curvatures in the x and y directions, respec­
tively, and x and yare the two horizontal coordinates.

Among the six selected models, the RDE and PBCG models
followed Eq. 1 exactly. The PHM model and EMS module had
an extra transit term and other means to transform the gov­
erning equation. The other two models were simplified with
different degrees. Details will be given when presenting each
model.

The boundary conditions can be described by the following
two equations (BEHRENDT, 1985 ):

o'P . k 2'k di- = lOt 10 + I 10 9 on x irectionox x T T ,

Journal of Coastal Research, Vol. 16, No.4, 2000
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(9)

Table 2. Parameters used and results in the model comparison.

The computing time is based on a Pentium 233 Personal computer with
64 MB of memory, and Windows 95 operation system.
* The numbers in parentheses are the results using their own required
grid size: ~x = 0.25 m and ~y = 0.2 m.
** Number in parentheses was given by LI (1994a) for his GCG model.
*** Number in parentheses was estimations for the GCG model.

where k, is the equivalent wave number. The definitions and
other details can be found in Hsu and WEN (in review). In
each computation direction, i or j, Eq. 9 can be used to form
a tridiagonal matrix equation, ex = H, where e is a 3 X N
banded matrix, and N is the length of this banded matrix in
either i or j directions, X is the unknown column matrix, and
H is another column matrix which includes boundary condi­
tions.

Using the Alternating Direction Implicit (ADI) scheme
with iteration, the velocity potential <p was solved. The con­
verged criterion is selected as E < 10-\ where E is a residual
parameter. Von Neumann's stability analysis (LI, 1994b)
shows that the numerical scheme selected to solve this par­
abolic mild slope equation is unconditionally stable.

A special treatment of the passing-through boundary con­
dition was implemented by Hsu and WEN (in review) as fol­
lows. Although wave angles at the passing-through bound­
aries are unknown in prior in the current time step, they
considered these angles to be the same as angles obtained in
the previous time step. With iteration, they can obtain nearly
exact solutions at the boundaries which make their Parabolic
Mild slope equation model with a High (PMH) order of ac­
curacy on the passing-through boundaries.

Berkhoff 2

68
309 s
6.11 MB

946 s
25.46 MB

7,922 (2,500)**
4,433 s (1,400 s)***
10.72 MB

0.01
1.0
o
0.04-0.45
0.1
20 X 22
200 X 220

Parameters Berkhoff 1

H(m) 0.01
T (s) 1.0
e (deg) 0
hem) 0.04-0.45
~x, ~y (m) 0.1
Width X Length (m) 20 X 25
Grid No. in x & y direction 201 X 251

RDE

Computing time 1056 s
Memory required 26.20 MB

PBCG

Iterations 10,103
Computing time 7,015 s
Memory required 11.48 MB

Ref/Dif-1

Computing time 12 s (2.6 s)*
Memory required 2.0MB

RCPWAVE

Computing time 49 s (3.2 s)*
Memory required 2.6MB

EMS module for Mike 21

Iterations 96
Computing time 661 s
Memory required 6.87 MB

PMH

Iterations 1,200
Computing time 1,600 s
Memory required 2.7 MB

The velocity potential 'P can be treated as a time-dependent
variable, and thus, a new time-dependent parabolic mild
slope equation was developed on the basis of using the per­
turbation method (LI, 1994b; Hsu and WEN, in review). The
difference between this equation and Eq. 1 is given below.

1 a2'P
-- = Eq. 1 (8)
cCg a2 t

where c and cg are wave phase and group velocity, respec­
tively. Assuming that 'P is a slow varying function and 'P =

(CCg)-lh e- irrt <P, the hyperbolic equation (Eq, 12) was changed
to a parabolic mild slope equation as follows

2ia a<p- - + V2<p + k 2<p = 0
cCg at C

PBCG Model

PMH Model

Similar to the RDE model, a matrix equation, AX = G, was
established in this model, where A is an N X N square matrix
stored in the Row Index Sparse Storage (RISS) mode, i.e.,
only non-zero items are stored to save computer memory.
Others are the same as those given in the RDE model. Using
the Preconditioned Bi-conjugate Gradient method given by
PRESSet al. (1992), this equation can be solved with iteration.
The Generalized Conjugate Gradient (GCG) method (LI,
1994a) is similar to the PBCG model, but uses a different
pre-conditioner, and thus, might have a better convergent
rate. For the PBCG model, the convergent criterion was se­
lected as the difference between two consecutive computing
results for any grid point is less than 1.0 X 10-7 • The number
of iteration and computing time are given in Table 2. The
estimated computing time for the GCG model, based on 2500
iterations claimed by LI (1994a), can be found in the paren­
thesis in Table 2.

Using the finite difference approximation, a banded matrix
equation, BX = G, is established, where B is a banded matrix
with a dimension of M X N, N is the length of the banded
matrix, M is the band width of the matrix, X is the unknown
column matrix, with length N, that stands for the wave po­
tential function, and G is another column matrix that in­
cludes the given boundary conditions as well as the radiation
boundary conditions. The banded matrix equation was solved
by using a thrifty Gaussian elimination method (MAA et al.,
1997; 1998b) which replaces the huge memory requirement
with a large hard disk space requirement. In this model, wa­
ter depth can be small but cannot be zero because of the lin­
ear wave theory. At a small water depth, this model may give
an unrealistic large wave height if the waves are either
breaking or broken. A post process software was used to iden­
tify the breaking points. After the breaking point, wave
heights were limited by the water depth, but their direction
unchanged.

The above are basic for each model, the difference among
these models are as follows.

RDE Model

Journal of Coastal Research, Vol. 16, No.4, 2000
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(0)

EMS Module for Mike 21

The Danish Hydraul ic Institute's EMS module for MIKE
21 is essentially the one developed by MADSEN and LARSEN
(987). This model has a tra nsit "mild slope equation" for
water surface elevation, ~ , as follows.

c iJ2 ~
- ....!- + V(cc V~ ) = 0

c a2 t g

This equation can be split into three first-order equations
(Eq. 11), where P an d Q are pseudo fluxes in the x and y
directio ns , res pective ly.

ap a~
- + cc - = 0
at gax

aQ a~
- + cc- = O
at gay

cga~ ap aQ
-- +- +- = 0 (11)
cat ax ay

By further ass uming that P, Q, an d ~ are all slow-varying
functions, the harmonic term, e- i" ' , can be remove d from Eq.
11 for higher computing efficiency. By including a source
term in Eq. 11 to introduce the incident waves, MADSEN an d
LARSEN gene ra lize Eq. 11 as a wave transformation model.
The solution technique of this model is similar to that for
solving the momentu m and continuity equations for long
waves. The fina l steady-state solutio n is the solution to the
origina l elliptic mild-slope equation. This system of equations
was solved by a highly efficient double sweep method with a
var iable time ste p for the ite ration toward the steady-state
solution.

The computi ng technique used in the EMS model requires
that all boundaries be totally (100%) reflective. For this rea­
son, incident waves have to be introduced from the interior,
and sponge layers must be installed on the passing-through
boundary. In the sponge layers, wave energy can be totally
or partially dissipated (LARSEN an d DANCY, 1983). In this
case study, 10 sponge layers were set up at the left boundary
and five sponge layers at the right boundary beca use waves
mainl y travel in the x direction. No sponge layer was applied
on the top and bottom boundaries. Wave breaking was en­
abled, which dissipates the wave energy on the beach.

The output of the EMS model includes : both transient an d
steady-state, water surface elevations, wave heights, depth­
ave raged particle velocities, and rad iation stresses. Although
the depth -avera ged particle velocities, obtained from the
summation of the two pseudo fluxes (P and Q), can be plotted
to show the trend of wave directions, this model does not
provide wave phase or direction information.

This model is different , in a funda mental sense, from other
elliptic or hyperbolic models becau se the dependent variable
in the governi ng equation (Eq, 10) is water surface elevation
m. Strictly speaking, this model did not solve the mild slope
equation of velocity potential functio n (Eq. 1).

RCPWAVE

In order to solve Eq. 1 (witho ut 1jJ, nor the bottom frictio n
te rm), EBERSOLE et at. ( 986) substitute d 'P = Aeis and ob-

tained two equations for the amplitude function, A, an d the
phase function, S. They added an extra res triction, V X V S
= 0, (irrotationa lity of wave phase gradient) to the governing
equations . They used an iteration method to solve the finite
difference approxi mations of the three equations in the y di­
rection which should be roughly normal to the wave propa­
gation direction. After being converged in the iterations, the
computation adva nced into the next x grid. Their approach is
not similar to that given by the ReflDif-l model. They solved
the EMSE using a numerical meth od that is designed for a
parabolic type of differential equation. Although they have
not changed the origina l governi ng equation, the nume rical
meth od they selecte d ignores the reflected waves , and the
nu meri cal scheme only produces stable results when the
wave angles are within 30 degrees from the x axis . Thi s mod­
el produces local wave height , phase, and wave angle, e, di­
rectly.

Ref/Dif-l

Restricted to no wave reflection, no IjJ term, and only weak
diffraction, KIRBY and DALRYMPLE (991) presented the Ref!
Dif-l model, which is quite popular in the U.S. In this model,
the velocity potential funct ion is separated into two parts: one
for the progressive waves and one for the reflective waves
which were discarded. Becau se of the use of an implicit
scheme to solve the simplified equation, the computation
spee d is excellent . Also because of the enhancements provid­
ed by DALRYMPLE et at. (984), this model remains stable
even when the wave propagation direction deviates to 45 de­
grees from the x axis. Although this model has many en­
hancements, e.g., wave transmission across an island (DAL­
RYMPLE et al., 1984), ti da l current influence on wave trans­
formation, computation on curve- linear coordinates (KIRBY,
1988), and wea k nonlinear wave tra nsformation (KIRBY,
1986a), the accuracy of the calculated wave direction is the
major concern when using this model. We will demonst rate
this point next .

The RCPWAVE an d ReflDif-l Models require that the grid
size be less than one fifth of the wave length ( ~x ~ Ll5, or
0.25 m for the case st udy). For this reason, the computi ng
time (see Table 2) can be redu ced significantly.

RESULTS

The computi ng res ults for all the models are summarized
in this sectio n. Normalized wave height contours an d wave
vectors are the major ite ms compared. For simi lar res ults ,
only one is presented to save spa ce.

The elliptic shoal experiment (BERKHOFF et al., 1982) was
selected because it was well designed for checking wave
shoa ling, refraction and weak diffraction. The bathymetry of
the experimenta l an d computation domai n is given in Figu re
1. Waves (period = 1 sec, wave height = 0.01 m, norm al
incident, see Figure 1) are propagati ng into the study domain
from the right hand side. On the left hand side, there is a
beach, and a portion of the left hand side boundary (0 m <
y < 17 m) has to be specified as a total-passing-thro ugh
boundary (i .e., IX = 1). On the top and botto m boundaries, the
total-reflection boundary conditio n (i .e., IX = 0) is specified to

Journal of Coastal Research, Vol. 16, No.4, 2000
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Figure 2. Calculated Wave Height Contours on the Elliptic S~oal Ex­
periments Using th e RDE, PBCG, and PMH Models. Dashed lines ar e
bathymetric contours.

Wave Height

Four normalized wave height contour plots (Figures 2 to
5), which represent the results from RDE, MIKE 21's EMS,
ReflDif-l, and RCPWAVE models, are presented. The con­
tours from other models (i.e., PMH and PBCG ) are practically
the same when compared to those given by the RDE model,
and thus, were omitted.

20
I

10

16

12

The RDE's wave height contours (Figure 2) show a slight
wave reflection at the domain x > 15 m. These reflected
waves were revealed from the normalized wave height con­
tours oscillating around 1 at the portion before the shoal. Af­
ter the shoal, wave refraction and diffraction dominate. Be­
cause the RDE model does not allow for zero water depth, a
minimum water depth of 0.04 m was arbitrarily selected to
establish an artificial total-passing-through boundary (see
the left-top corner in Figure 2). Wave energy was allowed to
pass through using the second order approximation. Because
the selected 0.04 m water depth is greater than the breaking
depth, the RDE model avoided the wave breaking problem.
The PBCG model used the same principal, and thus, was sub­
jected to the same limitation.

Both the PMH model and the EMS module allow zero wa­
ter depth. During iterations in the time domain, these two
models checked the wave breaking criterion and changed the
wave height accordingly.

The EMS module for MIKE 21 also gave reasonable wave
height contours (Figure 3). The predicted location of maxi­
mum wave height (at x = 12 m ) is slightly off when compared
with other model results (Figures 2 and 4 indicate this loca­
tion is at x = 10 m). The reflected waves are not as significant
as those shown in Figure 2 (results from the RDE, PBCG,
and PMH models). Reflective waves can be seen only at two
small areas before the shoal. Notice that this model intro­
duces sponge layers in the computation domain (at the on­
shore and offshore sides), and thus, the computing domain is
slightly larger than others, i.e., 26.4 m X 20 m.

Because the ReflDif-l and RCPWAVE models do not in­
clude wave reflection, the normalized wave height contours
from these two models (Figures 4 and 5) are all exactly equal
to 1 before the shoal. After the shoal, they are quite different.

X(m)

Figure 3. Calculated Wave Height Contours on th e Elliptic Shoal Ex­
periments Using the EMS module for MIKE 21. Dashed lines ar e bathy­
metric contours. The computation domain in x dir ection is slightly larger
(26.5 m) than that from other models (25 m) becau se of th e use of sponge
layers.

2015
x(m)

simulate the wave guides used in the experiment. The grid
size and other information is given in Table 2. For compari­
son with the GCG model (LI, 1994a), another smaller com­
putation domain is selected and the results are given in Table
2 under the column of Berkhoff -2.

Although the experiment carried by BERKHOFF et al. (1982)
is the best one for checking wave refraction and weak dif­
fraction, their study cannot provide all the information need­
ed for later studies. For example, it would be useful if they
had provided a measured wave vectors plot, measured wave
height contours, or measured wave crest lines. Without this
information, criteria were selected as follows to justify the
accuracy of the selected models : (1) The performance of each
model must be checked with the available data; (2) If no ex­
perimental data for verification are available, the common
results from more than one model will be selected as the
background-truth. Based on the first criterion, the compari­
son of wave height profiles with measurements was checked.
Our study, however, demonstrated that this criterion alone
is not sufficient to show the accuracy of a model. Based on
the second criterion, the practically-the-same wave height
contour plots and wave vector plots obtained from the RDE,
PBCG , and PMH models (Figures 2 and 6) were selected as
the accurate results.

Because the reflective waves are negligibly small and wave
diffraction is weak in the experiment conducted by BER­
KHOFF et al. (1982), the experimental results can be used to
verify the performance of ReflDif-l and RCPWAVE models.
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Figur e 6. Calculated Wave Vectors afte r th e Ell ipti c Shoal Using the
RDE, PBCG, and PMH Models. Dash ed lin es are bathymetric contours.
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change of wave vectors occurred mainly after the shoal. For
this reason, only th e vectors that are after the shoal were
plotted (see the das hed box in Figure 1). For obtaining a clear
display of the vectors, wave vector information was not plot ­
ted at every grid point . For the RDE model , wave vectors
were plotted at every four grid points in both x an d y direc­
tions (Figure 6). For the RCPWAVE (Figure 7) and the Ref/
Dif-1 (Figure 8), wave vectors were plotted at every other gri d
point.

Notice that the wave vectors plot for the RDE model im­
plies that wave trajectories may cross each other at an area
behind the shoal, i.e., 9 m < x < 10 m an d 9 m < y < 11 m.
In the wave phase contour plot (also the wave crest lines ,
Figure 9), this area also indicates a trans ition from concave
wave crest lines to convex wave crest lines. This pheno menon
is quite interesting and is worthy of further study.

Since th e out put velocity potential funct ion represents the
sum of transmitted waves, reflected waves, and diffracted
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Figure 4. Calcula ted Wave Height Contours on th e Elliptic Sh oal Ex­
periments Using the ReflDif-1 Model. Dashed lin es ar e bathym etric con­
tours.

Wave Vectors

A wave vectors plot shows the wave heights and directions,
and thus , it is important when comparing the overall perfor­
mance. For the elliptic shoa l (B E RKHOF F et al., 1982), the

Figure 5. Calculate d Wave Height Contours on the Elliptic Shoal Ex­
periments Using the RCPWAVE Model. Dash ed lin es are bathymetric
contours.

The resul ts from ReflDif-1 model (Figure 4) are very close to
that given by the RDE model. Resu lts from the RCPWAVE
model (Figure 5) show large wave heights at the near coast
area which were caused by the ext ra equation, V' X V' S = O.
This extra equation can be inter preted to mean wave rays
never cross each other. We will further demonstrate this
point later .
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Figure 8. Calculated Wave Vectors after the Elliptic Shoa l Using the
Refi'Dif-1 Model. Dashed lines ar e bathymetric contours .

Figure 9. Calculated Wave Phase Contours (also th e Wave Crest Lines)
Using the RDE, PBCG, and PMH Models. Dashed lines are bathymetric
contours .
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DISCUSSION AND CONCLUSIONS

20

I I
I I
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For the test conditio ns (negligible wave reflection and weak
diffraction) presented in this st udy, ReflDif-1 and RCPWAVE
are the fastest models. Their pre dictions , however , are not
always acceptable. The ReflDif-1 model pre dicts an excellent
wave height distribution, but the wave direction information

Figure 10. Calculated Wave Trajectorie s using the RCPWAVE model.
Dashed lines are bathymetric contours.

This indicates that additio nal checks on the wave vectors or
trajectories is necessary to examine the overall performance.

The pre dicted wave heig ht profile from the EMS module is
rougher than other models' pre dictions (Figure Lla). When a
slightly different computi ng domain was selected for the EMS
module, the calculated wave height profile also changed a
little. This is unexpected because the computing res ults
should be the same.

waves, the wave vectors also represent the summation of
these possible waves. For this reason, wave directions may
change locally an d are not always perpendicular to the bathy­
metric contours.

Notice that for x < 8 m in Figure 9, the wave crest lines
have sharp bends located near y = 7 and 14 m. This kind of
bending is physically unreasonable un less the wave heigh t is
small. When examining Figu re 6, wave heights are very
small at the above mentioned locations.

For the PBCG an d the PHM models , practically identical
wave vectors and wave crest lines were obtained when com­
pared with those from the RDE model. For the MIKE 21's
EMS model, wave vector information is not available for com­
parison.

For the RCPWAVE model, wave vectors (Figure 7) and
wave height contours (Figure 5) indicate that wave height
cont inues to increase after the shoa l while traveling toward
the shoreline. This phenomenon can be explained to mean the
wave trajectories (Figure 10) never cross each other. The ex­
tra governing equation, V X V S = 0, must be res ponsib le for
this result . Since the wave diffraction process allows wave
rays to cross each other, the ext ra governing equation pro­
vided an artificial and unrealistic restriction which cause d
this res ult.

The ReflDif-1 model results (Figure 8) indicate that wave
directions at all gri d points are practically the sa me. It is not
clear why this error occurs in the direction calculation. This
unexpected finding limi ts the use of this model because wave
direction is also importan t when studyi ng longshore sediment
transport .

When verifyi ng a numerical model, previous studies only
emphasized the comparison of wave heights at selected sec­
tions . We will demonstrate that this comparison alone is in­
sufficient to judge a model's performance. In Figure 1, mea­
surements of wave heights along the selecte d four center
lines are availab le. A compa rison of wave height profiles
among models (RDE, RCPWAVE, ReflDif-1, and EMS mod­
ule, see Figure 11) does not show a significant difference.
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Figure II. Comparison of Wave Height Profiles for the Selected Models. (a) at x = 14 m; (b) at x = 12 m; (e) at x = 6 m; (d) at y = 10 m. Experimental
dat a ar e solid dots.

is incorrect. Th e RCPWAVE model cannot accurately predict
th e wave height distribution nor th e wave direction. Thus,
the use of these two models requires great caution. For any
case that involves wave reflection and strong diffraction,
these two models are incapable of accomplishing the job.

Among th e elliptic and hyperbolic models, the RDE, PBCG,
and PMH models practically produce the same wave height
distribution and wave direction information. The major dif­
feren ces are in computer speed and memory requiremen ts
(Table 2). The above conclusion, however, is based on only
one experiment where wave directions are either nearly par­
allel or nearly perpendi cular to the bound aries. Even a first
order approximation of the passing-through boundary used
by the GCG model can perform well in thi s case . In reality,
however, th e wave approach angl e, ~ (Figure 1), may easily
be more th an 10 degrees, and sometimes, more than 30 de­
grees. A high er order approximation of th e passing-through
boundary condition is highly recommended.

At the partially reflective boundaries, a better knowl edge
of the reflection coefficient is needed to specify the value of
0. . Laboratory experiments for a given structure can be con­
ducted to accomplish th is task. The sponge layer s used in th e
EMS module posed a question of how to correlate the number
of sponge layers to th e reflection coefficient. Perhaps further
numerical experiments can an swer thi s question if th e re­
sults of a physical model study on a particular type of reflec-

tive structure are already available. For a new typ e ofreflec­
tive structure, a combination of physical and numerical ex­
periments is necessary to address this question. For this rea­
son, it is difficult to use this model when a new type of
partially reflective structure is involved .

It is not clear why the EMS modul e did not provide wave
direction informa tion directly. It is impossible to interpret th e
wave direction information based on th e output generated
from the EMS modul e. This module, on the other hand, pro­
vides the information of wave radiation st resses. This implies
that wave direction information is available internally be­
cause it is definitely needed to calculate wave radiation
stresses .

Regarding other iteration methods, LI (1994a) claimed th at
the GCG model ha s a higher convergent rate (2500 iterations)
for the given numerical experimen t. Using th e same experi ­
mental conditions, the PBCG model examined in this study
required about 7700 iterations to converge . Possible reasons
are (1) the GCG model has a higher convergent rate, (2) dif­
ferent degrees of approximation on th e Newm an type pass­
ing-through boundary condition, and (3) different convergent
crite ria . Among these three possible reasons, details for the
last two are given as follows.

The GCG model used a first order approximation of the
passing-through boundary condition, but the PBCG model
used a second order approximation. For thi s reason, if ~ >
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10 degrees, the GCG model will not give accurate results. The
PBCG model, on the other hand, is good until J3 > 30 degrees.

The convergent criterion used in the GCG model checks the
average difference of all the grid points between two consec­
utive calculations, but the PBCG model checks the largest
difference among all the grid points between two consecutive
calculations. For this reason, although they both claimed that
the convergent criterion is selected as the difference less than
1 X 10-7 , the GCG model actually has a slightly easier cri­
terion than that of the PBCG model.

Despite the differences, the computing time for the GCG
model (2500 iterations, LI, 1994a) can be prorated as 1,500
s, and this is the number selected to compare with others and
is listed in the parenthesis in Table 2.

It is worthwhile to mention that the experiment carried out
by BERKHOFF et al. (1982) is not the best for checking the
performance of an elliptic or a hyperbolic wave transforma­
tion model. Their experiment was well designed to prove a
theoretical analysis of combining wave refraction and diffrac­
tion, but strong wave diffraction and wave reflection, how­
ever, were excluded. For verifying strong wave diffraction
and wave reflection, analytical solutions and experimental
data are available elsewhere te.g., GODA et al., 1971; Yu et
al., 1997). Comparison of elliptic and hyperbolic models with
those available data is highly recommended, and that shall
be the objective for our next study.
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