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The propagation of monochromatic waves over an arbitrarily varying topography is studied theoretically. The varying
topography is first represented by a finite number of small steps. A theoretical model is then developed by formulating
the diffraction of monochromatic waves by abrupt depth changes, through the eigenfunction expansion method. Not
only the propagating mode but also the evanescent modes are included in the model. The model developed is applied
to the study of the Bragg reflection of monochromatic waves caused by a singly-sinusoidally varying topography. The
effects of the oblique incidence of waves are also investigated. The model solutions are compared with available
experimental data. The model is also used to investigate the Bragg reflection of monochromatic waves over a doubly-
sinusoidally varying topography. The reflection coefficients calculated are compared with laboratory measurements
and other numerical results. A reasonable agreement is observed.

ADDITIONAL INDEX WORDS: Water waves, eigenfunction expansion method, Bragg reflection, evanescent modes,

sinusoidally varying topography.

INTRODUCTION

As wind waves generated in deep water approach the near-
shore zone, they experience many important physical phe-
nomena caused by bathymetric variations, nonlinear inter-
actions among different wave components and interferences
with man-made coastal structures. Among these, the bathy-
metric variations play a significant role in the change of the
wave climate. Thus, coastal engineers should have a proper
tool for estimating the wave climate as accurately as possible
to design a coastal structure in nearshore areas. In particu-
lar, the accurate calculation of reflection and transmission
coefficients of incident waves over a local bottom topography
is indispensible for proper and economical design of coastal
structures.

The propagation of monochromatic surface waves over a
submerged object or sand bars has been frequently and wide-
ly investigated through theoretical, experimental and nu-
merical studies because of its practical applications in coastal
morphology and designing of submerged breakwaters. Re-
cently, an extensive literature review on linear wave scatter-
ing by two-dimensional bottom topography was given by POr-
TER and CHAMBERLAIN (1997).

Among theoretical studies, MILES (1967) used a scattering
matrix method to calculate the reflection and transmission
coefficients for the case of a step discontinuity between two
finite depths. A scattering matrix obtained from the variation
formulation was defined by relating the coefficients of the two
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propagating modes on each side of the step. KiRBY and DAL-
RYMPLE (1983) calculated the reflection and transmission co-
efficients of monochromatic waves over a submerged trench
by using an eigenfunction expansion method. The obtained
solutions agree well with numerical solutions computed by
the boundary integral equation method. DEVILLARD et al.
(1988) used MILES’ scattering matrix to calculate the reflec-
tion coefficients for the successive steps. Since the evanescent
modes were not considered in the method, the lengths of the
steps were large enough to ensure noncoupling between the
evanescent modes created by the two successive steps.

Only a few experimental studies have been reported for the
reflection of water waves over rippled beds. DAviEs and
HEATHERSHAW (1984) conducted laboratory experiments on
the propagation of monochromatic waves over a sinusoidally
varying topography. They studied the so called Bragg reso-
nant reflection. BENJAMIN et al. (1987) also reported a the-
oretical and experimental study for the Bragg reflection of
long-crested surface waves over a sinusoidally varying topog-
raphy to reveal the development of coastal sandbars. They
argued that the study may improve DAvIES and HEATHER-
SHAW'’s investigation in a few respects. Recently, GUAZZELLI
et al. (1992) studied the higher-order Bragg reflection caused
by doubly-sinusoidally varying topography. REY et al. (1992)
performed a series of laboratory experiments for the propa-
gation of linear and weakly nonlinear waves over a rectan-
gular submerged bar. The measured data were compared
with both KirBy and DALRYMPLE’s and DEVILLARD et al.’s
theoretical solutions. They demonstrated the importance of
the evanescent modes by examining the experimental behav-
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ior of the fundamental wave amplitude over the submerged
bed.

Numerical models were also plausibly used to calculate the
reflection and transmission coefficients over a special bottom
topography. Liu and ABBAPOUR (1982) studied the diffraction
of obliquely incident waves by an infinite number of cylinders
with the boundary integral equation method. DALRYMPLE
and KirBY (1986) also used the boundary integral equation
method to study the interaction between small amplitude
waves and a series of seabed ripples. The numerical solutions
obtained were compared with the laboratory measured data
of DAVIES and HEATHERSHAW (1984).

Recently, O’'HARE and Davies (1992) presented a new
method for the modeling of propagation of monochromatic
waves over a smoothly varying bottom topography. A similar
technique was also used by GuazzELLI et al. (1992). They
first divided the topography into a series of small steps and
calculated the reflection coefficient by using MILES’ scatter-
ing matrix method. They proved the accuracy and validity of
the method by comparing the reflection and transmission co-
efficients obtained for both single and double steps with the-
oretical solutions calculated by the eigenfunction expansion
method. However, the method is applied only to normally in-
cident waves to the bottom topography. Furthermore, the ef-
fects of evanescent modes are not considered in the study.

In this study, we will develop a theoretical model based on
the eigenfunction expansion method used by KirBY and DAL-
RYMPLE (1983) and L1U et al. (1992) to simulate the propa-
gation of monochromatic waves over an arbitrary bathyme-
try. Following O’'HARE and Davigs (1992) and GUAZZELLI et
al. (1992), we first divide the topography into a finite number
of small steps. However, the evanescent modes as well as the
propagating modes are considered in this study. Moreover,
the effects of both normal and oblique incidence of surface
waves are examined. Thus, O’HARE and DAVIES’ and GuAaz-
ZELLI et al’s studies can be viewed as a limited case of the
present study.

In the following section, we first summarize the diffraction
of monochromatic waves over an arbitrarily varying bottom
topography. The theoretical model developed is then tested
with several examples with different bottom topographies. Fi-
nally, concluding remarks are presented.

DIFFRACTION OF MONOCHROMATIC WAVES

In this section, the diffraction of monochromatic waves by
a depth discontinuity is first given briefly for completeness.
As shown in Figure 1, the bottom topography is first divided
into a finite number of small steps. Variation of the bottom
topography is limited to the x-direction and thus, the wave
number in the y-direction remains constant throughout the
study. Following KirBY and DALRYMPLE (1983), the velocity
potential functions of small amplitude waves within each re-
gion can be written as

o = |Ar etincosh k, (b, + 2)
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Figure 1. A schematic sketch of an arbitrarily varying topography.

for the right-going wave components and evanescent modes
and

! = |Al e n*cosh &k, (h,, + 2)
+ > B e *mrcos K, (h,, + 2)er0  (2)
n=1

for the left-going wave components and evanescent modes. In
equations (1) and (2), 47, B;, ,, A, and B!, , are complex am-
plitude functions to be determined and the subscripts m and
n represent the number of regions and the number of eva-
nescent modes to be considered, respectively. Also, z is the
vertical coordinate (see Figure 1), h,, is the water depth in
mth region and o is the angular frequency. The superscripts
r and / denote right- and left-going waves, respectively.

In equations (1) and (2), /,, and \,,, are the wavenumber
components in the x-direction for the propagating and eva-
nescent modes, respectively. They are calculated from the re-
lations given as:

k=0 +k, N,.=K, +Ek @)

in which k, is the wavenumber component in the y-direction.
As mentioned previously, k£, remains constant over the whole
domain because the variation in the topography is limited
only to the x-direction. The wavenumbers at the mth region
represented by &,, and K,, , are calculated from the dispersion
relations given as:

w? = gk, tanh k h,,, 0?= —gK, tanK, h, (4

To solve equations (1) and (2) at each region, two matching
conditions are required at each depth discontinuity. The first
condition is expressed as:

oD, _ ;.
ox ox ’

= x;, max(—h;,, ~h,.,))=<z2=0 (5

which ensures the continuity of horizontal flux in the x-di-
rection. The second condition is given as:

P, = max(—h;,, —h,.,)=z2=0 (6)

i

D, x = x,,

which guarantees the continuity of pressure.
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Figure 2. A schematic sketch of a backward double step.

Equations (5) and (6) can be solved by the eigenfunction
expansion method. A detailed description of the method can
be found in more detail in KirBY and DALRYMPLE (1983).

NUMERICAL EXAMPLES

In this section, we investigate the reflection coefficients of
monochromatic waves over steps and sinusoidally varying to-
pographies. The occurrence of the Bragg reflection is studied
in detail. Variations of reflection coefficients are also exam-
ined for different incident angles. Although the evanescent
modes may not play a significant role in the determination
of the reflection coefficients, if the size of each small step is
properly controlled (O’HARE and DaviEs, 1992), they are in-
cluded in this study. The reflection and transmission coeffi-
cients are defined as
_cosh k,h

Z]Ar | @)

—jal, T
R = i, cosh k,h,

Double Steps

We first apply the developed model to forward and back-
ward double steps (see Figure 2) to verify accurate perfor-
mance of the model. By definition the depth increases as x
increases in the forward double step (h, < h, < h,), while it
decreases in the backward double step (h, > h, > h,) as
shown in Figure 2. For simplicity, the water depths are fixed

as h, = 2h, and h; = 3h, in the forward step, while they are
fixed as h, = h,/2 and h, = h,/3 in the backward step. The
width of the step is fixed as w = 2h, in the forward step and
w = 2h, in the backward step.

The reflection (R) and transmission (7)) coefficients are cal-
culated and listed in Table 1. In Table 1, n represents the
number of evanescent modes considered in the model. Thus,
n = 0 refers to the plane wave approximation. The variation
of the reflection coefficients between n = 0 and n = 2 clearly
shows the role of the evanescent modes. That is, the trans-
mission coefficients decrease slightly as n increases, whereas
reflection coefficients increase slightly. For all the cases, the
wave energy is found to be conserved. It should be noted that
the matrix becomes large and the computational efficiency
may decrease for a succession of steps. However, all the com-
putations reported in this paper were still endurable in a
workstation.

A Singly-Sinusoidally Varying Topography

In this example the model is used to calculate the resonant
and nonresonant reflection coefficients over a sinusoidally
varying topography. The bottom topography is also represent-
ed by a series of small steps. The water depth is defined as

h(x) = h,, x <x,
h(x) = b, — bsin(lx), x, =x =x,
h(x) = h,, x> x, (8)

in which b and / are the amplitude and the wavenumber of
the seabed ripple, respectively. A wavelength of the sinusoi-
dal ripple is represented by 200 small steps as also done by
O’HARE and DAvIES (1992). Two cases, one (n = 0) with the
propagating mode only and the other (n = 4) with the four
evanescent modes as well as the propagating mode, are con-
sidered in the calculation. Numerical solutions of the reflec-
tion coefficient are compared with the experimental data of
Davies and HEATHERSHAW (1984).

Two cases, one (m = 2) with two ripples and the other (m
= 4) with four ripples are tested and comparisons are made
in Figures 3 and 4, respectively. For both cases, the ampli-
tude of the seabed ripple is & = 0.32h,. Another case (m =
10) with ten ripples are tested and comparisons are made in
Figure 5. For this case, b = 0.16h,. In the figures % is the
wavenumber of the incident wave. Inclusion of the evanes-
cent modes causes reflections to occur at lower wavenumbers.
It is noticeable that wave reflections at the second-order res-
onance (2k/l = 2) are reduced to almost zero when the eva-
nescent modes are included in the calculations. As confirmed
by CHO et al. (1997) the reflection coefficient becomes larger
as the number of ripples increases. Away from the peak, the

Table 1. Comparison of transmission and reflection coefficients for double steps (k,h, = 0.75, 6 = 0°).

Description n=0 n=2 n=4 n=28 n =16
forward—T 1.18775273 1.18261064 1.18229425 1.18207029 1.18200805
forward—R 0.20333157 0.22276964 0.22390794 0.22471002 0.22493236
backward—T 0.96031712 0.95649490 0.95614382 0.95598822 0.95592902
backward—R 0.07078085 0.11364253 0.11678659 0.11815288 0.11866856
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Figure 3. Variations of the reflection coefficients over a singly-sinusoi-
dally varying topography (m = 2, 6 = 0°, b/h, = 0.32).
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Figure 4. Variations of the reflection coefficients over a singly-sinusoi-
dally varying topography (m = 4, 6 = 0°, b/h, = 0.32).

calculated coefficients are roughly half of the measured val-
ues. This discrepancy may be due to experimental errors. The
overall agreement between the laboratory measurements and
the computed solutions is reasonable.

The model is also used to calculate the reflection coeffi-
cients for obliquely incident waves which were not considered
in O'HARE and DAVIES (1992) and GUAZZELLI et al. (1992).
Figure 6 displays variations of the reflection coefficients for
different incident angles with the same parameters used in
Figures 3 and 4. For the case of 6 = 30°, the peaks are shifted
to higher wavenumbers and the magnitude of reflections be-
comes smaller compared to the case of 6 = 0°. According to
DALrRYMPLE and KirBY (1986) the wavenumber ratio for the
obliquely incident wave is given as 2k cos 6// = 1 for the
Bragg reflection. In Figure 6, the maximum reflections occur
at 2k/l = 1 for 6 = 0°, while they occur at 2k/l =~ 1.15 for 0
= 30°. This agrees well with Dalrymple and Kirby’s theoret-
ical predictions. Thus, the present model can be applied to
obliquely as well as normally incident waves. As the angle 6
increases, the peaks are shifted to higher wavenumbers. This
is because the wavelengths of incident waves become longer
as the angle 6 increases.

A Doubly-Sinusoidally Varying Topography

Finally, the developed model is employed to simulate the
diffraction of monochromatic waves over a doubly-sinusoidally
varying topography. The bottom topography is described as

h(x) = h1, x <x 1
h(x) = h, — blsin(l,x) + sin(/,x)],

X, =X =x,

h(x) = h,, x> x, 9

in which A, is a constant water depth, b is the ripple ampli-
tude taken the same for both ripples of different wavelengths
(N, and \,), [, and [, are the wavenumbers of the longer and
shorter ripples, respectively, and x, — x, = L is the length of
the rippled seabed. In the case of a rippled seabed consisting
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Figure 5. Variations of the reflection coefficients over a singly-sinusoi-
dally varying topography (m = 10, 6 = 0°, b/h, = 0.16).
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Table 2. Dimensions of doubly-sinusoidally varying topographies.

09 [ — 0=0°o J
i — 6=30

Figure 6. Variations of the reflection coefficients over a singly-sinusoi-
dally varying topography (n = 4, b/h, = 0.32).

of the superposition of two sinusoidally-varying topographies
having different wavenumbers with /, > [,, GUAZZELLI et al.
(1992) demonstrated that first-order Bragg reflections occur
in the vicinities of 2k = [, and 2k = [,, while second-order

Description A, = A, (cm) b (cm) \ (cm) \, (cm) L (cm)
Figure 7 (a) 2.5 1.0 12.0 6.0 48.0
Figure 7 (b) 4.0 1.0 12.0 6.0 48.0
Figure 8 (a) 2.5 1.0 6.0 4.0 48.0
Figure 8 (b) 4.0 1.0 6.0 4.0 48.0

Bragg reflections occur near 2k = 21,, 2k = 2[, and 2k = [,
+ [, for harmonic Bragg reflections and 2k = [, — I, for sub-
harmonic Bragg reflections. They also showed that the reso-
nant peaks are slightly shifted towards a wavenumber lower
than the predicted values.

In Figures 7 and 8, the calculated reflection coefficients are
compared against other numerical results computed from the
extended mild-slope equation (SUH et al., 1997). The experi-
mental data (GUAZZELLI et al., 1992) are also plotted for com-
parison. Dimensions of the bottom topographies are listed in
Table 2. Reflections are strengthened by the relative ampli-
tude (b/h,) of the seabed ripple. That is, the reflection coef-
ficients in Figures 7 (a) and 8 (a) are much larger that those
of Figures 7 (b) and 8 (b), because the relative amplitude of
the ripple becomes larger. The reflection coefficients obtained
by the extended mild-slope equations do not decrease even at
a higher-wavenumber of 2k/l,, especially in Figure 8 (a). The
reason is not clear at this stage. Inclusion of the evanescent
modes yields solutions closer to the measured data especially
in both harmonic and sub-harmonic resonances. The overall
agreement between the present solutions and the results
computed from the extended mild-slope equation is good.
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Figure 7(a). Reflection coefficients over a doubly-sinusoidally varying topography (h, = h, = 2.5cm, b = 1.0cm, \, =
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12.0cm, A, = 6.0cm, L = 48.0cm).

Figure 7(b). Reflection coefficients over a doubly-sinusoidally varying topography (A, = h, = 4.0cm, b = 1.0cm, A, = 12.0cm, \, = 6.0cm, L = 48.0cm).
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Figure 8(a). Reflection coefficients over a doubly-sinusoidally varying topography (h, = h, = 2.5cm, b = 1.0cm, A, = 6.0cm, \, = 4.0cm, L = 48.0cm).

Figure 8(b). Reflection coefficients over a doubly-sinusoidally varying topography (A, = h, = 4.0cm, b = 1.0cm, A, = 6.0cm, \, = 4.0cm, L = 48.0cm).

CONCLUDING REMARKS

A theoretical model describing the diffraction of monochro-
matic waves by abrupt depth changes is developed through
the eigenfunction expansion method. The developed model is
applied to the study of the Bragg reflection over sinusoidally
varying topographies. The effects of the evanescent modes as
well as the propagating mode are included in the model. Fur-
thermore, the incident angle of monochromatic waves is not
limited to the normal. The reflection coefficients calculated
are compared with laboratory experimental data and numer-
ical solutions of the existing model. Reasonable agreement is
observed.

Although the representation of the bottom topography by
a finite number of small steps requires a little more compu-
tational efforts and computing time, it is worth it to calculate
the reflection coefficients over an arbitrarily varying topog-
raphy as accurately as possible because of its important ap-
plications in designing coastal structures and preventing un-
wanted beach erosion and deposition.

The developed model can be used as a powerful tool for
design in submerged breakwaters which can protect coastal
structures and unwanted beach erosion by reflecting a sig-
nificant amount of incident wave energy.
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