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Beach erosion necessitates forecasting future shoreline positions for effective coastal management. Simple forecast
methods, such as end-point rate and linear regression have been proposed in the coastal literature and are widely
used. However, the matter of the error of forecasts has largely been neglected. If measurement errors and a linear
trend of erosion were the only factors determining shoreline position, making predictions of future shoreline positions
and their associated confidence intervals would be easy using linear regression. Unfortunately, real and sometimes
enduring fluctuations of beach width occur that are much larger than the measurement uncertainty. Wintertime
fluctuations of up to several 10’s of meters are well-known; most investigators for this reason do not use winter
shoreline positions to study long-term shoreline behavior. An individual great storm can cause beach erosion amount-
ing to scores of meters requiring a decade or more for recovery. Using shoreline position data in linear regressions
without considering storm-caused erosion and subsequent beach recovery may yield inaccurate predictions of future
position resulting from the underlying erosion, and greatly inflated estimates of uncertainty (e.g., 95% confidence
intervals). A case study of shoreline position change in Delaware is presented to show how consideration of knowledge
other than shoreline positions alone can lead to useful results for shoreline position forecast errors. It is also dem-
onstrated that modern, more accurate survey measurement techniques can be helpful in improving the quality of

forecasts even if the inherent variability of shoreline position indicators remains at the level of many meters.

ADDITIONAL INDEX WORDS: Shoreline erosion rates, beach width fluctuation, forecast methods.

INTRODUCTION

GALGANO (1998) has shown that the vast majority (85—
90%) of the US Atlantic coast is eroding. Long-term erosion
rates vary from a small fraction of a meter per year, to ero-
sion “hot spots” with rates of many meters per year. This
variation of erosion rates has a number of causes, including
geomorphic features such as inlets, wave energy, engineering
changes, and others. Successful coastal management requires
that long-term shoreline erosion rates be determined, and
forecasts made of future shoreline positions along with esti-
mates of their uncertainty.

It is common practice to base coastal construction setbacks
on the erosion anticipated to occur over some specified time
in the future, e.g., 30 or 60 years. Estimates of erosion rates
can be made in a variety of ways (e.g., end point rate, linear
regression), but are always subject to uncertainty because of
measurement errors, and deficiencies in the model used to
analyze historical shoreline position data. This uncertainty
means that, to the setback predicted by the erosion rate,
there must be added an additional quantity to ensure (to
some level of confidence) that the property will be protected
against erosion. However, calculated confidence intervals will
depend on the assumed error of the measurements and the
accuracy of the shoreline change model.
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MorTON (1991) in a comprehensive review paper has dis-
cussed the complexity of shoreline position variation and the
problem of interpreting the behavior due to the limited data
sets available. FENSTER et al. (1993) proposed a methodology
for analysis of shoreline position data and prediction of future
shoreline position. The latter’s application of the Minimum
Description Length (MDL) algorithm was designed to provide
a means for identifying erosion trend reversals, and provide
a set of observation weights for making predictions using lin-
ear regression starting from the epoch of a trend reversal.
However, they did not discuss for what period in the future
their method would yield useful predictions, nor did they con-
sider the matter of the errors of predicted positions.

Rapid recovery of beach width after ordinary winter storms
is well known. After great storms, recovery can continue for
as long as a decade (MORTON et al., 1994; GALGANO et al.,
1998; DouGLAS et al., 1998), so that any record of shoreline
positions can have a highly irregular temporal pattern.
CROWELL et al., (1997) noted that time series of sea level
recorded by tide gauges display a trend plus quasiperiodic
variability, and thereby resemble some series of shoreline po-
sitions. They tested the MDL and linear regression forecast
methods using depleted samples of sea level data, and found
that the data weighting scheme for the MDL algorithm pro-
posed by FENSTER et al. (1993) did not yield consistently ac-
curate results compared to a linear regression on the entire
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data set. DOUGLASS et al., (1998) questioned the reliability of
the linear model for predicting future shoreline locations, and
suggested that confidence intervals be used to evaluate the
quality of calculated erosion rates. They proposed that in
mapping erosion hazard areas, sites might be considered non-
erosional if the linear regression trends include zero recession
at a selected confidence interval (the authors suggest an 80%
confidence interval for their study area). However, Douc-
LASS et al. (1998) confined their analysis to the issue of
whether or not erosion was taking place at some level of con-
fidence, and did not consider the issue of confidence intervals
for forecast positions

METHODOLOGY

Analysis of data begins with an attempt to find associations
between variables, and regression analysis is the basic tool
for discovering such associations. In the case of shoreline po-
sitions, a relation is sought between position and time. Linear
regression can reveal if an association exists, and in partic-
ular (via the r? value) what fraction of the variance of the
dependent variable (shoreline position) is attributable to the
independent variable (time). What such a regression analysis
cannot tell by itself is whether, for example, the linear re-
gression model, consisting of a linear trend with added
Gaussian random noise, is the appropriate one for the prob-
lem. However, new results (GALGANO et al., 1998; GALGANO,
1998; ZHANG, 1998) for shoreline position change since the
middle of the 19th century are available for the US East
Coast that indicate that the linear regression model is ap-
propriate in certain cases, viz., shorelines unaffected by inlets
or engineering changes. Such shorelines on US East Coast
barrier islands appear to migrate landward with an under-
lying trend related to sea level rise (ZHANG, 1998), with ad-
ditional superimposed punctuated episodes of erosion caused
by great storms, followed by incremental multi-year accretion
occurring during periods of storm quiescence.

We shall treat here the general case of fitting a polynomial
of arbitrary degree in time, t, to both equally and unequally
weighted shoreline position data sets. It is useful to consider
the general case, because polynomial fits to shoreline data
can sometimes be used (FENSTER et al., 1993) to identify re-
versals of shoreline trend. In addition, shoreline position
measurements are becoming more precise because of the in-
troduction of Global Positioning System (GPS) survey tech-
nology (BYRNES, 1993; LEATHERMAN, 1994), so that the case
of unequal measurement weights must also be considered.

By hypothesis, the regression model is based on the as-
sumption of a sequence of k shoreline positions, y;, linearly
related to powers of times, t;, by the relation

y;=a+ bt +ct2+ ...+ noise;, i =1,...k (1)
In matrix notation, this is compactly expressed as
Y=AX+N (2)

where Y is a k X 1 column matrix, A is a k X j matrix whose
rows consist of (1, t, t2...), X is j X 1 (j = number of un-
knowns a, b, c, . . .) column matrix, and N is a (k X 1) column
matrix of the noise. Assuming that the noise has zero mean,

Table 1. Shoreline position data for Cotton Patch Hill, DE. Residuals are
from a linear regression.

Position Sigma* Residual**

Date (m) Type (m) (m)

1845 0.0 NOS T SHEET 11.3 18.2
1929 —84.8 NOS T SHEET 11.3 -16.5
1944 -67.8 NOS T SHEET 11.3 9.5
1954 -63.7 NOS T SHEET 11.3 19.6
1962 -168.8 NOS T SHEET 11.3 -80.8
1970 -116.1 NOS T SHEET 11.3 -23.3
1977 —86.9 AIR PHOTO 11.3 10.0
1990 —69.6 ORTHOPHOTO 7.0 35.1
1993 -101.2 GPS 7.0 5.3
1997 —85.8 GPS 7.0 23.0

SD of residuals = 35.4 M
* Includes 6.5 m assumed instability of the shoreline position indicator
** From a linear regression with all data equally weighted

the weighted least squares solution to this problem in matrix
notation is (GELB, 1974)

X = (ATWA) 'ATWY (3)

where the superscript T denotes transpose, and W is the in-
verse of the covariance of the noise having dimension (k X
k). For the usual assumption of statistically independent and
normally distributed measurement errors of equal variance,
we have

W = (1/02) 1, (4)

where I is the identity matrix and ¢? is the variance of the
measurement noise. In this case, the W matrices in equation
(3) cancel, and the solution becomes

X = (ATA) 'ATY (5)

Carrying out the algebra indicated in Equation (5) for the
case of two unknowns (a and b taken as intercept and slope)
gives the familiar linear regression formulas.

The variance/covariance matrix of the estimated parame-
ters is given by

cov(X) = (ATWA) ! (6)

In the special case of equally weighted data as in equation
(4)

cov(X) = o2(ATA) ! (7)

The diagonal terms in this matrix cov(X) are the variances of
the unknowns a, b, ¢, ..., and the off-diagonal terms are
their covariances. Usually the latter are significant, and are
needed to propagate the uncertainty of predicted values of
the dependent variable (shoreline position in our case). The
variance of estimated values (Y) of the dependent variable y
can be obtained from

cov(Y) = A cov(X)AT. (8)

For the special case of linear regression with one independent
and one dependent variable, these matrix equations collapse
to simple forms, especially if the time epoch (i.e, origin) is
taken to be the average of the observation times. For this
special case, the matrix ATA has the following form for n ob-
servations at times t, referred to the average time:
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Figure 1. Linear regression analysis of shoreline positions for a typical transect at Cotton Patch Hill, DE. The RMS residual to a linear regression is

35.4 meters, more than 3 times the estimated uncertainty of the data.

(0 S0l

Then (ATA) ! follows by inspection, and a very simple formula
for Cov(Y) (i.e,, the variance of an estimate of the independent
variable, y) is obtainable. It is simply

var(y,) = o2 . 9)

1/n + t‘z/E (t,)?

For the general case of unequally weighted data, it is neces-
sary to use equations (3), (6), and (8) and carry out the in-
dicated matrix algebra operations to obtain the variances of
the estimated positions. We consider first the case of equally
weighted data.

At this point in texts on statistics it is noted that the mea-
surement noise variance o? is usually unknown, so that an
estimate of it must be made from the measurement residuals
along with the unknown parameters. In many, perhaps even
most applications, this is the best that can be achieved. The
limitation of this approach is that it depends critically on
whether or not the regression model used for the problem
accurately models the real (physical) process. To the extent
that the model is flawed, the measurement residuals will con-
tain both measurement noise and contributions from errors
in the model. But in the case of shoreline positions, we have

estimates of measurement error (CROWELL et al., 1991'), and
information about the response of beach width to storms.
This knowledge can be used to analyze the data, and evaluate
the model accuracy.

ILLUSTRATIVE EXAMPLE

To illustrate the issues discussed above, consider the se-
quence of shoreline positions in Table 1 taken from a typical

! CROWELL et al. (1991) calculated maximum expected errors in
the location of the high water line as digitized from maps and aerial
photography. Maximum expected errors were determined by esti-
mating worst-case error estimates for each step in shoreline location
data compilation (i.e., survey, digitization, mapping, and photo-
graphic distortion errors). These errors were then combined using
the theory of propagation of errors to obtain estimates of the maxi-
mum expected error in the digitized location of the interpreted shore-
line (high water line). Maximum expected errors were calculated for
the following data sources (all 1:10,000 scale): 1844-1930 T-sheets
compiled prior to the use of aerial photography: 8.4-8.9 meters; post-
1950’s T-sheets compiled using aerial photography: 6.1 meters; Non-
tidal coordinated aerial photography: 7.5-7.7 meters. These figures
were based primarily on analyses of T-sheets and aerial photography
from Massachusetts, New Jersey, and Maryland (Calvert County),
supplemented by data from New York (South Shore of Long Island)
and Delaware. Importantly, short-term process variability factors,
such as daily and monthly tidal changes and storm affects were not
included in the error estimates.
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Figure 2. Propagated 95% confidence intervals (CI) for the linear regression shown in Figure 1. For this analysis, the error of the measurements was
taken to be the value obtained from the residuals of the fit, 35.4 meters. The errors are so large that the 95% confidence interval would be wider than

the beach a few decades after the last (1997) measurement.

transect at Cotton Patch Hill, Delaware. This is the same
area used in DouGLAS et al., (1998), but with two new addi-
tional shoreline positions for 1970 and 1997. This case is not
an exceptional example of shoreline behavior; GALGANO
(1998) and GALGANO et al. (1998) have reported a similar
erosion character for beaches free of engineering changes and
inlet dominance in Long Island, New Jersey, elsewhere in
Delaware, Maryland, Virginia, and North Carolina.

Table 2. 95% confidence intervals (CI) for (1) all of the data and (2) 1929,
1962, and 1970 shorelines omitted. The SE of the fit is 35 M for case (1),
and only 11 M for case (2).

Date 95% CI (1) 95% CI (2)
1845 72.27 26.65
1944 26.86 11.12
1954 25.86 10.77
1977 28.78 11.58
1990 33.04 12.91
1993 34.20 13.28
1997 35.84 13.81
2010 41.74 15.73
2020 46.63 17.39
2030 51.80 19.14
2040 57.14 20.98
2050 62.62 22.87
2060 68.20 24.81

There are 10 shoreline positions available at this site dur-
ing the interval 1845-1997. The measurement type and es-
timated uncertainty are given in Table 1, as are the mea-
surement residuals from the ordinary linear regression pre-
sented in Figure 1. The results in Table 1 are internally con-
sistent. For example, the residual for the 1962 measurement
is about 81 m, a little more than twice the =35 m standard
deviation (SD) of the residuals. In a sample of 10 points with
these statistics, the probability of occurrence of such a large
residual is nearly 50%. The difficulty comes in trying to rec-
oncile these residuals with our a priori knowledge of mea-
surement error, seen above to be about 7-9 meters for T-
sheets and aerial photography. There are, however, addition-
al considerations.

The uncertainty of shoreline position data depends on the
accuracy and precision of the survey measurements, and on
the stability of the shoreline position indicator. The position
indicator in the present example, the high water line, is af-
fected considerably by a seasonal component (summer/win-
ter), the tidal cycle, and normal day-to-day variability (SHAL-
OWITZ, 1964; STAFFORD, 1971; DOLAN et al., 1980; PAJAK,
1997; MORTON, 1998). As an example of the latter factor, Pa-
JAK (1997) showed that for Duck North Carolina, the stan-
dard deviation in the location of the HWL within the summer
months of 1994, 1995, and 1996 was 4.1 m, 8.3 m, and 7.0 m,
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Figure 3. Linear regression and propagated 95% ClIs for the data in Figure 1, with the post storm shorelines of 1929, 1962, and 1970 eliminated (but
shown as open boxes). The fit to the data has been reduced from 35.4 to 11 meters, and the r? value has increase from 0.39 to 0.90. As in Figure 2, the

uncertainty of the data was taken to be the standard error of the residuals.

respectively. The higher value (8.3 meters) occurred during
the summer months of 1995, a period which saw a number
of storms, including Hurricane Felix, and in which wave en-
ergy was the highest in 50 years. The average standard de-
viation in the location of the summer HWL for the three years
is 6.5 meters, which given the extreme wave energy that oc-
curred in the summer of 1995, is probably a conservative val-
ue—at least for Duck North Carolina.

By using summer shoreline positions and avoiding times of
spring and neap tides, the high water line has proven to be
a useful indicator of shoreline position on most of the US East
Coast (STAFFORD, 1971; LEATHERMAN, 1983; ANDERS and

Table 3. Linear regression results without post-storm shoreline position
data.

Position Residual
Date (m) (m)
1845 0.00 2.49
1944 -67.78 —7.59
1954 -63.66 2.36
1977 —86.92 -7.48
1990 -69.59 17.42
1993 -101.22 -12.46
1997 —85.84 5.25

SE = 11.06 M

BYRNES, 1991). To be conservative, we assume that properly
selected (i.e, summer beach, no extreme tides) high water
line positions have a random component of uncertainty of 6.5
meters (=20% of beach width) in addition to the measure-
ment error, making the total uncertainty of the measure-
ments about (8.9 + 6.5?)2 = 11.3 m. Thus a plausible esti-
mate for overall measurement error is =11 meters (less for
data taken after 1977). This means that the 35 m fit to the
data in the linear regression in Figure 1 is more than 3 times
a conservative estimate of the uncertainty of the data. The
residuals in Table 1 either represent a very improbable sam-
ple of points from a population having a standard deviation
of about 11 m, or they are reflecting inadequacies of the lin-
ear trend model. Of course the latter is the case.

In the absence of a priori information concerning the model
or measurement uncertainty, the best that can be done with
these data is shown in Figure 2. The figure presents the trend
line extended to 2060, and the 95% confidence interval (CI)
about that line computed from equation (7) assuming that the
variance of the measurements is the value (35 m)? obtained
from the residuals. Also shown (above the zero line) is the
95% CI value by itself. Note that the 95% CI reaches nearly
70 m by 2060, a forecast of a little more than 60 years. Case
(1) in Table 2 summarizes these results. For this case of 10
observations (8 degrees of freedom), the 95% CI reaches * 68
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Figure 5. 95% confidence intervals for the case without post storm shorelines, and with post-1977 shoreline positions taken to have uncertainties given
in Table 1. Note the decrease in the values for the confidence intervals after the time of the more accurate measurements.
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m (*2.3060). For a more moderate forecast, say to 2030, the
95% confidence interval is still #51 m. Such large confidence
intervals are not very useful, since they are much larger than
the erosion predicted to occur.

It is possible to obtain more useful estimates of shoreline
position uncertainty due to long-term erosion than given by
the uncritical application of linear regression done above. It
is known that great storms occurred in 1929 and 1962 that
greatly affected shoreline position. Figure 1 shows that ac-
cretion occurred for some period after the 1929 storm. In the
case of the 1962 Ash Wednesday storm, accretion continued
for at least a decade, as shown by the 1970 and 1977 posi-
tions. The effect on the confidence intervals of deleting the
1929, 1962, and 1970 shorelines is shown in Figure 3, and
the results are tabulated in Table 3. The most obvious effect
of eliminating these post-storm shorelines is that the fit to
the data has been reduced to 11 m, just about the estimated
error of most of the data. Since extreme data values have
been eliminated, the r? value has improved from 0.39 to 0.90.
Table 2 (case 2) shows that the 95% confidence intervals have
also been drastically reduced (by nearly a factor of 3), even
though the number of degrees of freedom has been dimin-
ished by 3. Figure 4 shows together the 95% confidence in-
tervals for these two cases.

It is also known that very large storms occurred in 1991
and 1992 (Halloween storm). The 1993 shoreline position is
landward of the historical trend, but the 1997 position is sea-
ward. Does this justify removal of additional measurements?
The answer is probably no, since the number of data points
is so small and the RMS fit to the model so near the known
overall uncertainty of the data. This reasoning, however, pro-
vides an a posteriori justification. What is actually required
is an a priori method of selecting shorelines, perhaps one
based on a measure of storm intensity.

What can be concluded from this analysis (and the much
more extensive one by GALGANO et al., 1998) is that shoreline
positions affected by great storms are very inconsistent with
a linear trend model of shoreline retreat for an extended time
that can reach even 10 years or more. But when recovery of
beach width after storms can be demonstrated, as in the case
here, eliminating post-storm shoreline position data gives a
residual standard deviation from the linear regression that
is much closer to the a priori estimates of the total measure-
ment error. In other words, the linear trend model may hold
over the long term in many cases (such as this one), even
though it is seriously violated in the short-run following a
great storm.

Finally, it is interesting to see the effect of the increased
accuracy and precision of the measurements after 1977 on
the estimated confidence intervals. As noted earlier, the gen-
eral solution to the linear regression problem given by Equa-
tions (3), (6), and (8) enables treatment of data of differing
weight. Figure 5 displays the results for the 95% confidence
intervals for the case lacking post-storm shorelines. The data
error was taken to be the values given in Table 1. As would
be anticipated, there is a significant decrease in the magni-
tude of the 95% confidence intervals in the period subsequent
to the more accurate data. In principle, it is possible to reduce
the survey measurement error to the cm level or better with

advanced GPS methods, but the inherent variability of the
shoreline position indicator will remain as a limitation on the
final accuracy of the data.

CONCLUSIONS

The most dramatic erosion events on beaches not influ-
enced by inlets or engineering changes are those associated
with great storms. In a few hours or days, the beach may
erode by an amount exceeding that caused by the underlying
long-term rate during a half-century. Even the normal win-
ter/summer variation of beach width is very large compared
to the secular loss of beach width over a few decades. These
facts tend to obscure the inexorable nature of long-term ero-
sion. In this paper we have presented a methodology for com-
puting the uncertainty (confidence intervals) of predicted
shoreline positions due to a long-term trend of erosion, a mod-
el appropriate to a significant fraction of the US Atlantic
coastline. The scheme was easily implemented on Microsoft
Excel©, which has matrix algebra capability.

The ability to compute the uncertainty of shoreline position
due to long-term erosion trends is an essential element of an
erosion hazard mapping program. Separating erosion/recov-
ery events due to great storms from an underlying long-term
trend of erosion leads to reasonable and possibly useful es-
timates of the uncertainty of long-term forecasts of shoreline
position resulting from an underlying trend of erosion. In
principle it is possible to modify the regression algorithm to
account for the loss/recovery cycle, but it would involve many
parameters, and there are simply not enough data available
to estimate them. As a practical matter, valuable long-term
erosion trend forecasts may be obtained in many cases from
linear regressions by eliminating post-storm shoreline posi-
tions associated with great storms. The post-storm data
points can then be used to determine additional erosion buff-
er areas or zones of excursion.
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