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ABSTRACT .

DILLENBURG, S.R.; ROY, P.S.; COWELL, P.J., and TOMAZELLI, L.J., 2000. Influence of antecedent topography on
coastal evolution as tested by the shoreface translation-barrier model (STMJ. Journal of Coastal Research, 16(1), 71­
81. Royal PalIn Beach (Florida), ISSN 0749-0208.

This paper dernoristratcs that antecedent topography played a very important role on the coastal evolution of
Rio Grande do SuI (RS) in Brazil during the Holocene. By modeling the last 9 ka of sea level change using the
general morphology of the present shelf as the substrate over which barriers have translated a successful re­
construction was obtained showing the position of the coastline at the time of the Post-Glacial Marine Trans­
gression maxi mum ~ 5 ka l. Not only has the antecedent topography played an important role in the definition of
the coastal shape of RS, it has also pre-determined the type of coastal barrier: prograded barriers along coastal
reentrances, and receded and mainland beach barriers along coastal projections. Analysis of sediment budget
indicated that mor« than half of sediments needed for progradation along coastal reentrances came from the
shelf. The Shoreface Translation-Barrier Model (STM) was used to recreate Holocene coastal shorelines and to
si m u late sediment volumes.

ADDITIONAL INDEX WORDS: Coastal barriers, sediment budget, sea level change. wave focusing,

INTRODUCTION

Antecedent topography controls present-day coastal mor­
phologies by providing regional slope, establishing initial
coastal orientation with respect to prevailing winds and
waves, and through local variations inherited from valleys
and interfluves that create embayments and headlands
(BELKNAP and KRAFT, 1985), Because of wave refraction and
wave focusing effects, protruding coasts are usually subjected
to erosion while reentrants (coastal embayments) experience
deposition (MAY and TANNER, 1973), Thus prograded barri­
ers typically characterize low-gradient coastal reentrants
while retrogradational barriers such as receded barriers and
mainland beaches are found on steeper, protruding sectors of
coast.

During a marine transgression the rate of shoreface trans­
lation is simply a function of the substrate slope and the
speed at which sea level is rising, if wave regime and sedi­
ment budget are maintained roughly constant. Computer
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modelling suggests that under these conditions a coastal bar­
rier migrates landward without eroding the substrate and
that its basal contact corresponds to the former land surface
(Roy et al., 1994). In fact this relationship is broadly true in
most continental shelves except at major deltas. Thus in a
low-relief autochthonous continental shelf setting such as Rio
Grande do SuI (RS), it is reasonable to assume that shelf
morphology broadly corresponds to the former land surface.
It should therefore be possible to model shoreface translation
during the final steps of the Post-Glacial Marine Transgres­
sion (PMT) using the present day shelf surface as the sub­
strate over which the barriers translates.

This paper tests the hypothesis that antecedent topography
has played a very important role on the coastal evolution of
RS during the Holocene by comparing the results of simula­
tion modelling with the area's present-day coastal geology. It
will also explore the extent to which the antecedent topog­
raphy has pre-determined the different styles of barriers that
occur in the coast. A computer model (Shoreface Translation­
Barrier Model-STM) is used to simulate Holocene coastal
shorelines and coastal stratigraphies (sediment volumes).
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The southern Brazilian continental margin is a rifted plate
boundary formed in Early Cretaceous times. In the vicinity
of Rio Grande do SuI (29° to 34° south latitudes) deposition
of a large amount of post-rift, manly clastic sediments, pro­
duced a wide (100 to 200 km), shallow (100 to 140 m) and
gently sloping (0.03° to 0.08°) continental shelf. Seismic rec­
ords of the upper slope reveal a sedimentary thickness of at
least 10 km (FONTANA, 1990). On land in central and south­
ern RS a low-relief coastal plain was formed during the Qua­
ternary by justaposition of sedimentary deposits of four bar­
rier/lagoon systems designated I (oldest) to IV by VILLWOCK
et ale (1986). Here the coastal plain ranges from 60 to 80 km
wide and is bordered to landward by a gentle bedrock relief.
In contrast, in northern RS, the coastal plain is narrower (20
krn), only the two youngest barrier/lagoon systems deposits
(III and IV) occur, and it is abruptly bordered landward by
bedrock highlands; here relief changes from +20 m to +500
m over a distance of about 500 m. In general the landward
border of the coastal plain corresponds to the western mar­
gins of a series of lagoons which are large in south and cen­
tral part of RS and are small in the north (Figure 1). Climate
is humid temperate with generally warm to hot temperatures
in summer and cool temperatures in winter. Rainfall ranges

from 1000 to 1500 mm and is evenly distributed throughout
the year.

Rio Grande do SuI is characterized by a monotonous and
gentle undulating barrier coast, oriented NE-SW and subject
to dominant swell waves generated in southern latitudes, and
wind-generated waves produced by strong spring-summer
sea breezes from the northeast. The average significant wave
height is 1.5 m, measured in 15-20 m water depth (MOTTA,
1969). The coast is microtidal with semidiurnal tides that
have a mean range of only 0.5 m. Consequently, sediment
transport and deposition along the open coast is primarily
dominated by wave action. A net northward littoral drift is
evident in coastal geomorphic features (TOMAZELLI and VILL­
WOCK, 1992), and by field measurements (TOLDO Jr. et al.,
1993). The present day beaches of RS receive very littie sand
from inland because most of the beadload carried by the few
streams and rivers that drain to the coast is trapped in la­
goons and other coastal plain environments (T9MAZELLI et
al., 1998).

The post-glacial sea level history of the Rio Grande do SuI
coast extends from about 17.5 ka BP when the sea was po­
sitioned at about -120 to -130 m (CORREA, 1995). Since that
time sea level has risen at an average rate of 1.2 cm/yr until
6.5 ka BP when the rate of sea level rise slowed (Figure 2).
There is no reliable data on sea level behaviour during Mid-
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Figure 2. Holocene sea-level curves for the east coast of Brazil. Solid curve after Correa (1990). Dotted curve after Martin et al. (1979). Dashed curve
after Angulo & Lessa (1997).

dle to Late Holocene along the RS coast. Sea level curves for
areas further to the north indicate that at the culmination of
the PMT (5 ka) sea level reached a few meters above its pres­
ent level, followed thereafter by a slow sea level fall (MARTIN
et al., 1979; ANGULO and LEssA, 1997) (Figure 2). This gen­
eral sea level behaviour also probably applies to the north
coast of Rio Grande do SuI (DILLENBURG, 1996). The sea level
curve presented by MARTIN et al. (1979) indicates a maxi­
mum of +5 m on the coast of Bahia state in NE Brazil, and
evidence presented by ANGULO and LEssA (1997) suggests
that the maximum was around +3.5 m in the States of Sao
Paulo and Parana to the north of RS. Finally, ANGULO et al.
(1996) report new data suggesting a maximum submergence
of about +2 m in South Brazil (Santa Catarina State), in a
coastal sector distant only 100 km to the north of RS.

THE HOLOCENE BARRIER SYSTEM

The Holocene barrier system of Rio Grande do SuI occupies
the entire 625 km length of coast. Discontinuities in the bar­
rier system occur only at two sites: in the south, at Rio
Grande, where the inlet of the Patos Lagoon is located, and
in the north, at the inlet of Tramandai Lagoon. Both inlets
are permanently open because of a continuous and large dis­
charge of fresh waters through their mouths. The entire
coastline is gently undulating and consists of two large sub­
dued seaward projections and two landward reentrances (Fig­
ure 1).

Geological mapping of the Coastal Province of Rio Grande
do SuI includes early reports by VILLWOCK (1984) and VILL­
WOCK et al. (1986), followed by more detailed local studies by
TOMAZELLI (1990), DILLENBURG (1994), REGINATO (1996),
TOMAZELLI et al. (1995), BUCHMANN (1997) and LUMMERTZ
et al. (1998). These data plus new interpretations based on

aerial photos and satellite images show marked changes in
the styles of coastal development during Mid and Late Ho­
locene along the 625 km length of the barrier. Its main char­
acteristics are shown in Figure 3 and described below, from
north to south, in five sectors. The nature of the Holocene
barriers and their relationships to the deposits to landward
are described below. These observations form the basis for
interpreting barrier stratigraphies shown in Figure 4.

Sector 1

The coast from Torres to Tramandai is slightly concave
with a Holocene barrier formed by a beachlforedune ridge
strand plain ranging from 2 to 5 km wide (Figure 31). The
westernmost ridge is highest and was interpreted as a trans­
gressive barrier that records the 5 ka PMT maximum OfVILL­
WOCK and TOMAZELLI (1995). A strip approximately 1 km
wide of transgressive dunes occur continuously near the pres­
ent shoreline from Torres to Xangri-la; here the transgressive
dunes become wider and eventually cover all the barrier sur­
face. Transgressive dunes represent a landward loss of sand
from the coast and thus are an indication of coastal retreat.
The continuity of the beach ridge is maintained from Cape
Santa Marta to Torres but at Torres it is intercepted by rocky
headlands. The interpreted stratigraphy corresponds to type
Band C respectively in Figure 4.

Sector 2

From Tramandai to Mostardas the coastline is slightly con­
vex-seaward; the barrier ranges from 2 to 6 km in width and
is completely covered by transgressive dunes and in many
places the dunes extend onto the Pleistocene barrier (Figures
31 and 311). There is no evidence of beach/foredune ridge
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and E in Figure 4.

Sector 3

Subtle coastal convexity continues from Most.ardas to Es­
t.re it.o: here the Holocene barrier is less than 2 km wide and
is corn posed completely of transgressive dunes (Figures 311
and ~3III). In the north the barrier dunes transgress into an
interbarrier lagoon (Type D in Figure 4), but in the south
they onlap the Pleistocene barrier (Type E in Figure 4), La­
goonal muds and peats crop out along the entire beach face
and provide clear evidence of a long-term and widespread ero­
sional trend along this coastal sector. A 14C date from the
lagoonal muds outcropping near Bujuru showed an age of
3,390 ± 130 BP. In a restricted site located 2 km to the south
of Bujuru, Holocene lagoonal deposits were completely eroded
and the barrier is onlapping the Pleistocene barrier (main­
land beach barrier configuration, type F in Figure 4). This

sector is the longest coastal stretch where receded barriers
and transgressive dunes coexist.

Sector 4

The coastal sector from Estreito to approximatolv Verga is
concave and has the widest beach/foredune ridge strand plain
(2 to 15 km in width) of the RS coast (Figures :3III and ~3IV I.

Transgressive dunes are lacking except for rare occurrences
located immcdiat.elv behind the present beach. Where the
strand plain is widest at least 60 beach/Ioredune ridges have
been counted on satellite images. In the north the stratigra­
phy corresponds to type A in Figure 4, but in the south it
corresponds to type B. Yet despite the evidence of long-term
progradation, the inlet channel of Patos lagoon has main­
tained its position.

Sector 5

From Verga to Chui the coast is strongly convex-seaward.
The barrier ranges from 2 to 5 km wide and is composed of
transgressive dunes as far south as Hermenegildo (Figure
3IVL At Hermenegildo and for 10 km to the south estuarine­
lagoonal sediments dated at 4,330 ± 60 years BP outcrop on
the beach (TOMAZELLI et al., 1998), and indicate recession of
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Figure 4. Schematic morphology and stratigraphy of Holocene barriers of Rio Grande do SuI.

the barrier. Near Chui, the barrier becomes progressively
narrower and finally becomes a mainland beach barrier near
Chui. Rocky headlands (Point Santa Tereza and Cape Polon­
io ) occur approximately 40 km south of Chui (Figure 1). The
interpreted stratigraphy corresponds to a variation from type
C to F in Figure 4.

In summary, there is a correlation between coastal config­
uration in plan-view and the nature of the coastal barriers.
Coastal reentrances (concave sectors of coast) are dominated
by prograded barriers whereas protruding sectors of coast
typically have retrogradational capped with transgressive
dunes barriers. A correlation also exists between the coastal
configuration and the morphology of the continental shelf.
Along coastal reentrances the shelf is wider and more gently
sloping, whereas along coastal projections it is narrower and
steeper (see Figure 1).

PROCEDURES

In order to evaluate the role of the former land topography
in the evolution of the RS coast, computer simulations using
the Shoreface Translation-Barrier Model (STM), of COWELL
et al. (1991) were carried out. The model is designed to sim­
ulate the horizontal and vertical translation of coastal sand
bodies over a pre-existing substrate during a progressive sea­
level change. The STM is based on principles of sand-mass
conservation and geometric rules which govern shoreface and
barrier behaviour. The rules were derived from empirical, an­
alytical and/or numerical process studies, together with
stratigraphic and surface-morphology data from well known
case studies in SE Australia and elsewhere (COWELL et al.,
1992 and Roy et al., 1994). The most important and sensitive
variables of the model are rate of sea level change (whose
imputs may be rising or falling at different rates, or a sta-
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DS2

Figure 5. Definition sketch of major parameters used in the modelling
sea-level rise from -50 to +2 m.

sponds to the former land surface. This hypothesis is based
on the autochthonous nature of RS continental shelf and
takes into account a minor reworking of the substrate over
which barriers have translated during the course of the PMT.
Thus, the slope of 25 simplified cross-shelf bathymetric pro­
files, spaced approximately 25 km apart were used as a sub­
strate in the modeling. The profiles were constructed using
1:270.000 scale bathymetric charts (D.H.N., 1963a, 1963b
and 1964) and on 1:845.000 charts of MARTINS and CORREA
(1996). Simplified substrates were derived from bathymetric
charts for depths ranging from -70 to - 50 m and - 50 to
- 20 m. In the absence of subsurface data, slopes above - 20
m were interpolated landward up to + 2 m using inferred
stratigraphic relationships shown in Figure 4. A definition
sketch of major parameters used in the modelling is shown
on Figure 5. Together with the simulation results, the loca­
tions of the transects are shown in Figure 7. Substrate slopes
are listed in Table 1.

A balanced condition for the nearshore sediment budget
was initially assumed because of the impossibility of precisely
knowing sediment budgets along the coast during the marine
transgression. Regarding mud deposition rates, an average
value of 1.2 mm/year of mud accumulation was used based
on 14C dating of the Patos Lagoon (TOLDO JR. et al., 1991)
and Tramandai Lagoon (DILLENBURG, 1994), Other variables
such as transgressive barrier width (600 m l and storm surge
elevation (2.0 m l were assumed as general approximations
for the whole coast of RS. Using the detailed bathymetric
charts of CORREA (1990), different shoreface dimensions (Xs
= surf base extension and Ys = depth of surf base) were
calculated for the coast of RS (Table 1), and were used as the
shoreface dimensions of the modeling. A total of 26 steps of

-70

DSI
Substrate

•

MCR

BT
-20

MCR=BI -DSI

MCR = Measured Coastal Recession
BI = Barrier Translation
OS 1 = Distance of substrate at -50m sea level = lagoon width
DS2 = Distance of substrate at + 2m sea level = lagoon width

Decomposed substrate from -20m to +2m applied for
profiles 16 to 20

+2~ 1\ SL

bilised sea-level), substrate slope, nearshore sediment bud­
get, and mud deposition rate in the backbarrier (estuarine/
lagoonal) environment. See COWELL and TROM (1994), and
COWELL et al. (1995) for more details.

Because of the proximity of the region where ANGULO et
al. (1996) have recently reported a maximum sea level at the
end of the PMT of about 2 m, this value was also assumed
for the coast of RS. The modelling encompassed the latter
part of the PMT with sea level rising from -50 m at 9.5 ka
to +2 m at 5 ka (Figure 2). It was assumed as an hypothesis
that the present day overall shelf morphology of RS corre-

Table 1. Data o] some variables used in the modelling,

Shoreface Dimensions
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2 m increments of sea level rise was modeled for a total of 52
m in all. The 50 m isobath was chosen as the starting point
because of its almost straight alignment (Figure 1). Modelling
of coastal changes after 5 ka was performed for all 25 profiles
starting at the predicted coastline position at the time of the
PMT maximum.

RESULTS

The overall slope of the inner shelf of RS, calculated for 25
cross-shelf profiles from -70 to +2 m water depth fluctuates
in a regular manner from north to south with gradients rang­
ing from 0.027° to 0.125° (Table 1). A correlation exists be­
tween the profile slopes, representing the inner continental
shelf morphology, and coastal configuration (Figure 7). From
profile 1 to 10 and 17 to 21 coastal configuration changes
from a reentrance to a projection and the shelf gradients be­
come progressively steeper; from profile 10 to 17 and 21 to
25 the coastal configuration changes from a projection to a
reentrance and the shelf slopes become flatter. Thus it is
clear that coastal reentrances occur where the inner conti­
nental shelf shows gentle gradients and that coastal projec­
tions occur where the continental shelf slopes are steeper.

Results of modelling for two profiles (7 and 17) are shown
in Figure 6 (see also Table 2). From 9 to 5 ka, sea level rise
produced a coastal recession of 24.4 km and 90.4 km along
profiles 7 and 17, respectively (Figures 6a and Gc). Despite of
a small sea level fall after 5 ka (2 m), the coast in profile 7
was eroded in the order of 1.9 km (Figure Gb), but at the same
time the coast in profile 17 has prograded in the order of 14.0

km (Figure Gd), The subtle change of the substrate at -12 m
in profile 17 caused the transgressive barrier onlap of Pleis­
tocene barrier at the end of the PMT (Figure Gc).

By integrating results of all profiles the modelling pro­
duced a maximum PMT coastline showing the same general
configuration as the present one especially in coastal reen­
trances where the predicted coastline closely matches the in­
ner edge of the prograded barriers (Figure 7). The length of
predicted coastal recession from 9 to 5 ka, for each transect,
is shown in Table 2. Additional confirmation of the modelling
is the close correspondence between widths of predicted la­
goons at the end of the PMT, and the widths of the present
lagoonal deposits in the coastal reentrances (see Table 3). In
contrast, the predicted 5 ka coastline for protruding sectors
of coast, with the exceptions of profiles 9 and 11, were all
located seaward of the present coast. The only indication of
the accuracy of this prediction was provided by the long-term
erosional nature of these sectors of coast supported by direct
evidence from 14C dates of 5,760 ± 120 BP (DILLENBURG,
1994), 3,390 ± 130 BP, and 4,330 ± 60 BP (TOMAZELLI et
al., 1995) on lagoonal muds outcropping at the beach face in
Jardim do Edem, near Bujuru and Hermenegildo, respective­
ly.

The modelling of a 2 m sea level fall from 5 ka to the pres­
ent time shows that, as a consequence of a shoreface adjust­
ment equivalent to 2 m of sea bed erosion along a 5 km length
of shoreface (Xs), the overall progradation of the coast of RS
would have been in the order of 500 to 1,000 m only (Table
2). By calculating the additional volume of sediments neces-
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Figure 7. Present coastline of Rio Grande do SuI and the predicted
coastline for the end of the Post-Glacial Marine Transgression (PMT).
Black dashed curves along coastal reentrances represents the position of
the westernmost beach/foredune ridge of prograded barriers, assumed as
the coastline position at the maximum of the PMT. Black dotted repre­
sents the predicted coastline for the maximum PMT for each profile.

Aloardao

The results demonstrate that it is possible to reproduce the
coastal configuration of Rio Grande do SuI at the maximum
of the PMT by modelling coastal evolution during the last 9
ka using as a substrate the present day general morphology
of the continental shelf. This strongly confirms that today's
shelf morphology is a geological inheritance from a former
land surface.

The modelling shows that very small slope differences on
the order of few minutes of substrate slope (see Table 1) can
produce appreciable differences in coastal translation rates
and distances during a sea level rise (Table 2), and supports
the work of EVANS et ale (1985) and Roy et al. (1994) who
reported on the importance of slight variation in antecedent
topography on landward barrier migration. Thus, as is the
case in RS where these small differences in slope occur along
a stretch of coast, the resulting shoreline can be expected to
show patterns of gentle undulations (reentrances and projec­
tions) after a sea level rise. Because coastal translation was
performed over a generalized substrate, some discrepancies
can be expected between the predicted 5 ka coastline and its
present day position (e.g. profiles 1 and 19, Figure 7).

Not only has the antecedent topography played an impor­
tant role in the definition of the coastal shape of RS, it has
also pre-determined the type of coastal barriers that formed.
Here the barriers have been subjected, over the long term, to
two contrasting coastal processes: deposition in coastal re­
entrances leading to the formation of prograded barriers, and
erosion along protruding stretches of coast leading to the for­
mation of transgressive dunes, receded barriers and main­
land beach barriers (Figures 3 and 4). Although other modes
of formation of transgressive dunes are possible, including
falling sea level and strong onshore winds (see HESP and
TRaM, 1990; DOMINGUEZ et al., 1987), the simultaneous oc­
currence of receded barriers and transgressive dunes on sec­
tors of the RS coast exposed to the same environmental pa­
rameters suggests a link here between coastal erosion and
the formation of transgressive dunes.

As shown in Figure 7, the coast of RS evolved from an al­
most straight contour at - 50 m to a gentle undulating one
at +2 m at the end of the PMT (5 ka), The comparison be­
tween the predicted coast and the present one indicates that
from 5 ka up to the present time coastal reentrances were
subjected to appreciable progradation and coastal projections
to significant erosion. The long-term erosional trend of coast­
al projections clearly indicates that any potential for progra­
dation induced by a sea level fall of 2 m after 5 ka was over-

DISCUSSION

sary to produce real progradation along coastal embayments
(Table 2), it was possible to estimate that rates of 940,000
mvyr and 2,605,000 mvyr (total of 3,545,000 m-/yr) were re­
quired for such progradation along north and south coastal
embayments of RS, respectively (Table 2). On the other hand,
simulation of coastal erosion along coastal projections indi­
cated the production of a positive imbalance of sediment bud­
get to the littoral drift system of only 1,727,500 m-/yr, clearly
not enough to satisfy the above demand of 3,545,000 mvyr
(Table 2).
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Table 2. Data regarding behaviour of the coastline of Rio Grande do Sul during the time span of the modelling (9 ka to present).

Predicted Volume of
Coastline Sediments Additional Volume of

Predicted Coastal Progradation Required for Sediments
Recession after 5 ka Due to Progradation Coastline Change after 5 ka

Required for Volume of Sediments
(km) from -50 a 2 m Sea Due to a 2 m Sea Progradation (Real) in (rrrVm/year)

to +2 m Level Fall Level Fall Progradation Erosion Coastal Reentrances Produced by Erosion in
Profile (9 to 5 ka) Only rm) (mVm/year) (Real) (rn) (Predicted) (rn) (ms/m/year) Coastal Projections

01 42,449 571 0.6 2,600 9.4
02 46,682 626 0.6 4,000 17.4
03 44,084 653 0.7 2,700 9.3
04 41,014 597 0.6 1,000 1.4
05 37,112 569 0.6 700 0.1
06" 25,741 685 0.8 4,700 9.0
07 24,434 640 0.6 1,900 4.0
08 21,258 645 0.6 1,750 4.2
09 21,839 611 0.5 750 0.1
10 18,226 650 0.6 950 2.1
11 20,804 638 0.6 638 3.2
12 25,248 637 0.6 1,850 3.6
13 30,361 712 0.6 2,500 4.5
14 51,755 692 0.5 2,700 4.5
15 54,371 779 0.7 1,050 0.9
16 69,811 635 0.5 5,700 15.5
17 90,454 737 0.6 1,400 39.4
18 93,533 806 0.7 11,300 29.3
19 75,820 921 1.0 6,500 13.0
20 64,219 913 1.0 4,000 7.0
21 50,089 893 0.9 7,150 5.0
22 57,554 883 0.9 2,750 1.5
23 64,104 838 0.8 4,850 4.8
24 97,101 777 0.7 3,200 3.8
25 84,499 820 0.8 10,700 18

3,545,0001 1,727,5002

1 Estimated total volume of additional sediments required for progradation in coastal reentrances.
2 Estimated total volume of sediments produced by erosion of coastal projections.

whelmed by erosion associated with both the focusing and
higher wave energy on protruding (steeper) sections of the
coast. A model of wave energy concentration will be discussed
later. Regarding progradation in coastal embayments, an im­
portant question is: where did the sediments that caused pro­
gradation come from? Three hypothesis should be considered:
(1) new sediments delivered to the coast by rivers, (2) positive
sediment inputs to the littoral drift system from wave erosion

Table 3. Comparison of predicted lagoonal width at the maximum of the
PMT (5 ha) and after a 2 m sea level fall with the present width oflagoonal
deposits for profiles located along coastal reentrances.

Predicted Predicted Lagoonal
Lagoonal Width after 2 m Present Width of

Width at 5 ka of Sea Level Fall Lagoonal Deposits
Profile (km) (km) (krn)

01 4.9 4.5 4
02 7.5 6.7 7
03 9.9 8.8 10
04 6.1 5.5 5.5
05 4.8 4.3 4.5
16 0 0 0
17 0 0 0
18 0 0 0
19 4 3.7 4
20 9.5 9.2 10

of adjacent coastal projections, and (3) onshore transport of
sediments from the continental shelf by swell waves.

The present-day barrier coastline of RS receives no sand
from inland sources, as most of the sediment load carried by
the few streams and rivers draining the hinterland is trapped
in the coastal lagoons shown in Figure 1. The two inlets of
the Holocene barrier system at Rio Grande and Tramandai
carry only muddy fluvial sediments to the coast. We can also
rule out littoral drift imports from outside the study area. Rio
de La Plata river, the second largest river in South America,
located 200 km to the south of Chui, was drowned at the end
of the PMT, and at least since that time has delivering no
sand to the open coast (URIEN, 1967). Also, rocky headlands
that contain compartmented beaches (LABORDE and JACK­
SON, 1996) on the Uruguayan coast (Cape Polonio and Point
Santa Teresa, Figure 1), appear to have acted as physical
barriers to the littoral drift towards the north.

The depositional and erosional behaviour of coastal reen­
trances and projections respectively, has been explained by
MAY and TANNER (1973) using a graphical model for littoral
sediment transport. In general terms the model explains how
an embayed coastline supresses its coastal reentrants and
projections by the action of waves. As a consequence of wave
refraction, coastal projections tends to concentrate wave en­
ergy while in reentrants wave energy is dispersed, with the
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result that coastal projections erode and their material is
transported and deposited in adjacent reentrants. Calcula­
tions based on data presented on Table 2 indicate that after
5 ka erosion of the two coastal projections would have added
only 1,727,500 m-/yr to the sediment budget, while the re­
corded progradation of the two coastal reentrances was at a
rate of 3,545,000 m't/yr. Thus an additional source of sedi­
ments is required to account for the total progradation of RS
coast.

As mentioned before, an erosion of the sea bed with an
onshore transport of the eroded sediments as a result of a
shoreface adjustment for a 2m sea level fall after 5 ka, was
insufficient to provide enough sand for the progradation (Ta­
ble 2). However, some authors have reported sand transfer
from the shelf to the beach not necessarily under a lowering
sea level. In eastern USA, PIERCE (1969) analysed potential
sources of sands to nourish an accretional stretch of coast
between Cape Hatteras and Cape Lookout and reported that
almost half of the required sands (700,000 m-/yr) come from
relict sands and Tertiary outcrops of poorly consolidated sed­
iments on the shelf. In Delmarva Peninsula, in eastern USA,
which is undergoing a coastal transgression, material eroded
from pre-Holocene units that outcrop on the shoreface is an
important supplier of new sediment to the coastal system
(DEMAREST and LEATHERMAN, 1985). In southeast Austra­
lia, after the maximum PMT, river-borne sands were trapped
in estuaries and the compartmented nature of many embay­
ments prevented alongshore bypassing of sands. Here, bar­
riers prograded in response to disequilibrium shoreface con­
ditions with sediment transferred from the inner shelf to the
beach thereby steepening the nearshore gradient reestablish­
ing equilibrium conditions (THOM, 1983).

While it is not the aim of this paper to investigate in detail
the mechanisms by which sand could be transferred from the
shelf to the beach along the coast of RS, there is good sedi­
ment budgetary evidence that the sand reservoir of the RS
shelf was a source of more than a half of the amount of sand
for barrier progradation along coastal embayments of RS af­
ter 5 ka. It seems that the lower gradient of the shelf of RS
is an important factor controlling onshore high rates of sand
transfer from the offshore, specially along coastal reentrances
where the shelf gradient is more gentle.

CONCLUSIONS

Modelling coastal evolution of RS during the last 9 ka
strongly indicates that the present day shelf morphology is a
former land surface that was transgressed by the sea. This
inherited former land topography controlled the shape of the
present coast: projections occur where the substrate is steep­
er and reentrances occur where it is gentler. Furthermore
these differences in substrate gradient also influence the
styles of barriers evolution. Retrogradational barriers such as
receded barriers and mainland beach barriers occur along
coastal projections whereas progradational barriers occur in
coastal reentrances. More than half of the progradation that
occurred in coastal reentrances was due to the onshore trans­
fer of sands from the shelf of RS.

The common occurrence of receded barriers and active

transgressive dunes on adjacent stretches of coast provides
evidence that the transgressive dunes are caused by coastal
erosion on the projections/forelands induced by higher wave
energy owing to wave focusing and steeper gradients.
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