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The equations of conservation of volume, mass, and momentum, and the equation of kinetic energy of turbulence are
formulated for the three dimensional flow of a mixture of water and sediment. Their solution gives the profiles of the
concentration of suspended sediment, the coefficient of exchange of mass, the turbulent shear stress, and the longi
tudinal velocityof the flow.
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SUMMARY

The equations of conservation of volume, of mass, and of
momentum, and the equation of kinetic energy of turbulence
are formulated for the three dimensional flow of a mixture of
water and sediment. The equations are closed and expressed
in dimensionless form to represent conditions in well mixed
estuaries for ebb flow departing from slack. The method of
perturbation is used to reduce the number of terms in each
equation by keeping only terms which have large magnitude.

Solution of the zeroth approximation gives the profiles of
the concentration of suspended sediment, the coefficient of
exchange of mass, the turbulent shear stress, and the longi
tudinal velocity of the flow. It is found that: (i ) the concen
tration of suspended sediment increases along the estuary,
(ii) the coefficient of exchange of mass increases from zero at
the bottom to a maximum value at a relative depth of about
0.1 then decreases to a nearly constant value towards the
water surface, (iii) the turbulent shear stress increases from
zero at the bottom to a maximum value at a relative depth
of about 0.2 then decreases towards the water surface, (iv)
the turbulent shear stress increases from the center line of
the estuary towards the sides of the estuary, and (v) the pro
file of the longitudinal velocity is nearly logarithmic.

The effect of the concentration of suspended sediment on
the turbulent shear stress, the longitudinal velocity of the
flow, and von Karman's K is studied. It is found that an in
crease in the concentration of suspended sediment would re
sult in: (i) no appreciable change in the profile of the turbu
lent shear stress, (ii ) an increase in the longitudinal velocity
of the flow, and (iii) a slight decrease in von Karman's K. Good
agreement is obtained between the analytical findings of this
study and the experimental and field data available in the
literature.

95082 received 28 June 1995; accepted in revision 2 July 1996.

INTRODUCTION

The mechanics of sediment suspension has been investi
gated experimentally for more than five decades and perhaps
has reached the stage of a diminishing return. Yet, the ques
tion regarding the interdependence between the concentra
tion of suspended sediment and the flow parameters such as
the velocity profile, the coefficient of exchange of mass, and
the turbulent shear stress remains without a satisfactory an
swer. An analytical investigation of the subject would be use
ful in motivating and guiding future experimental research
on suspended sediment. To this end this study was under
taken. Estuaries are selected for the study in view of the im
portant functions assigned to estuaries in the human envi
ronment. Sediment suspension is studied rather than bed
load movement, because the most important shoaling prob
lems arise from the material ordinarily carried in suspension
in fresh water streams rather than from the bed load. Well
mixed estuaries are investigated rather than salinity strati
fied estuaries which have added complexities caused by the
presence of the fresh-salt water interface.

The problem could be formulated as a two component flow
which consists of a mixture of water and sediment or by the
principle of continuum mechanics where water and sediment
are considered as a continuum with heterogeneous density.
A two component flow formulation is adopted herein. Soo
(967) and VASELIEV (969) reported on two component flow
formulations for the equations governing sedimentation. KA
MEL (976) presented a two dimensional formulation for the
equations of conservation of volume, of mass, and of momen
tum and for the equation of kinetic energy of turbulence for
a two component flow, water and sediment. The equations
were closed, using the semi-empirical theories of turbulence,
and were made dimensionless to represent conditions in well
mixed estuaries for flow near slack. The method of pertur
bation was used to reduce the number of terms in each equa
tion by keeping only terms which have large magnitude. Fig-
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Figure 1. Profiles of the relative concentration of suspended sediment,
the relative coefficient of exchange of mass, and the relative longitudinal
velocity; the zeroth approximation (Kamel, 1976).

Figure 2. Profiles of the relative concentration of suspended sediment,
the relative coefficient of exchange of mass, and the relative longitudinal
velocity; the first approximation (Kamel, 1976).

ures 1 and 2 show the results obtained from the solution of
the zeroth and the first approximations respectively, for the
concentration of suspended sediment, the coefficient of ex
change of mass, and the longitudinal velocity. It can be seen
from the figures that the profile of the coefficient of exchange
of mass obtained from the first approximation has its maxi
mum value closer to the bottom than that obtained from the
solution of the zeroth approximation. The figures also show
that the velocity profile obtained from the first approximation
is closer to a logarithmic velocity profile than that obtained
from the zeroth approximation.

In a subsequent study, KAMEL (1978) used quadratures to
reduce the equations of the zeroth approximation to a quasi
linear total differential equation in one dependent variable,
namely the longitudinal velocity of the flow. Figure 3 shows
the three types of velocity profiles obtained from the solution.
In Figure 3, profile I is approximately a logarithmic velocity
profile, profile II represents return flow near the bottom of
the estuary, and profile III represents a density current. In
profile III, the non zero velocity at the water surface is due
to imposing the boundary condition (uIU) = 1 at the free sur
face. The equations of the first order perturbation for Rossby
number were formulated as integral equations with degen
erate kernel which were solved by reducing them to a system
of linear algebraic equations. It was proved that the solution
of the integral equations exists and is unique. Figure 4 shows
profiles of concentration of suspended sediment obtained
from the solution of the zeroth approximation and the first
order perturbation for Rossby number. It can be seen from
the figure that the difference between the two solutions is
small.

KAMEL (1987) presented an integral equation solution of
the equations of the zeroth approximation and the first order
perturbation for Rossby number. Figure 5 shows the varia
tion of the concentration of suspended sediment along the

8. Profile I

o Pro:file II

o l--'ro:file III

Rela~ive longi~udinal veloci~y Cu/UO

Figure 3. Types of the velocity profiles obtained from the solution of the
zeroth approximation (Kamel, 1978).
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Figure 4. Comparison between the profiles of the relative concentration
of suspended sediment obtained from the solution of the zeroth approxi
mation and the first order perturbation for Rossby number (Kamel, 1978).

Figure 5. Profiles of the relative concentration of suspended sediment
along the estuary; the zeroth approximation (Kamel, 1987).

estuary. Figure 6 shows the profiles of the concentration of
suspended sediment, at x = 0.1, obtained from the solution
of the zeroth approximation and the first order perturbation
for Rossby number; here also the difference between the two
solutions is small. The reason for the small difference be
tween the solutions of the zeroth approximation and the first
order perturbation for Rossby number is that the latter shows
the effect of the inertia terms only which are neglected in the
equations of the zeroth approximation. In addition, the equa
tions of the zeroth approximation included the significant
terms, consequently higher approximations resulted in little
improvements on the solution obtained from the zeroth ap
proximation. It is noted that Figures 1 and 2 show a larger
difference between the profiles of the concentration of sus
pended sediment obtained from the solution of the zeroth and
the first approximations than the difference shown in Figures
4 and 6. The reason is that Figure 2 shows the solution of
the first approximation, which is the superposition of the lin
early independent solutions of the first order perturbations
for Rossby and Ekman numbers (MILLMAN and KELLER,

1969), while Figures 4 and 6 show the solution of the first
order perturbation for Rossby number only.

FORMULATION

The following six assumptions are made: (1) there is no
deposition of suspended sediment and there is no pick up, by
the flow, of bottom sediment; (2) the settling velocity of the
sediment particles is constant; (3) the effect of salinity on the
sedimentation process is negligible; (4) the longitudinal ve
locities of the water particles and of the sediment particles

Relat.ive concant.rat.ion Cc/c )
o

Figure 6. Comparison between the profiles of the relative concentration
of suspended sediment obtained from the solution of the zeroth approxi
mation and the first order perturbation for Rossby number (Kamel, 1987).
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Mean sea level

Low wat.er slack

High wa~er slack

Tidal period

(1)

(2)

au av aw
-+-+-=0ax ay az

ap + a(pu) + a(pv) + a(pw) = 0
at ax ay az

~au ~au ~aua- a- a-
Du ap ax ay az

p - - pfv = - - + -- + -- + -- (3)
Dt ax ax ay az

Equation of conservation of momentum in the x-direction:

Equation of conservation of volume:

Equation of conservation of mass:

small. Assumption (6) is justified since the flow acceleration
is small.

For a three dimensional flow with the axis ox horizontal,
coinciding with the bottom of the estuary, the axis oz verti
cally upwards, and the axis oy perpendicular to the (x, z)
plan, Figure 7b; the equations of conservation of volume, of
mass, and of momentum, for shallow water, take the form,
(PEDLOSKEY, 1987):

r">......
/ \ Flow departing ~rom slack

/ Flood \

I \/ \

\ Ebb /
\ /

Flow approaching slack \ /

<:>

z,w Equation of conservation of momentum in the y-direction:

o
~av ~av ~ava- a- a-

Dv ap ax ay az
p - + pfu = - - + -- + -- + --

Dt ay ax ay az (4)

x,u Equation of conservation of momentum in the z-direction:

y,v

Figure 7. a and b. Definition sketches: (a) the tidal parameters, and (b)
the system of coordinates used.

~aw ~aw ~awa- a- a-
Dw ap ax ay az

p- = -- + -- + --+--
Dt az ax ay az

where

(5)

D a a a a
- = - + u- + v- + w
Dt at ax ay az (6)

are equal; (5) the vertical velocity of the sediment particles
is equal to the vertical velocity of the water particles plus the
settling velocity of the sediment particles, and (6) the pres
sure is hydrostatic. The first assumption is justified since em
phasis in this study is on the mechanics of sediment suspen
sion without probing into the interaction between the flow
and the bed. Assumption (2) is based on the postulate that
the settling velocity of the sediment particles is independent
of the concentration; the assumption is justified for small con
centrations of sediment. Assumption (3) neglects the effect of
density differences due to salinity. It is believed that in well
mixed estuaries salinity has a small effect on the sedimen
tation process. Assumptions (4) and (5) could be justified pro
vided that: (a) the size of the sediment particles is small com
pared with the length scales of turbulence; this is the case in
estuaries where most of the suspended material is composed
of fine constituents, and (b) the acceleration of the particles
is small compared with the acceleration due to gravity; this
is the case in estuarine flow since the tidal periods are long
and also since the problem is formulated for flow near slack,
Figure 7a, where the flow velocities and accelerations are

where g is the acceleration due to gravity; p is the pressure;
u, v, and w respectively are the longitudinal, the transverse,
and the vertical velocities of the flow; x, y, and z respectively,
are the longitudinal, the transverse, and the vertical coordi
nates; t is the time; p is the density; ~ is the dynamic viscos
ity; and f is the Coriolis parameter.

To the above equations, the equation of kinetic energy of
turbulence is added. This equation is obtained by multiplying
the equation of conservation of momentum in the x-direction
(eq, 3) by u, the equation of conservation of momentum in the
y-direction (eq. 4) by v, and the equation of conservation of
momentum in the z-direction (eq. 5) by w, adding the result
ing three equations, expanding all terms and taking the time
average, then subtracting the equation of kinetic energy of
the mean flow. The equation of kinetic energy of the mean
flow is obtained by: expanding the equation of conservation
of momentum in the x-direction (cq. 3), taking the time av
erage, then multiplying by u; expanding the equation of con
servation of momentum in the y-direction (eq, 4), taking the
time average, then multiplying by v; expanding the equation
of conservation of momentum in the z-direction (eq, 5), taking

Journal of Coastal Research, Vol. 14, No.1, 1998
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(9)

(8)

a(c'u') d(C'V') a(c'w')
+--+--+--=0ax ay dZ

Equation of conservation of mass:

dC dC dC [ p, ]. ac
at + u ax + w ilz - (p, _ Pw) w az

mean value and the fluctuation from the mean value, and q 2

= (u'u') + (v'v") + (;;';;;'). In eqs. 1-7 terms which included
the third moments (u,'u,'uk ' ) were neglected.

For a two component flow which consists of a mixture of
water and sediment, the equations of conservation of volume,
of mass, and of momentum, and the equation of kinetic en
ergy of turbulence (eqs, 8-13) are obtained from eqs. 1,2,3,
4, 5 and 7 as follows. The equation of conservation of volume
(eq. 1) remains unchanged and is given a new number as eq.
8. The equation of conservation of mass (eq, 9) is obtained
from eq. 2 by replacing the density p once by (l - c)Pw and
once by cp., where c is the concentration of suspended sedi
ment by volume, and the subscripts "s" and "wI' respectively,
denote sediment and water. The resulting two equations are
added, each term is expressed by its mean value and its fluc
tuating component and the time average of all terms is taken.
Similarly, each of the three equations of linear momentum
(eqs. 10-12) are obtained from eqs. 3-5 by replacing the den
sity p once by (l - c)Pw and once by cps. The resulting two
equations are added, each term is expressed by its mean val
ue and its fluctuating component, and the time average of all
terms is taken. The equation of kinetic energy of turbulence
(eq. 13) is obtained as follows: multiplying the equation of
conservation of momentum in the x-direction (eq. 3) by u, the
equation of conservation of momentum in the y-direction (eq,
4) by v , and the equation of conservation of momentum in the
z-direction (eq. 5) by w, and adding the resulting three equa
tions; in the resulting equations the density p is replaced once
by (l - c)Pw and once by cp, and the resulting two equations
are added, each term is expressed by its mean value and its
fluctuating component and the time average of all terms is
taken, then subtracting the equation of kinetic energy of the
mean flow for a two component flow. The equation of kinetic
energy of the mean flow for a two component flow is obtained
from the equation of kinetic energy of the mean flow by re
placing the density p once by (l - c)Pw and once by cps then
adding the resulting two equations (VASELlEV, 1969).

Because flow in estuaries is essentially two dimensional
except for turbulence which is strongly three dimensional,
the changes in the y-direction could be neglected except for
terms representing turbulence, i.e. fluctuating terms. There
fore setting v = 0, a(c,p,u,w)/az = 0, and dropping over bars
for convenience, eqs. 1, 2, 3, 4, 5, and 7 for a two component
flow take the form given by eqs. 8-13. In eqs. 8-13 VI is the
settling velocity of the sediment particles and the viscosity of
the mixture (j.lm) is expressed as: j.lm = j.lw(l + 2.5c).

Equation of conservation of volume:

au aw
-+- = 0ax az

+ j.l[ (aa~r + Ca:J + Ca~J + (~:r + (~r

+ (ila:J + (a;J + (a;J + (a~J] = 0 (7)

l_il(w'w') _v'ilu' _v'ilw'
+ -u--- + u-- + w--

2 ilx ily ily

l_il(u'u') _il(v'v') l_il(w'w')
+ -v--- + v-- + -v---

2 ily ily 2 ily

l_il(v'v') _il(W'W')}+ -w-- + w---
2 ilz ilz

production

{
(U'U' )ilU (u'v')ilV (u'w')ilw (u'v')au

+p +---+ +---
ax ilx ilx ily

(v'v')ilV (v'w')aw (u'w')ilu
+---+ +---

ily ily ilz

(v'w')ilV (W'W1)ilW}+ + ----az az
diffusion

{ [
a(u ' p' ) (uu'Jdu' (u'v')ilv' (u'w')aw']

+ ---+ + +----
ax ilx ax ilx

+ [a(v'p') +(~ + (~ + (v'w~;aw']
ily ay ily VJ

+ [il(~~P') + (u'~:au' + (V'~:ilv' + (W'~:aw,] }

dissipation

l{a[j.l il(U'U')] a[j.l a(u'u')] a[j.l_a(u_'u_')]-- ax ay az
2 + -'-----"' + -'--------"ax ay ilz

il[j.la(~:')] a[j.l a(~~v')] a[j.l_il(V_a~V_')]
+ + ----=-------" + -'--------"ax ily az

_w'ilu' _w'ilv' l_il(u'u')
+ u-- + v-- + -w---

ilz ilz 2 ilz

advection

1 il(q2) {_il(U'U') _ u'ilv' l_il(v'v')
--- + P u--- + v-- + -u--
2ilt ilx ilx 2 ilx

the time average, then multiplying by w; then adding the
above three equations; (TENNEKES and LUMELY, 1972).

where the superscripts "-,, and '"'' respectively denote the Equation of conservation of momentum in the x-direction:
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d{[(1 - c)Pw + cp.Iu) + _d{_[(_I_-_c)_Pw_+_c_P_Ju_u_}

dt dX

d{[(1 - c)Pw + cp.juw} d(PsWCU)
+ ----

dZ dZ

- (Ps - Pw)g sin e c + (p, - Pw)g cos e JdC dz
dX

a[(1 + 2.5c)lLw :~] a[(1 + 2.5c)lLw ~~]
~----~+--=------------=-

dX dZ

1 d(U'U') 1 d(V'V')
+-w--+-w--

2 dZ 2 dZ

deW'W')]}+W---
dZ

production

{ [
- dU -dW

+ [(1 - clp; + cPs] (u'u')- + (u'w')-
dX ax

+ (U';')dU + (W'W')dW]}
dZ dZ

+ d{[(1 - c)Pw + cPs](u'u')} + d{[(1 - c)Pw + cPs](u'v')}

dX dy

[(1 - c)Pw + CPs]d(U'W')
+ = 0 (10)

dZ

Equation of conservation of momentum in the y-direction:

diffusion

{[
a(u 'p ' ) deV'p') deW'p')]

+ --+--+--
dX dy dZ

[

(U'U')dU' (U'V')dV'
+ [(1 - c)Pw + cpJ + ---

dX dX

fI(l) ]
d{[(1 - c)Pw + cpJ(u'v')}

- c Pw + cps u + --------
dX

(U'W')dW' (U'V')dU'
+ +---

dX dy

d{[(1 - c)Pw + co.Kv'v'rl [(1 - c)Pw + CpJd(V'W')
+ + = 0

dy dZ

(V'V')dV' (V'W')dW'
+ +---

dy dy

(11)

Equation of conservation of momentum in the z-direction:

d{[(1 - clp., + cp.jw} d{[(l - c)Pw + cp.luw}
--------+--------

dt dX

(U'W')dU' (v'w')av'
+ +---

dZ dZ

+ (W/~:iJw/ ]}

d{[(1 - clp; + cp.lww) d(PsWCU)
+ ----

dZ dX

d(p
SCW

2) d(2pswcw)+ --- - + (p - P )gc
dZ dZ s w

d{[(1 - c)Pw + cps](u'w')} d{[(1 - clp; + cpJ(v'w')}+ + -----=---_----=---.:.....--_-
dX dy

a[(1 + 2.5c)lLw ~:] a[(1 + 2.5c)lLw ~:]
------ + -----_....::.

dX dZ

suspension

+ {(Ps - p.,) [-(c/u/)g sin e

1 J(d(C'U'») - ]}+ 2"g cos e ~ dz + (c'w')g

dissipation

{

d[( l + 2.5c)J.Lw d(U'U')] _
1 dX d2(U'U')

- - + (1 + 2.5c)J.Lw--
2 dX dy2

a[(1 + 2.5c)lLw a(~zUf)] a[(1 + 2.5c)lLw iJ(~:f)]
+ +~-----_--=.

dZ dX

_ d[(1 + 2.5c)J.Lw d(V'V')]
d2(V'V') az

+ (1 + 2.5c)J.Lw-- + --------
dy2 dZ

a[(1 + 2.5C)J.Lwd(W'W')] __
dX d2(W'W')

+ + (1 + 2.5c)J.Lw---
dX dy2

+ a[(1 + 2.5c~:wa(W'W')]}

dZ

(12)

1 d(q2)
-[(1 - c)p + cp ]--
2 w s dt

V'dW' w'au'
+ w-- + u--

dy az

d(W'W')
+ [(1 - clp., + cps]-- = 0

dZ

advection

{ [

d(U'U') 1 d(V'V')
+ [(1 - c)Pw + cps] u-- + -u--

dX 2 dX

1 d(W'W') v'au'
+ -u--- + u--

2 dX ay

Equation of kinetic energy of turbulence:
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CLOSURE

The terms -(Ps - p)g sin ec + (p, - p)g cos e J (acJax) dz
introduced in the equation of conservation of momentum in
the x-direction (eq. 10) and appearing as -(p, - Pw)(c'u')g sin
e + (1/2)(ps - Pw)g cos e J[a(c'u')/ax] dz in the equation of
kinetic energy of turbulence (eq. 13) represent the effect of
excessive density by considering deriving forces consisting of
gravity and pressure gradient. The gravity term (Ps - Pw)gc,
introduced in the equation of conservation of momentum in
the z-direction (eq. 12) and appearing as (P. - Pw)(c'w')g in
the equation of kinetic energy of turbulence (eq, 13), assumes
that sediment loads in the water behave as a solid body. This
would make the magnitude of these two terms considerably
larger than the other gravity terms after eqs. 12 and 13 are
closed and expressed in dimensionless form. The gravity
terms would have the same order of magnitude by making g
dimensionless as g(g) in the terms {[-(Ps - Pw)g sin ec + (Ps
- Pw)g cos e J WcJax) dz], [-(Ps - Pw)(c'u')g sin e + (l/2)(ps 
Pw)g cos e J[a(c'u')laxl dzj}, and by making g dimensionless
as (LP)g in the terms {[(p, - p)gc), [(Ps - Pw)(c'w')g]) as given
later in section V -expressing the equations in dimensionless
form.

(w'w') = 0.64u*2

(5)

Herein, u*2 = (TIp) and U*02 = (TJp) where T is the turbulent
shear stress, a function of the water depth, and To is the tur
bulent shear stress at the wall. (3) Terms representing ve
locity fluctuations and their space derivatives in the form
(u,'au,'lax) which are part of the advection term are closed
as: a(ClU*2)/axi where a. is a numerical constant, e.g.,

(
u 'au ' ) = ~a(u'u') = ~a(O.64u*2) = 0.32 au*2 (17)

ax 2ax 2 ax ax

(4) In the advection term, q2 is closed as: q2 = (r/ap), a =
0.52 (BRADSHAW et al., 1967). (5) The diffusion term is closed
as in (BRADSHAW et al., 1967):

-(u'v') = -(u'w') = -(v'w') = u/ (6)

and

where u, is the shear velocity, a function of the water depth;
the wall shear velocity is denoted by U*o' The above relation
ships are only valid in the inertial sub layer, i.e. (z/d) «: 1.
Lacking similar experimental relationships for the core re
gion, the terms representing velocity fluctuations are closed
using the core region approximation ofTennekes and Lumely
(972) as follows:

(u'u') = -(v'v') = (w'w') = 0.64u/,

to close the terms representing velocity fluctuations appear
ing in the equations of conservation of momentum and in the
advection, production, and dissipation terms of the equation
of kinetic energy of turbulence:

(3)

+ {o + 2.5C)~w[(:r + Ca:J + (aa~J

+ (::)2 + (~r + (:J
-- -- --

+ (a;J + C;J + C:zJ} = 0

where" is the coefficient of exchange of mass. (2) The exper
imental data of Tennekes and Lumely (972) could be used

The six eqs. 8-13 contain the following unknowns: 0) the
unknowns c, u, and w; (2) unknowns caused by the presence
of terms representing the fluctuations in the concentration of
suspended sediment (c') and their space derivatives, i.e.:
(c'u,'), and u,'(ac'lax); (3) unknowns caused by the presence
of terms representing fluctuations of the flow field, i.e.:
(u.Iu,'), the second moments of the velocity fluctuations and
their space derivatives (u,' au/ lax)" (au,'lax)2; and the third
moments of the velocity fluctuations and their space deriva
tives (ui'u;'auk'lax); and (4) unknowns caused by the presence
of terms representing fluctuations in the pressure field (p '),
i.e.: (u,'p').

The number of unknowns is reduced to the number of equa
tions as follows: (i) the semi-empirical theories of turbulence
presented by MONIN and YAGLOM (971) are used for the
closure of the terms representing concentration and velocity
fluctuations appearing in the equation of conservation of
mass and in the suspension term of the equation of kinetic
energy of turbulence:

(20)

where 8 is the thickness of the boundary layer and is equal
to 1. Eq. 21 shows that for small values of z, the dissipation
length parameter IL reduces to the mixing length e = X z
where X = 0.4.

The closure of BRADSHAW et at. (967), used above is based

1.9475 (~r + l.3792(~Y
(21)

where v is the kinematic viscosity, and IL is a dissipation
length parameter which rvaries as Xz near the wall and X
is von Karman's constant. IL is expressed as:

The function G is approximated as:

where V, is the outer velocity and is equal to unity; herein
V, == V. (6) In the dissipation term, v(iJui'lax,J2 (==E) is closed
as in BRADSHAW et at. (967):

(c'v") = -,,(:) and (c'w") = -,,(::)

(4)

-,t (ac)(c u ) = -" ax '
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(22)

(8) bis

(23)

on the reasoning that the shear stress profile is more closely
related to the parameters describing the turbulence structure
than to the mean velocity profile; e.g. the turbulent intensity
is related to the local shear stress, the dissipation rate is
related to the local shear stress and a dissipation length pa
rameter which is a function of (z/S), and the energy diffusion
is related to the local shear stress and the maximum value
of the shear stress [Figure 2 of BRADSHAW et al. (1967)].

Affecting the closures given by eqs. 14-21, the closed form
of eqs. 8-13 is given as:

Equation of conservation of volume:

au aw
-+-=0
ax az

Equation of conservation of mass:

ac ac ac [ Ps ] • ac- + u- + w- - w-
at ax az (Ps - Pw) az

a(€:~) a(€:;) a(€::)
---------=0

ax ay az

Equation of conservation of momentum in the x-direction:

a{[(l - clp; + cp.Iul a{[(l - c)Pw + cp.Iuu}
--------+--------

at ax

a{[(l - c)Pw + co.Iuw} a(pswcu)+ ----
az az

- [(P, - Pw)g sin e c - (p, - Pw)g cos ef (:~) dZ]

a[o + 2.5c) I-1w:] a[o + 2.5c) I-1w ~~]
---=-------.......;;.+~_-----

ax az

aT aT aT
+ 0.64- - - - - = 0

ax ay az
Equation of conservation of momentum in the y-direction:

Equation of kinetic energy of turbulence:

1 a(aTp)
-[(1 - c)p + cp ]--
2 w s at

advection

+

a(~) a(~)
+ 0.32u-- + 0.32w--

ax az

1 a(~) 1 a(~)
- -u-- - -w--

2 ay 2 ay

production

+ {[(I - c)Pw + CPJ[0.64(n: - (~)::

- (~)~~ + 0.64(~)::]}

suspension
aT aT aT

fI(l - clp., + cp.ju - - + 0.64- - - = 0 (24)
ax ay az

Equation of conservation of momentum in the z-direction:

a{[(l - c)Pw + co.lwl a{[(l - clp; + cp.juw}-------- + ---------
at ax

a{[(l - clp; + cp.jww} a(pswcu)+ ----
az ax

+ . (ac)(Ps - pw)g SIn e E ax

_ a(pscw2
) _ a(2pswcwl [ ]---- + (Ps - Pw)gc

az az

a[o + 2.5c)l-1w ::] a[o + 2.5c)l-1w ::]

-------+-------
ax az

aT aT aT
- - - - + 0.64- = 0

ax ay az
(25)

dissipation

+ ([T(~r2][0.48(~) + 0.20798 (~r
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ditions since the intention is to present the steady state so
lution of the problem.1.9475B(~r + 1.3792B(~yr}

{ [
( T) ] d2(T)}(1 + 2.5c)d - P

- 0.96fl.w d dx P (dX)-l + (1 + 2.5c)ayz-

Equation of conservation of volume:

dU aw
-+-= 0
dX dZ

(8) bis

The physical data of the Delaware estuary, U.S.A. pre
sented by EAGLESON (1966), and by KAMEL (1972) is adopt
ed. Maximum tidal amplitude A = 1.67 (rn), average water
depth in estuary d = 6.41 (rn), length of estuary L = 1.438
X 105 (rn), average width of estuary W = 1,463 (rn), maxi
mum longitudinal velocity Umsx = 0.67 (rn/s), maximum wa
ter surface slope Smsx = 2.17 X 10-5, Manning's coefficient of
roughness n = 0.024, depth averaged longitudinal velocity for
ebb flow departing from slack 1lJ= 0.0305 (rn/s) , average wa
ter surface slope for ebb flow departing from slack S = 4.49
X 10- 8 , maximum concentration of suspended sediment by
volume Co = 10%, p., = 103 (kg/m-), and vw = 1.18 X 10 -6

(mvs). With Pmsx = [(1 - co)Pw + coP.] = 1.165 p., (kg/rn") , the
maximum difference between the densities of the water-sed
iment mixture and that of water dp = 0.165 X 103 (kg/m").
The maximum turbulent shear stress for ebb flow departing
from slack is expressed as Tmsx = Pmsx g W S and is computed
to be equal to 0.75 (kg/m S2). The maximum coefficient of
exchange of mass given by EAGLESON (1966), following an
analysis by G. I. Taylor for longitudinal dispersion in a
straight pipe, could be expressed as Emax = 63.33 (nIR l /6 ) IlJ R,
where R is the hydraulic radius of the estuary and is taken
to be equal to the average water depth in the estuary d. For
ebb flow departing from slack Emsxis computed to be equal to
0.218 (m-/s).

To reduce eqs. 8, 22, 23, 24, 25, and 26 to dimensionless
form, let f I, L, R, W,IlJ, Tmsx> Emsx> P, dp, and fl.w characterize
respectively, the typical time, the horizontal length, the ver
tical length, the transverse length, the depth averaged lon
gitudinal velocity for ebb flow departing from slack, the max
imum shear stress for ebb flow departing from slack, the
maximum coefficient of exchange of mass for ebb flow de
parting from slack, the density of the mixture of water and
sediment, the maximum difference between the densities of
the water-sediment mixture and that of water, and the dy
namic viscosity of water. Replacing the variables f, x, y, z; u,
w, W, T,E, p, C, u , and g, by their scaled counterparts fiO , (Llx,
(W)y, (R)z, (U)u, (RIlJIL)w, (llJ)w, (Tmsxfr, (Em•.lE, (Pw)p, (d p/plc,
(fl.w)fl., and (g)g, the dimensionless form of eqs, 8, 22, 23, 24,
25, and 26 is given, after a little algebraic manipulation, by
eqs . 8, 27, 28, 29, 30, and 31 which are for steady state con-

Equation of conservation of momentum in the z-direction:

Equation of conservation of momentum in the x-direction:

Equation of consevation of momentum in the y-direction:

(28)

(27)

f dC . d(CU) aT
(p - p )g cos S - dz - p w-- - -

s w ax · az iJz

RaT {dP R} .= W dy + pgllJ2 (sin S){(p, - Pw)gc}

R{ d(UU) a(cuu) a(uw)
- - P -- + (p - P )-- + P --LWdX ,wax w dZ

a(cuw) aT}+ (p - P )-- +-
• w dZ dX

+ ~{II a2u + 2.511 a(c~;)}
IlJR r-w dz2 r-w az

{
( dU)}a c-

v R 2 il2u dX
+-.:"..- -+25 ---

IlJR (L) fl.w ax" . fl.w ax

dT aT RaT
- - - + [p + (p - p )c] fu = -- (29)
ily dz w • w Lax

. ac aT
(p - P )gc + P w2 - + -

s w ' az az

Tmsx RaT R{ . o(cu) . a(cw)}
= --- + - pw-- + 2pw--

pllJ2W oy L s ax • az

TonaxRaT (R)2{ iKuw) o(cuw)
+ pllJ2Lax - L Pw~ + (P. - Pw)~

a(ww) . O(CWW)}+ p .- - + (p - P )--
W az 'w az

Equation of conservation of mass:

a(E¥Z) + _Po wac = ~{UdC + wdC _ d(E~)}
iJz P. - Pw dZ L dX iJz dy

-E{·(:~)}

(26)

EXPRESSING THE EQUATIONS IN
DIMENSIONLESS FORM

[
0 + 2.5c)d(~)]

+ iJ dZ P (iJzt
l

= 0
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THE ZEROTH APPROXIMATION

(34)

(33)

(32)

(31)

dUo dWo-+-=0
dX dZ

d(E dCO
)

o dZ Ps. dCo--- + ---w- = 0
dZ Ps - p., dZ

Equation of conservation of momentum in the x-direction:

• d(CoUo) f dCo dTo- P w-- + (p - P )g cos e - dz - - = 0
s dZ s w dX dZ

Equation of conservation of mass:

Equation of conservation of volume:

The equations of the zeroth approximation, eqs. 33-37 are
obtained by setting the perturbation parameters equal to zero
in eqs. 27-31 (VAN DYKE, 1964). To these equations, the
equation of conservation of volume (eq. 8) is added in the form
of eq. 32. Thus:

Equation of conservation of momentum in the y-direction:

Equation of conservation of momentum in the z-direction:

The term [(T/p)312/Z] in the left hand side of equation 31 does not
present a singularity at (z = 0) since Limz~o [(T/p)3/2/Z] = o.

Nine 'IT-terms appear in eqs. 27-31 namely; the aspect ra
tios (R/L) and (RIW); the density gradient (~p/p); a form of
Ekman number E = (Emajf L2); Reynolds number R = (llJR
Pw·/tLw); a form of Richardson number R* = (QJ2/(~p/p)g R);
which is Froudes number square ([lJ2/gR) divided by the den
sity gradient (~p/p); Rossby number R** = (tU/fL); and two
forms of an eddy Reynolds number namely; R* = (p 1U2/Tmax)
and R** = (QJ R/EmaJ. The numerical values of the nine
rr-terms are as follows: (R/L) = 4.458 X 10-5 , (RIW) = 4.38
X 10-3 , (~p/p) = 0.1416, E = 1.05 X 10-7, R = 1.6568 X 105 ,

R* = 1.0414 X 10-4, R** = 2.121 X 10-3, R* = 1.445, and
R** = 0.8968. The magnitude of each term in eqs. 27-31 is
evaluated and the 1T-terms (RIL), (RIW), E, R-1, R*, and R**
are used as perturbation parameters. Perturbation methods
for treating boundary layer problems (NAYFEH, 1985) are not
used here; the equations of the zeroth approximation for the
entire flow domain are solved analytically.

T T T ]«-: e- d-

+ w~ - u---.£ + w---.£ + ~dU + ~dW
dZ dX dZ p dX P dZ

_(~P g ~)Emax (~)2
p UJ2 UJR L

+ ~R [wO(~)]
LW dy

[~p R] (Emax)R. {[Ps - pw] ( dC)}- -g- - - SIn e --- g E-
P IU2 IUR L P dX

[

[
T TmaxZ] Td--- d

_!! pU l P 5 + u ap
L dX dX

Equation of kinetic energy of turbulence:
l'

_2: 0U
_ !UOp

_ (~)g(EdC)
P dZ 2 dZ p dZ

• dCo dTo
P W2- + (p - P )gc + - = 0

s dZ S w dZ

Equation of kinetic energy of turbulence:

(36)
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In eq. 37 Tm ax has been replaced by T in view of the absence
of a reasonable estimate for T rnax and since Tm ax has a signif
icant effect on bed load movement rather than on suspended
sediment which is the subject of the present study. In eqs.
32-37, Po == lo, + (p, - Pw) co], w = -1, f = VI = 8 = 1,
each of the coefficients [p/(P. - Pw)], p" (P. - Pw)g cos 6, Pw'
(p, - Pw), and (P. - Pw)g is equal to one , and the subscript (0)

refers to the zeroth approximation.
Substituting in eqs. 32-37 the numerical values of the con

stants and the coefficients and dropping the subscript (0) for
convenience, the equations of the zeroth approximation take
the form :

c(O, 0) == (co) = 1, c/x, 1) = 0, c(o, z) = f(z) (45)

where flz) is a given function. A separable solution is selected
in the form:

(44)

(46)ctx, z) = X(x)Z(z)

The st ra tegy is to reduce eq . 44 to a partial differential equa
tion in the dependent variable c. To th is end the velocity u is
considered to be a function of z only ; i.e. u = utz ), and a
logarithmic velocity profile is assumed. The assumption that
u = ulz ) is a reasonable one since the problem is formulated
for flow near slack where the changes in u in the x-direction
are small compared with the changes in the z-direction. This
assumption simplifies the solution of eq. 44 for c. The con
centration of suspended sediment c is obtained from the so
lution of the boundary value problem given by eq. 45 .

()2C ( dU) ()c d2u ()c
(l + u)- + 1 + 2- - + - c + - = O·

()Z2 dz ()z dz2 ()x '

Substituting equation 46 into equation 45 and dividing by
X(x)Z(z) results in :

(37)
az

-u:(~) -"au,_P. - P. g (EOaco)
az Po az Po az

Equation of conservation of volume:

(48)

(47)

X' - J3X = 0

which by integration becomes:

Z" ( dU) Z' d2u X'(l + u)- + 1 + 2- - + - = --
Z dy Z dz2 X

Taking the partial derivatives with respect to x of both sides
of the separated equation 47, it is found that:

d[~]
d;- = 0,

(39)

(38)

(40)

au aw
-+-= 0
ax az

(
ac)aE -
az ac

----=0
az az

Equation of conservation of mass:

Equation of conservation of momentum in the x-direction:

a(cu) + Jac dz - iJT = 0
az ax az

Equation of conservation of momentum in the y-direction:

iJT iJT
(l + clu - - - - = 0

ay az
(41)

where 13 is a separation constant. Then

Z" ( dU) Z' d-u
(1 + u)Z + 1 + 2 dz Z + dz2 = -13 (49)

Equation of conservation of momentum in the z-direction: Equation 49 is written in the form:

ac aT
-+c+-=O
()z ()z

(42)
where

Z" + ()"(z)Z ' + w(z )Z = 0 (50)

1 + 2
du

dz

1 + u '
()"(z) =---

and
(43)

a (~) Tau ()c ()[(~rz] (~r2
-u-- - -- - E- + --- + -- = 0

()z P ()z ()z ()z z

Equation of kinetic energy of turbulence:

CONSTRUCTION OF THE SOLUTION OF THE
ZEROTH APPROXIMATION

d2u
;:hi + 13

w(z ) = --
1 + u

Solution for the Concentration of Suspended Sediment

Adding eqs. 40 and 42 then differentiating the resulting
equation once with respect to z using Leibniz theorem for the
differentiation of an integral results in :

(l + u )()2d()Z2 + (l + 2 ()u!()z)ad()z

Thus, clx , z) = X(x)Z(z) is the solution of equation 45 if and
only if X and Z satisfy the two ordinary differential equations
48 and 50 for the specified boundary conditions for some 13.
Xix ) and Z(Z) respectively, are the solutions of the boundary
value problems given by equations 51 and 52.

Journal of Coastal Resear ch, Vol. 14, No.1, 1998



Sediment Suspension in Estuaries 117

The solution of the boundary value problem given by equa
tion 51 is:

The solution of the boundary value problem given by equation
52 is obtained by substituting, in equation 52, the three con
secutive transformations given by equations 54-56 (KAMKE,

1971), resulting in equation 57.

X(O) = 1 (51)

Z(O) = 1, Z(l) = 0 (52)

(62)11 = <I> - (1 - z)

11" + )1[11 + (1 - z)] = 0,

An = (n'IT)2, n = 1, 2, ... ;

The solution of equation 63 in terms of the eigenfunctions
(<Pn) is given by the Fourier sine series, equation 65 (Myint
U, 1987).

-11" = )111 + Ll(z), Ll(z) = )1(1 - z) (63)

The Sturm-Liouville problem given by equation 59 has the
eigenvalues (An) and eigenfunctions (<Pn) given by:

i.e.

Substituting equation 62 into equation 61, the latter takes
the form:

where v = ((3/2 - 1/16). To reduce the boundary value prob
lem given by equation 61 to one with homogeneous end con
ditions, substitute for <I> a function ~ = (1 - z) which satisfies
these boundary conditions. Then the difference 11 = <I> - ~

satisfies a nonhomogeneous equation with homogeneous end
conditions, i.e.,

(57)

(56)

(55)

(54)

(53)X = e13x

z'
u(z) = -

Z

1
'P(z) = v(z) + 2(J(Z)

<I>'(z)
'P(Z) = <I>(z)

<1>" + ~(z)<I> = 0; <1>(0) = 1, <1>(1) = 0

X' - (3X = 0;

Z" + (J(z)Z' + w(z)Z = 0;

where

(J (J2
~(z) = - - - - + w2 4 .

OG

11 = L bn<Pn(z),
n=l

The transformation from Z(z) to <I>(z) is affected by equation
58.

Z = e' -zl4)<I> (58)

where

b=~
n An - )I'

a2c 1 ac 1 ac- + -- + -- = 0
az2 2 az 2 ax '

c(O, 0)(= co) = 1, cix, 1) = 0; c(O, z) = flz), (60)

<1>" + )1<1> = 0; <1>(0) = 1, <1>(1) = 0 (61)

A considerable reduction in the mathematical labor could
be achieved, without much sacrifice in the accuracy of the
solution, by replacing ~(z) by a constant. This is possible by
setting u = 1 in the expression for lfJ(z). The assumption that
u = 1, a constant, is based on the uniformity of the logarith
mic velocity profile except near the bed. The assumption does
not significantly affect the partial differential equation since
it only affects the coefficients which become numbers instead
of functions of z. Affecting this assumption, the boundary val
ue problem given by eqs. 45 and 57 respectively reduce to
eqs. 60 and 61.

(65)

rx: sini), 1I2Z)
- 2 '" n

11 - )I ~ A 1I2(A - "\1)n-l n n 1

By equation 65 in equation 62, it follows that:

<I> = 2 ~ sin(An1I2Z
) + (1 - z) (66)

)I LJ "112(" _ )n=l I\.n I\.n )I

Affecting the transformation given by equation 58, equation
66 takes the form:

Z(z) = e' -z/4l [2)1 i sin(An1I2Z) + (1 - Z)] (67)
n=l An1I2(An - )I)

By equations 67 and 53 in equation 46, it follows that:

[

o: sini), 1I2Z) ]
cix, z) = e(l3x - z/4l 2)1 L 112 n _ + (1 - z) (68)

n=l An (An )I)

where v = [((3/2) - (1/16)] and An = (n'IT)2, n = 1, 2, ....
After expanding (1 - z) in terms of the eigenfunction <Pn'

it is easy, as given later in this section, to verify that eq. 68
is the solution of the boundary value problem given by eq. 60
except for not satisfying the boundary condition c(O, z) = fez).
To this end set x = 0 in eq. 68, the latter takes the form:

i.e.,

(59)~" + An~ = 0; ~(O) = 0, ~(1) = 0

The boundary value problem given by eq. 57 could be for
mulated as a Fredholm integral equation with degenerate
kernel and solved by reducing it to a system of linear alge
braic equations (KAMEL, 1978). The boundary value problem
could be also formulated as an integral equation with sym
metric kernel where Green's function is represented in terms
of the Fourier series of the orthonormal eigenfunctions, (2)112
sin (n 'IT z), n = 1, 2, ... , (CHAMBRE, 1977). As a change of
pace, the solution of the boundary value problem given by eq.
57 would be presented as a Fourier series of the eigenfunc
tions of the Sturm-Liouville problem given by eq. 59.
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• 2"(- L sin(An"2 z) (70)
- n e I An 1/2(A" - "()

provided that [f(z)e'z/4) - (l - z)] is a piecewise smooth func
tion defined on °< z < 1, its Fourier sine series is:

118

[

W sini), 1/2 Z) ]
c(O, z) = ftz) = e' z/4) 2"( L n + (l - z)

nol An1l2(An - "()

i.e.,

• sintx.,1I2Z)
f(z) e,z/41 - (l - z) = 2"( L 112 _ '

n'l An (An "()

written as:

W

L ansin(An1/2 Z ),
n,---1

an = 2 L[f(z)e'z/4) - (l - z)]sin(A nII2 Z) dz

i.e.,

2
= a, - A

n
' /2

;

(69)

(71)

Kamel

The verification that equation 75 is the solution of the
boundary value problem given by equation 60 is as follows:
By inspection of equation 75 it is seen that c(O, 0) = 1 and
c(x, 1) = 0. To verify the boundary condition dO, z) = flz), set
x = °in equation 75, the latter takes the form:

«o, z) = e'-z141 {~l [2 L[f(z)e,zI41 - (l - z)]sin(A nIl2z) dz

(76)

By equation 73 in equation 76, the latter takes on the form:

«o z) = e' -Z/41{i [( 2"( )sin(A 112Z)] + (l - Z)}
, n'l A

n
1l2(A

n - "() n
(77)

;= f(z) by equation 69, thus verifying the boundary condition
c(o, z) = f(z). To verify that eq. 75 is the solution of the partial
differential equation 60, set

l' 2
2 [f(z)e'zI41 - (l - z)]sin(A 112Z) dz ;= a = a ---

o n n n An 1/2 '

equation 75 takes the form:

Differentiation of equation 78 results in

Equating equations 70 and 71 results in equation 73.

(72)

(79)

~, {2 L[flz) e'z/41 - (l - z)]sin(A nIl2z) dz

. [sin (AnIl2Z)]} (73)

It follows that the boundary condition c(O, z) = f(z) is satisfied
if:

2"( = 2 (' [f(z)e'z/41 - (1 - z)]sin(A n112Z) dz
An 1/2(An - "() Jo

(74)

By equation 74 in equation 68, it follows that:

cix, z) = e'PX- Z/4{~ [2 L[f(z)e'zl4) - (l - z)]sin(A n1/2 Z ) dz

. [sin(An1/2 Z)]] + (l - Z)} (75)

(80)

(81)

Substituting for
, 1

(l - z) = 2 L -sin(A 1/2 Z )
n I An 1/2 n

in equations 79-81, it follows that:
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d2C 1 dC 1 dC- + -- +-
dZ2 2 dZ 2dX

lows that f(x) = -c(x, 0) which when substituted in eq. 85,
results in:

Solution for the Turbulent Shear Stress

Byeq. 80 in eq. 86, the solution for the coefficient of exchange
of mass is obtained as:

The solution for the turbulent shear stress T(X, z) is ob
tained from the solution of the boundary value problem given
by eq. 42 subject to the boundary condition T(X, 0) = 0, i.e.

(86)

(88)T(X, 0) = 0

E = [ctx, z) - ctx, O)]I(ac/az)

ac/az + c + aT/aZ = 0;

E(X, z)

= (e,px-z/4'{~ [(an - A~I2)sin( An1l2Z)] + (1 - Z)} - epx
)

0(_ ~e'PX-Y4) {~ [(an - A~12)sin( An1l2Z)] + (l - Z)}

+ e'PX Z/4'{~ [(an - A~1I2)AnIl2COS( An1l2Z)] - l}}r'
(87)

(82)
4'A. 1/2 1

f3 = 2A - _n_ + -
n an 8

if and only if

{
an an anf3}- - 'A. a + 2'A. 1/2 - - + - = 016 n n n 8 2 .

i.e.,

(83)

Imposing in equation 89 the boundary condition T(X, 0) = 0,
results in:

Rearranging the partial differential equation as aT/aZ = -c
- ac/az and integrating once with respect to (z), results in eq.
89.

(90)

(89)T = - f cdz - c + g(x)

g(x) = ctx, 0) + f ctx, z) dzlz~o

o = - f ctx, z) dzLo - cix, 0) + g(x);

i.e.,

cix, z) = e'Px z/41{~ [(2L{[f(z)e'z/4' - (l - zilsinx.,1I2Z)} dZ)

{sinfx.,1I2Z)]] + (l - Z)}

n = 1,2, ... ;

where:

Therefore eq. 75 is the solution of the boundary value prob
lem given by eq. 60 if and only if eq. 82 is satisfied. By eq.
82 in eq. 75, it follows that the solution of the boundary value
problem given by eq. 60 is:

Mass

Imposing in eq. 85 the boundary condition E(X, 0) = 0, it fol-

Integration of eq. 84 once with respect to z, results in eq. 85.

The coefficient of exchange of mass E(X, z) is obtained from
the solution of the boundary value problem given by eq. 84.

aT aT
(1 + c)u - - - - = 0;

ay az

T(X, z) = - fetx, z) dz - crx, z) + ctx, 0) +fcrx, z) dzlz-a

(92)

The solution for the turbulent shear stress T(X, Y, z) is ob
tained from the solution of the boundary value problem given
by equation 41 subject to the boundary condition given by
equation 91. i.e.,

By equation 90 in equation 89, the solution for the turbulent
shear stress is given as:

T(X, z) = - f c(x, z) dz - ctx, z) + ctx, 0) +f c(x, z) dzl
F O

(91)

(85)

(84)E(X, 0) = 0

(EaC/aZ) - c = f(x)

d(EdC/dZ)/dZ - ac/az = 0;

(
4'A. 1/2 1)

f3 = 2'A.n - ~ + 8 ;

an = 21' [f(z)e,z/4'sin(An1I2Z)] dz,

a number.
Solution for the Coefficient of Exchange of
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Solution for the Longitudinal Velocity of the Flow

The longitudinal velocity of the flow u is obtained from the
solution of the boundary value problem given by eq. 43 sub
ject to the boundary condition urx, 0) = 0, i.e.

-Uil(T/p)/ilz - (T/p)ilu/ilz - (Eilclilz)

+ iI[(T/p)2zVilz + (T/p)3/2/z = 0; utx, 0) = 0 (95)

The boundary value problem given by eq. 95 is written as:

Integrating eq. 41 once with respect to z and imposing the
boundary condition given by eq. 91 results in the solution of
the boundary value problem given by eq. 92 as:

T(X, y, z) = T(X, z) + {[ilT(X, z)/ilz] - (1 + cluly (93)

where T(X, z) is given by eq. 91, c(x, z) is given by eq. 83, and
a logarithmic velocity profile is assumed, for the longitudinal
velocity of the flow, in the form:

u == 1 + 0.1848 lntz + 0.004465) (94)

D. Profil e Pl

• Profile P2

o Profil e P3

I Profile P4.

o Profi I e P5

• Profi Ie P6

A- Profile P7

I.,.'8.7
I

.6.4.2.1

.1

(96)utx, 0) = 0ilu/ilz + htx, z)u = k(x, z);

where

htx, z) = (1I2)[iI(T/p)/ilzV(T/p), k(x, z)
= -[Eilc/ilz] + [iI(T/p)2Z/ilz] + [(T/pj3/2/z] (97)

RelaLive concentration Cc/c )
o

Figure 8. Sediment concentration profiles studied (ASCE, 1963).

The solution of the boundary value problem given by eq. 96
is:

u(x, z) ~ exp{ - J[i~:)h) ,d'}

.f({ -," + ,(~r, + (~r}
ilz ilz z

exp{J [i'~)]W' d'}) dz (981

No attempt is made to solve eq. 38 for the vertical velocity
w since the equations are getting to be cumbersome; a solu
tion for w was given by KAMEL (1976) and shows that w is
maximum at the water surface and decreases to zero at the
bottom of the estuary. Eqs. 83, 87, 93, and 98 respectively
give the solution of the zeroth approximation for the concen
tration of suspended sediment c, the coefficient of exchange
of mass E, the turbulent shear stress T, and the longitudinal
velocity of the flow u.

RESULTS

The Concentration of Suspended Sediment

The sediment concentration profiles which were used as
f(z) in the boundary condition c(O, z) = flz), eq. 45, are shown

in Figure 8 (ASCE, 1963). The figure shows a plot of the rel
ative concentration (clco ) versus the relative depth of water
(z/d), The data used in the figure is the result of measure
ments of the distribution of suspended sediment made by sev
eral researchers in natural streams and canals and in labo
ratory flumes. Mathematical necessity required that the data
in Figure 8 be presented as: (i) (clco ) on the x-axis instead of
(clca ) as originally given in ASCE (1963) where Co is the con
centration at a distance a from the bottom of the channel
equal to 0.05 the water depth; (ii) the origin of the z-axis is
at (z/d) = 0 instead of (z/d) = a as in ASCE (1963). Figure 9
shows the results obtained for the variation of the concentra
tion of suspended sediment c with the relative depth of water
(z/d) and along the estuary for an assumed bottom concen
tration at the beginning of the estuary Co == c(O, 0) = 1. Since
ilclax is positive, it follows that the concentration of suspend
ed sediment increases along the estuary as shown in Figure
9; this is in agreement with previous research work on sedi
mentation.

To save journal space the results are presented for only one
of the seven concentration profiles. In one instance, clarity of
the presentation required presenting the results for two pro
files.

The Coefficient of Exchange of Mass

Figure 10 shows the variation of the coefficient of exchange
of mass E with the relative depth of water (z/dl for profiles
P1-P7 of Figure 8. It can be seen from the figure that E in
creases from zero at the bottom to a maximum value at about
(z/d) = 0.1 then decreases to a nearly constant value towards
the water surface. This is in agreement with the profile of E

reported by IcHIYE (1966) for the nepheloid layer on the At-
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Figure 9. Variation of the concentration of suspended sediment along
the estuary.

lantic slope, which was determined from measured vertical
profiles of suspensoid. ICHlYE (1966) reported that E increase
from zero at the bottom of the sea to a maximum value at
100 to 200 (m) then decreases and reaches some constant
value towards the water surface.

The field data for the Enoree river originally reported by
COLMAN (1969) and later reported by VAN RIJIN (1984), [Fig
ure 5 page 1620], as a plot of (Elu*od) versus (z/d) is used for
the verification of the results of E as shown in Figure 11. The
figure shows a plot of (Elu*od)/(Elu*od)max versus (z/d) for pro
file P3 and for the data reported by VAN RIJIN (1984). The
reason for the disagreement between the analytical results
and the data reported by VAN RIJIN (1984)is that in the pres
ent study E is given by eq. 86 as E = [ctx, z) - cix, O)]/(dCldZ)
which is the solution of the second order partial differential
equation d(EdCldZ)ldZ - (dcldZ) = °[eq, 39]; while in VAN RIJIN

(1984) E is computed from the measured concentration pro
files using the first order differential equation E = -wc/(dcl
dz),

The Turbulent Shear Stress

The expressions for the turbulent shear stress -r and for the
longitudinal velocity of the flow u given by eqs. 93 and 98
respectively, are too cumbersome for mathematical manipu
lation to find out the behaviour of the profiles of -rand u and
the effect of the concentration of suspended sediment on
these profiles. Consequently in what follows the analysis
would be based on the interpretation of the numerical results
obtained from the solution of these two equations.

The results obtained for the turbulent shear stress -r are
shown in Figures 12-15. The results shown in Figures 12-14

Figure 10. Variation of the coefficient of exchange of mass with the rel
ative depth of water.

are for -reX, 0, z) while the results shown in Figure 15 are for
-r(1, y, z); similar results are obtained for arbitrary values of
y and of x respectively. Figures 12 and 13 show the variation
of (r/pu") with the relative depth of water (z/d); the figures
show that (r/pu") increases from zero at the bottom to a max
imum value at a relative depth of about 0.2 then decreases
towards the water surface. The figures also show the effect
of the concentration of suspended sediment on the profile of
the turbulent shear stress. Figure 12 shows that for the same
bottom concentration co, (r/pu") decreases with the increase
in the uniformity of the concentration distribution, e.g. (r/pu")
for profile PI where the concentration distribution decays
rapidly towards the water surface as shown in Figure 8, is
larger than (r/pu") for profile P7 where the concentration dis
tribution is more uniform. Figure 13 is a plot of (r/pu") versus
(z/d), for profile P5, for bottom concentrations Co = 1, 1.2214,
1.4918, 1.8221, 2.2255, and 2.7183. The figure shows that (-rl
pu-) is nearly invariant for the different bottom concentra
tions. Figure 14, a plot of (-r/pu2 )/ ( -r/pu2)max versus (z/d) for pro
file P4, exhibits the same trend shown in Figure 13. A study
which has some bearing on the above findings is that ofKAR
1M and KENNEDY (1987) who reported that for (w > IU S),
which is the case in the present study, the suspended sedi
ment contributes less energy to the flow than its settling dis
sipates suggesting that an increase in the concentration could
result in a decrease in the energy available to the flow.

The variation of the shear stress in the y-direction is shown
in Figure 15. The figure shows a plot of (r/pu") versus (z/d),
for profile P3 of Figure 8 for y values of 0, 10.11, 10.21, 10.31,
10.41, and 10.51; here y = °denotes the center line of the es
tuary. It can be seen from the figure that (r/pu'') increases
away from the center line of the estuary towards its sides; at
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the sides the shear stress would be zero although this bound
ary condition was not affected in the solution since T(X, y, z)
is obtained from the solution of the first order partial differ
ential equation 92 which required imposing one boundary
condition, namely T(X, 0, z) = T(X, z) as given by eq. 92. The
literature does not appear to have experimental data on the
three dimensional distribution of the turbulent shear stress.
However, in a three dimensional analytical model of second
ary flow, shear stress, and sediment transport for Rio Grande
conveyance channel, CHIU and HSIUNG (1981) obtained a
shear stress distribution in the y-direction (Figures 2, 5, and
7, respectively pp. 886, 889, and 890), similar to the one ob
tained from the present study and shown in Figure 15.

The experimental data available for the verification of the
analytical findings of this study is scarce, even more scarce
is the data which corresponds to conditions similar to the
present study. The experimental data of ALFRINK and VAN

RIJIN (1983), KOUTITAS and O'CONNER (1981), and LYN
(1988) is used for the verification. Of the above flume data
that of LYN (1988) is the only data which corresponds to con
ditions similar to the present study in that the data is for
turbulent open channel flow over a flat well sorted natural
sand bed in equilibrium with a suspension of sand. The data
of ALFRINK and VAN RIJIN (1983) is for flow in a steep-sided
trench perpendicular to the main flow direction. The data of
KOUTITAS and O'CONNER (1981) is for a steep-sided channel,
dredged at right angles to the main direction of the flow and
sediment transport. In order to compare the results obtained
from the present study with those of ALFRINK and VAN RIJIN
(1983), KOUTITAS and O'CONNER (1981), and LYN (1988), the
results are presented as a plot of (TITmax) versus (z/d). Figure

16 shows good agreement between the analytical results ob
tained for profile P7 and the flume data of LYN (1988) for
equilibrium bed and for starved bed. Figure 17 shows a plot
of (TITmaJ versus (z/d) for the averaged profile of P6 and P7,
which is obtained by taking for each value of (z/d) the average
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Figure 16. Verification of the profile of the relative turbulent shear
stress using the experimental data of Lyn (1988).
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Figure 18. Verification of the profile of the relative turbulent shear
stress using the experimental data of Koutitas and O'Conner (981).
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of the two values of (TITrnaxl for profiles P6 and P7, and for
the flume data of ALFRINK and VAN RIJIN (1983) for the sets
of experiments number 1, 3, 5, 7, and 9. The figure shows
fair agreement between the analytical results and the exper
imental ones. The agreement does not appear to be correlated
with the type of velocity profile measured by ALFRINK and
VAN RIJIN (1983), e.g. for the turbulent shear stress data from
the sets of experiments number 1 and 9, the velocity profile
is nearly logarithmic while for 3 and 5 there is return flow
near the bottom, yet the values of (TITrnaxl for both types of
velocity profiles are equally scattered about the shear stress
profile of the present study which is for a logarithmic velocity
profile. Figure 18, which is a plot of (TITrnaxl versus (z/d) for
the averaged profile of P6 and P7 and for the flume data of
KOUTITAS and O'CONNER (1981) for the sets of experiments
number 2, 4, 5, 6, 7, 8, and 9, shows fair agreement between
the analytical and the experimental results. Here also the
agreement does not appear to be correlated with the type of
velocity profile measured by KOUTITAS and O'CONNER

(1981). The only fair agreement between the analytical find
ings and the experimental results of ALFRINK and VAN RIJIN

(1983) and KOUTITAS and O'CONNER (1981) is likely to be
due to the difference in the hydraulic conditions of the pres
ent study and the studies of ALFRINK and VAN RIJIN (1983)
and KOUTITAS and O'CONNER (1981) as stated earlier in this
section. To summarize the experimental verification, the ex
perimental results presented in Figures 16-18 are combined
in Figure 19 which shows that the relative turbulent shear
stress profiles obtained from the present study and from the
experiments of ALFRINK and VAN RIJIN (1983), KOUTITAS

and O'CONNER (1981), and LYN (1988) have the same trend
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in that the shear stress increases from zero at the bottom, to
a maximum value at some distance away from the bottom
then decreases towards the water surface.

It is worth noting that the presence of sediment causes the
shear stress profile to deviate from that for clear water flow
in the upper region of the flow where (z/d) is larger than
about 0.5 as shown in Figure 20. The figure shows a plot of
(TITmaJ versus (z/d) for profile P7 of the present study and for
the flume data of LYN (1988) for sediment laden flow and of
ANWAR and ATKINS (1980) for clear water tidal flow. It can
be seen from Figure 20 that for (z/d) larger than about 0.5,
the data for clear water flow gives larger values of (TITmax)for
the same value of (z/d) than the data for sediment laden flow
indicating that the presence of sediment causes a faster
dampening of the profile of the relative turbulent shear stress
towards the water surface. Similar results were obtained by
COLMAN (1969) who interpreted his flume data on velocity
profiles with suspended sediment, to mean that the presence
of suspended sediment reduces turbulence effects in the outer
part of the flow.

The Longitudinal Velocity of the Flow

The results for the longitudinal velocity of the flow are giv
en in Figures 21-23. Figure 21, a plot of the relative velocity
(uIU) versus the relative depth of water (z/dl for the seven
concentration profiles P1-P7 and for the logarithmic velocity
profile, shows that the velocity profiles are nearly logarith
mic. The figure is plotted using ENG1 of Enertonics Research
Inc. 1983 which, due to the large change in the slope of the
velocity profile in the vicinity of (z/dl = 0.1, cannot draw a

Figure 21. Variation of the relative longitudinal velocity with the rela
tive depth of water.

smooth curve starting from the origin to the value of (uIU) at
(z/d) = 0.1 without having the curve go slightly below the
x-axis [Iz/d l < 0], this resulted in curves which intercepted
the (uIU) axis at (z/d) = O. The effect of the concentration on
the velocity profiles is shown in Figures 22 and 23. Figures
22a and 22b show a plot of (uJU) versus (z/d) for profiles PI
and P7 respectively for bottom concentrations Co = 1, 1.2214,
1.4918,1.8221,2.2255, and 2.7183. It can be seen from Figure
22a that the variation in bottom concentration does not have
an effect on the profile of the relative velocity; similar results
are obtained for profiles P2-P6. For profile P7 however, Fig
ure 22b shows that an increase in the bottom concentration
results in a decrease in the relative velocity (uJU), i.e. a steep
ening of the relative velocity profile. Figure 23 shows a plot
of [u/Utc, = 1)] versus (z/d) for profile P2. Herein Ute, = 1)
is the water surface velocity at the beginning of the estuary
and is equal to unity. The figure shows that an increase in
bottom concentration Co results in an increase in the longi
tudinal velocity u.

The experimental data of ASCE (1963), BARTON and LIN
(1955), EINSTEIN and CHIEN (1955), LYN (1988), and VANONI
and BROOKS (1957) is used for the verification of the results
obtained for the longitudinal velocity of the flow as shown in
Figures 24-26. Figure 24 shows a plot of the relative longi
tudinal velocity (uIU) versus the relative depth of water (z/d)
for the seven concentration profiles P1-P7 and for the exper
imental data of BARTON and LIN (1955), EINSTEIN and
CHIEN (1955), LYN (1988), and VANONI and BROOKS (1957).
It can be seen from the figure that good agreement is ob
tained between the analytical and the experimental results.
Figure 25 shows a plot of (uIU) versus (z/d) for profile P7, for
bottom concentration Co varying from 1.0 to 2.7183, and for
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Figure 22 a and b. Effect of the concentration of suspended sediment
on the profile of the relative longitudinal velocity.

the experimental data of ASeE (1963) for clear water and for
a concentration of 15.8 (gil). The figure shows that an in
crease in bottom concentration would result in a steepening
of the velocity profile particularly near the bottom, e.g. for a
given value of (z/d) the value of (uIU) for (co = 1) is larger
than for (co = 1.2214). The experimental data of ASeE (1963)
exhibits the same trend, i.e. the profile for a concentration of
15.8 (gil) is steeper than the profile for clear water. The
agreement between the analytical and the experimental re-
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Figure 23. Effect of the concentration of suspended sediment on the pro
file of the longitudinal velocity.
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suIts is only fair perhaps because the experimental data re
ported in ASeE (1963) gives a considerably flatter velocity
profile than the logarithmic velocity profile, e.g. the velocity
profile for Co = 15.8 (gil) coincides with the logarithmic ve
locity profile for (z/d) values between 0 and 0.3 then becomes
flatter, and the profile for clear water is even more flat in
stead of coinciding with the logarithmic velocity profile. Fig
ure 26 shows a plot of [u/U( Co = 1)] versus (z/d) for profile
P2, for bottom concentration Co varying from 1.0 to 2.7183
and for the experimental data given in ASCE (1963). It can
be seen from the figure that the experimental data confirms
the analytical findings that an increase in the concentration
results in an increase in the relative longitudinal velocity.
COLMAN (1969) reported that transported sediment increases
the velocity at all elevations with the increase being progres
sively greater at large distances from the bed. LYN (1988)
also reported that the presence of sediment causes the veloc
ity profile to deviate from the clear water velocity profile with
the deviation increasing with increasing suspended load but
the effect of the presence of sediment on the velocity profile
is confined to a layer adjacent to the bed.

Effect of Concentration on von Karman's (}\ )

It would be interesting to examine the analytical solution
presented in the present study in the light of the recent work
of COLMAN (1981) on the effect of sediment concentration on
the velocity profile. For this reason the logarithmic velocity
profile, rather than the power law velocity profile presented
in ROUSE (1959), is used in the construction of the solution
of the zeroth approximation. Early work on the effect of the
concentration of suspended sediment on von Karman's K

[EINSTEIN and CHIEN (1955), ELATA and IpPEN (1961), and
VANONI (1946)], shows that K decreases with an increase in
the concentration of suspended sediment. This is stated in
books on sediment transport such as that by GRAF (1971).
Colman (1981) re-analyzed early data together with new data
of his own according to his method (COLMAN, 1981), and
showed that K is essentially constant over a wide range of
flows varying from flows with no sediment suspension to
flows with near capacity load of suspended sediment. Accord
ing to COLMAN (1981) the reason for the contradiction be
tween the results obtained by his method and by the tradi
tional method, (VANONI, 1946), is that the traditional method
does not take into consideration the existence of the wake
region which was not known to researchers on sediment
transport at the time the traditional method was developed.

The results obtained, from the present study, for von Kar
man's K are given in Figure 27 which shows a plot of the
bottom concentration Co versus K computed according to the
traditional method of VANONI (1946) and to the more recent
method of COLMAN (1981). The concentration near the bot
tom Co is presented as a percentage of concentration by vol
ume and plotted on logarithmic scale. In the figure the re
sults are fitted by a linear regression and show that Colman's
method gives higher values for K than the traditional method
of VANONI (1946). The figure also shows a significant de
creases in K, with an increase in the concentration of sus
pended sediment, whe~ the results are analyzed by the tra
ditional method; this would be more clear when the percent
age of concentration by volume is plotted on arithmetic scale,
although such a plot is not given here in order to save journal
space.
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Figure 27. Effect of the concentration of suspended sediment on von
Karman's K computed by the recent method of Colman (1981) and by the
traditional method of Vanoni (1946).

The verification of the analytical results with the flume
data of ASCE (1963), COLMAN (981), ELATA and IpPEN
(961), LYN (988), PARKER and COLMAN (986), and VAN
ONI (946) taken from COLMAN (981); is shown in Figure
28. Some of the data of IpPEN (961) is not shown in the
figure because the data is for a much higher concentration
than that used by the other investigators which makes it in
convenient to include in the figure. In the figure both the
analytical results and the flume data are fitted by a linear
regression. The top line is the regression line for the flume
data analyzed by COLMAN'S (1981) method; the second line
from the top is for the analytical results analyzed by the same
method. The third line is the regression line for the analytical
results analyzed by the traditional method and the bottom
line is for the flume data analyzed by the same method. Fig
ure 28 shows good qualitative agreement between the ana
lytical and the experimental results in that Colman's method
gives higher values for K than the traditional method and
that the traditional method gives a significant decrease in K

with an increase in the concentration of suspended sediment.

CONCLUSIONS

The equations of conservation of volume, mass, and mo
mentum, and the equation of kinetic energy of turbulence,
are formulated for the three dimensional flow of a mixture of
water and sediment. The equations are closed and expressed
in dimensionless form to represent conditions in well mixed
estuaries for ebb flow departing from slack. This results in
four partial differential equations (eqs, 8,27,29, and 30) for
the conservation of volume, of mass, and of momentum in the

Figure 28. Verification of the effect of the concentration of suspended
sediment on von Karman's K using the experimental data of ASCE (1963),
Colman (1981), Elata and Ippen (1961), Lyn (1988), Parker and Colman
(19861, and Vanoni (1946) taken from Colman (1981).

y and z-directions, and two integro differential equations
(eqs. 28 and 31) for the conservation of momentum in the
x-direction and for the kinetic energy of turbulence.

Nine 'IT-terms appear namely; the aspect ratios (RIL) and
(RJW); the density gradient (~p/p); a form of Ekman number
E = (Ema/f12); Reynolds number R = (U R p)l-lw); a form of
Richardson number R* = (U2/(~p/p) g R); Rossby number R**
= (U/f1l; and two forms of an eddy Reynolds number namely,
R* = (p U2/Tmaxl and R** = (U RlEmax>. The numerical values
of the nine 'IT-terms are as follows: (RIL) = 4.458 X 10- 5 ,

(RJW) = 4.38 X 10 3, (~p/p) = 0.1416, E = 1.05 X 10 7, R =
1.6568 X 105, R* = 1.0414 X 10-\ R** = 2.121 X 10- 3 , R*
= 1.445, and R** = 0.8968. The magnitude of each term in
eqs. 27-31 is evaluated and the 'IT-terms (RIL), (RJW), E, R:",
R*, and R** are used as perturbation parameters.

The zeroth approximation is obtained by setting the per
turbation parameters equal to zero; this results in five partial
differential equations (eqs, 38, 39, 41, 42, and 43) for the con
servation of volume, of mass, and of momentum in the y and
z-directions, and for the kinetic energy of turbulence, and an
integro differential equation (eq. 40) for the conservation of
momentum in the x-direction. The solution of the zeroth ap
proximation is presented as a Fourier series of the eigen
functions (<I>n) = (2)112 sin(hn

l /2 z), of the Sturm-Liouville prob
lem r + hn S = 0, s(O) = 0, sO) = 0; where the eigenvalues
hn = (n'IT)2, n = 1, 2, ....

The solution of the zeroth approximation for the concentra
tion of suspended sediment c(x, z) shows that the concentra
tion increases along the estuary in the downstream direction,
as shown in Figure 9; this is in agreement with previous re-
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search work on sedimentation. The results obtained for the
coefficient of exchange of mass E show that E increases from
zero at the bottom of the estuary to a maximum value at a
relative depth (z/d) of about 0.1 then decreases to a nearly
constant value towards the water surface as shown in Figure
10. This is in agreement with the distribution of E reported
by ICHIYE (1966) for the nepheloid layer on the Atlantic slope.

The results obtained for the turbulent shear stress T show
that: (1) (T/pu2

) increases from zero at the bottom of the es
tuary to a maximum value at (z/d) of about 0.2 then decreases
towards the water surface as shown in Figures 12-15. (2) For
the same bottom concentration co, (r/pu") decreases with the
increase in the uniformity of the concentration distribution,
as shown in Figure 12; e.g. (r/pu") for profile PI, where the
concentration distribution decays rapidly towards the water
surface is larger than (r/pu") for profile P7 where the concen
tration distribution is more uniform. (3) For the same con
centration profile, (r/pu") is nearly invariant for the different
bottom concentrations co, as shown in Figure 13. Also (T/pu2 )1

(T/pu2 )rnax is invariant with the bottom concentration as shown
in Figure 14. (4) (r/pu'') increases away from the center line
of the estuary towards the sides as shown in Figure 15.

The flume data of ALFRINK and VAN RIJIN (1983), ANWAR
and ATKINS (1980), KOUTITAS and O'CONNER (1981), and
LYN (1988) is used for the verification of the turbulent shear
stress results obtained from the present study as shown in
Figures 16-20 which give a plot of (TITrna) versus (z/d). Of the
above flume data that of LYN (1988) is the only data which
corresponds to conditions similar to the present study in that
the data is for turbulent open channel flow over a flat sand
bed in equilibrium with a suspension of sand. The data of
ALFRINK and VAN RIJIN (1983) is for a steep-sided trench
perpendicular to the mean flow direction, the data of Kou
TITAS and O'CONNER (1981) is for a steep-sided channel
dredged at right angles to the main direction of the flow and
sediment transport, and the data of ANWAR and ATKINS
(1980) is for clear water tidal flow. Figure 16 shows good
agreement between the analytical findings of the present
study and the flume data of LYN (1988). Figures 17 and 18
respectively, show only fair agreement between the analytical
findings and the experimental results of ALFRINK and VAN
RIJIN (1983) and of KOUTITAS and O'CONNER(1981) in view
of the difference in the hydraulic conditions for which the
present study is formulated and the hydraulic conditions un
der which the experimental data was collected. Figure 19
shows a comparison between the turbulent shear stress pro
files obtained from the present study and from the experi
ments of ALFRINK and VAN RIJIN (1983), KOUTITAS and
O'CONNER (1981), and LYN (1988) which are shown in Fig
ures 16-18. It can be seen from Figure 19 that the profiles
obtained from the present study and from the flume data of
ALFRINK and VAN RIJIN (1983), KOUTITAS and O'CONNER
(1981), and LYN (1988) exhibit the same trend in that the
turbulent shear stress increases from zero at the bottom to a
maximum value at some distance away from the bottom then
decreases towards the water surface. Figure 20 shows that
the presence of sediment causes the shear stress profile to
deviate from that for clear water flow in the upper region of
the flow where (z/d) is larger than about 0.5 indicating a fast-

er dampening of the profile of the relative turbulent shear
stress towards the water surface for sediment laden flow
(LYN, 1988) than for clear water flow (ANWAR and ATKINS,
1980).

The results obtained from the present study for the longi
tudinal velocity of the flow are given in Figures 21-23 and
indicate that: (1) The velocity profiles are nearly logarithmic
as shown in Figure 21. This is verified in Figure 24 which
shows good agreement between the velocity profiles obtained
from the present study and the experimental data of BARTON
and LIN (1955), EINSTEIN and CHIEN (1955), LYN(1988), and
VANONI and BROOKS (1957). (2) The profile of the relative
velocity appears to be invariant with bottom concentration;
this is particularly so for profiles P1-P6 as shown in Figure
22a for profile Pl. For profile P7, an increase in bottom con
centration results in a steepening of the profile of the relative
velocity as shown in Figure 22b. This is verified in Figure 25
which shows fair agreement between the velocity profiles ob
tained from the present study, for bottom concentrations
varying from 1 to 2.7183, and the experimental data of ASCE
(1963). (3) An increase in bottom concentration results in an
increase in the longitudinal velocity as shown in Figure 23
and verified in Figure 26 which shows fair agreement be
tween the results obtained from the present study and the
data of ASCE (1963). This is in agreement with COLMAN
(1969) who reported that transported sediment increases the
velocity at all elevations. LYN (1988) also reported that the
increase in the concentration causes the velocity profile to
deviate more from the clear water velocity profile although
the deviation is confined to a layer adjacent to the bed.

Analysis of profile P7 for the effect of the concentration of
suspended sediment on von Karman's K shows that: (1) Col
man's method (COLMAN, 1981) gives higher values for K than
the traditional method (VANONI, 1946) as shown in Figure
27. This is in agreement with the experimental data of ASCE
(1963), COLMAN (1981), ELATA and IpPEN (1961), LYN(1988),
PARKER and COLMAN (1986), and VANONI (1946) as shown
in Figure 28. (2) There is a significant decrease in K with an
increase in the concentration of suspended sediment, when
the velocity profiles are analyzed by the traditional method
as shown in Figure 27 (this would be more clear when the
percentage of concentration by volume is plotted on arith
metic scale rather than on logarithmic scale; such a plot is
not shown here in order to save journal space). This is in
agreement with the experimental data of ASCE (1963), COL
MAN (1981), ELATA and IpPEN (1961), LYN (1988), PARKER
and COLMAN (1986), and VANONI (1946) as shown in Figure
28.
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The following symbols are used in this paper.
a numerical constant.
A maximum tidal amplitude.
c concentration of suspended sediment by

volume.
concentration of suspended sediment by
volume at a distance (a) from bottom of
channel.
concentration of suspended sediment by
volume at bottom of estuary.
average water depth in estuary.
Ekman number.
Coriolis parameter = 20 sin 9, taken as
10 4 (sec 1).

acceleration due to gravity.
closure function for diffusion.
indices.
mixing length.
length of estuary.
dissipation length parameter.
Manning's coefficient of roughness.
pressure.
hydraulic radius of estuary.
Reynolds number.
Richardson number.
Rossby number.
eddy Reynolds numbers.
slope of water surface of estuary.
time.
respectively, longitudinal, transverse, and
vertical velocities of flow.
longitudinal velocity at free surface.
depth averaged longitudinal velocity for
ebb flow departing from slack.
outer velocity = 1.
shear velocity.
shear velocity at bottom of estuary.

d
E
f
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average width of estuary.
settling velocity of sediment particles.
respectively, longitudinal, transverse, and
vertical coordinates.
dependent variables, functions of x and z,
respectively.
numerical constant.
coefficient of Fourier series.
separation constant.
a number dependent on the separation
constant ~.

eigenvalues.
thickness of boundary layer = 1.
coefficient of exchange of mass.
dissipation term.
von Karman's constant.
dynamic viscosity.
kinematic viscosity.
density.
maximum difference between the densi-

e

n
d,~,(J",w,~

<Pn
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Superscripts:

Subscripts:
m
max
o
s
w

ties of the water-sediment mixture and
that of water = (Pmax - Pw).
angle between water surface in estuary
and horizontal.
component of the earth's rotation vector.
functions of (z),

eigenfunctions.
turbulent shear stress.
turbulent shear stress at bottom of estu
ary.
dependent variables, functions of z.

fluctuation from the mean.
mean value.

mixture of water and sediment.
nlaximum value.
zeroth approximation.
sediment.
water.
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