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* The equations of conservation of volume, mass, and momentum, and the equation of kinetic energy of turbulence are
~ ~ - formulated for the three dimensional flow of a mixture of water and sediment. Their solution gives the profiles of the
e concentration of suspended sediment, the coefficient of exchange of mass, the turbulent shear stress, and the longi-

tudinal velocity of the flow.
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SUMMARY

The equations of conservation of volume, of mass, and of
momentum, and the equation of kinetic energy of turbulence
are formulated for the three dimensional flow of a mixture of
water and sediment. The equations are closed and expressed
in dimensionless form to represent conditions in well mixed
estuaries for ebb flow departing from slack. The method of
perturbation is used to reduce the number of terms in each
equation by keeping only terms which have large magnitude.

Solution of the zeroth approximation gives the profiles of
the concentration of suspended sediment, the coefficient of
exchange of mass, the turbulent shear stress, and the longi-
tudinal velocity of the flow. It is found that: (i) the concen-
tration of suspended sediment increases along the estuary,
(ii) the coefficient of exchange of mass increases from zero at
the bottom to a maximum value at a relative depth of about
0.1 then decreases to a nearly constant value towards the
water surface, (iii) the turbulent shear stress increases from
zero at the bottom to a maximum value at a relative depth
of about 0.2 then decreases towards the water surface, (iv)
the turbulent shear stress increases from the center line of
the estuary towards the sides of the estuary, and (v) the pro-
file of the longitudinal velocity is nearly logarithmic.

The effect of the concentration of suspended sediment on
the turbulent shear stress, the longitudinal velocity of the
flow, and von Karman’s « is studied. It is found that an in-
crease in the concentration of suspended sediment would re-
sult in: (i) no appreciable change in the profile of the turbu-
lent shear stress, (ii) an increase in the longitudinal velocity
of the flow, and (iii) a slight decrease in von Karman's k. Good
agreement is obtained between the analytical findings of this
study and the experimental and field data available in the
literature.

95082 received 28 June 1995; accepted in revision 2 July 1996.

INTRODUCTION

The mechanics of sediment suspension has been investi-
gated experimentally for more than five decades and perhaps
has reached the stage of a diminishing return. Yet, the ques-
tion regarding the interdependence between the concentra-
tion of suspended sediment and the flow parameters such as
the velocity profile, the coefficient of exchange of mass, and
the turbulent shear stress remains without a satisfactory an-
swer. An analytical investigation of the subject would be use-
ful in motivating and guiding future experimental research
on suspended sediment. To this end this study was under-
taken. Estuaries are selected for the study in view of the im-
portant functions assigned to estuaries in the human envi-
ronment. Sediment suspension is studied rather than bed
load movement, because the most important shoaling prob-
lems arise from the material ordinarily carried in suspension
in fresh water streams rather than from the bed load. Well
mixed estuaries are investigated rather than salinity strati-
fied estuaries which have added complexities caused by the
presence of the fresh-salt water interface.

The problem could be formulated as a two component flow
which consists of a mixture of water and sediment or by the
principle of continuum mechanics where water and sediment
are considered as a continuum with heterogeneous density.
A two component flow formulation is adopted herein. Soo
(1967) and VasgLIEV (1969) reported on two component flow
formulations for the equations governing sedimentation. Ka-
MEL (1976) presented a two dimensional formulation for the
equations of conservation of volume, of mass, and of momen-
tum and for the equation of kinetic energy of turbulence for
a two component flow, water and sediment. The equations
were closed, using the semi-empirical theories of turbulence,
and were made dimensionless to represent conditions in well
mixed estuaries for flow near slack. The method of pertur-
bation was used to reduce the number of terms in each equa-
tion by keeping only terms which have large magnitude. Fig-
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Figure 1. Profiles of the relative concentration of suspended sediment,
the relative coefficient of exchange of mass, and the relative longitudinal
velocity; the zeroth approximation (Kamel, 1976).
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Figure 2. Profiles of the relative concentration of suspended sediment,
the relative coefficient of exchange of mass, and the relative longitudinal
velocity; the first approximation (Kamel, 1976).

ures 1 and 2 show the results obtained from the solution of
the zeroth and the first approximations respectively, for the
concentration of suspended sediment, the coefficient of ex-
change of mass, and the longitudinal velocity. It can be seen
from the figures that the profile of the coefficient of exchange
of mass obtained from the first approximation has its maxi-
mum value closer to the bottom than that obtained from the
solution of the zeroth approximation. The figures also show
that the velocity profile obtained from the first approximation
is closer to a logarithmic velocity profile than that obtained
from the zeroth approximation.

In a subsequent study, KAMEL (1978) used quadratures to
reduce the equations of the zeroth approximation to a quasi-
linear total differential equation in one dependent variable,
namely the longitudinal velocity of the flow. Figure 3 shows
the three types of velocity profiles obtained from the solution.
In Figure 3, profile I is approximately a logarithmic velocity
profile, profile II represents return flow near the bottom of
the estuary, and profile III represents a density current. In
profile III, the non zero velocity at the water surface is due
to imposing the boundary condition (w/U) = 1 at the free sur-
face. The equations of the first order perturbation for Rossby
number were formulated as integral equations with degen-
erate kernel which were solved by reducing them to a system
of linear algebraic equations. It was proved that the solution
of the integral equations exists and is unique. Figure 4 shows
profiles of concentration of suspended sediment obtained
from the solution of the zeroth approximation and the first
order perturbation for Rossby number. It can be seen from
the figure that the difference between the two solutions is
small.

KaMmEL (1987) presented an integral equation solution of
the equations of the zeroth approximation and the first order
perturbation for Rossby number. Figure 5 shows the varia-
tion of the concentration of suspended sediment along the

pd
" A
A Profile I / }'* |
5 b 0 Profile II B/ ,g %
N 0 bProfile III yd ,"'/ !
Voo /B/ i
. F
3 yd /
g .6 g ¥ 8
: e / \
Y 5 I 4 / ‘;“
£ /H/ 14 mx &
Q e 7 4
[0} /
T .4 it « },)
o / i Y
> S/ S i
3. o )'d
q e
? / yd ‘
a4y > )
- {
/ e /
d g A
//A -
8 \n//_/—-—f_'_w-
T T T T T T 1 T T T i
-1 8 .1 .2 3 .4 5 6 7.8 .9 1 1112

Relative longitudinal velocity CuUD

Figure 3. Types of the velocity profiles obtained from the solution of the
zeroth approximation (Kamel, 1978).
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Figure 4. Comparison between the profiles of the relative concentration
of suspended sediment obtained from the solution of the zeroth approxi-
mation and the first order perturbation for Rossby number (Kamel, 1978).

estuary. Figure 6 shows the profiles of the concentration of
suspended sediment, at x = 0.1, obtained from the solution
of the zeroth approximation and the first order perturbation
for Rossby number; here also the difference between the two
solutions is small. The reason for the small difference be-
tween the solutions of the zeroth approximation and the first
order perturbation for Rossby number is that the latter shows
the effect of the inertia terms only which are neglected in the
equations of the zeroth approximation. In addition, the equa-
tions of the zeroth approximation included the significant
terms, consequently higher approximations resulted in little
improvements on the solution obtained from the zeroth ap-
proximation. It is noted that Figures 1 and 2 show a larger
difference between the profiles of the concentration of sus-
pended sediment obtained from the solution of the zeroth and
the first approximations than the difference shown in Figures
4 and 6. The reason is that Figure 2 shows the solution of
the first approximation, which is the superposition of the lin-
early independent solutions of the first order perturbations
for Rossby and Ekman numbers (MiLLMAN and KELLER,
1969), while Figures 4 and 6 show the solution of the first
order perturbation for Rossby number only.

FORMULATION

The following six assumptions are made: (1) there is no
deposition of suspended sediment and there is no pick up, by
the flow, of bottom sediment; (2) the settling velocity of the
sediment particles is constant; (3) the effect of salinity on the
sedimentation process is negligible; (4) the longitudinal ve-
locities of the water particles and of the sediment particles
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Figure 5. Profiles of the relative concentration of suspended sediment
along the estuary; the zeroth approximation (Kamel, 1987).
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Figure 6. Comparison between the profiles of the relative concentration

of suspended sediment obtained from the solution of the zeroth approxi-
mation and the first order perturbation for Rossby number (Kamel, 1987).
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Figure 7. a and b. Definition sketches: (a) the tidal parameters, and (b)
the system of coordinates used.

are equal; (5) the vertical velocity of the sediment particles
is equal to the vertical velocity of the water particles plus the
settling velocity of the sediment particles, and (6) the pres-
sure is hydrostatic. The first assumption is justified since em-
phasis in this study is on the mechanics of sediment suspen-
sion without probing into the interaction between the flow
and the bed. Assumption (2) is based on the postulate that
the settling velocity of the sediment particles is independent
of the concentration; the assumption is justified for small con-
centrations of sediment. Assumption (3) neglects the effect of
density differences due to salinity. It is believed that in well
mixed estuaries salinity has a small effect on the sedimen-
tation process. Assumptions (4) and (5) could be justified pro-
vided that: (a) the size of the sediment particles is small com-
pared with the length scales of turbulence; this is the case in
estuaries where most of the suspended material is composed
of fine constituents, and (b) the acceleration of the particles
is small compared with the acceleration due to gravity; this
is the case in estuarine flow since the tidal periods are long
and also since the problem is formulated for flow near slack,
Figure 7a, where the flow velocities and accelerations are

small. Assumption (6) is justified since the flow acceleration
is small.

For a three dimensional flow with the axis ox horizontal,
coinciding with the bottom of the estuary, the axis oz verti-
cally upwards, and the axis oy perpendicular to the (x, z)
plan, Figure 7b; the equations of conservation of volume, of
mass, and of momentum, for shallow water, take the form,
(PEDLOSKEY, 1987):

Equation of conservation of volume:
W "
ox dy oz

Equation of conservation of mass:

ap + d(pu) + apv) + Apw) _

at ox ay 9z

0 (2)

Equation of conservation of momentum in the x-direction:

P P P
P LY il

D d 0; 0, 0
—u—pfv=——p+ LI A (3)
0x 0x ay 0z

Equation of conservation of momentum in the y-direction:

nov 5 wov 5 wov
D 9 a 0, 9
p— 4 pfu= -2 Z 4 T LBy
Dt ay X ay 0z

Equation of conservation of momentum in the z-direction:

oW oW oW
PLaAMEEEPY CAVIPY ochid

pD_wz_a_p+ 8x+ ay+ Jz ®)
Dt Jz ox ay 9z

where
J i)
tu—+v—+ w— (6)

where g is the acceleration due to gravity; p is the pressure;
u, v, and w respectively are the longitudinal, the transverse,
and the vertical velocities of the flow; x, y, and z respectively,
are the longitudinal, the transverse, and the vertical coordi-
nates; t is the time; p is the density; p is the dynamic viscos-
ity; and f is the Coriolis parameter.

To the above equations, the equation of kinetic energy of
turbulence is added. This equation is obtained by multiplying
the equation of conservation of momentum in the x-direction
(eq. 3) by u, the equation of conservation of momentum in the
y-direction (eq. 4) by v, and the equation of conservation of
momentum in the z-direction (eq. 5) by w, adding the result-
ing three equations, expanding all terms and taking the time
average, then subtracting the equation of kinetic energy of
the mean flow. The equation of kinetic energy of the mean
flow is obtained by: expanding the equation of conservation
of momentum in the x-direction (eq. 3), taking the time av-
erage, then multiplying by u; expanding the equation of con-
servation of momentum in the y-direction (eq. 4), taking the
time average, then multiplying by v; expanding the equation
of conservation of momentum in the z-direction (eq. 5), taking
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the time average, then multiplying by w; then adding the
above three equations; (TENNEKES and LUMELY, 1972).

advection

— .
Lo , p{ﬁa(u ),
ax
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v A i

2 at x 20 ox
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ox dy
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+l alu’u’) V(vv)_’_lva(ww)
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diffusion
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.

issipation
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D
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A(w'w')
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ay 0z
+
ox ay o0z

ou’\? au'\? au’\? av'\’ av'\?
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+

t
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) () () () =0 (7
0z ox ay oz
where the superscripts “™ and “” respectively denote the

mean value and the fluctuation from the mean value, andq 2
= (u'u’) + (v'v') + (w'w’). In eqs. 1-7 terms which included
the third moments (u,'u,'u,’) were neglected.

For a two component flow which consists of a mixture of
water and sediment, the equations of conservation of volume,
of mass, and of momentum, and the equation of kinetic en-
ergy of turbulence (egs. 8-13) are obtained from egs. 1, 2, 3,
4,5 and 7 as follows. The equation of conservation of volume
(eq. 1) remains unchanged and is given a new number as eq.
8. The equation of conservation of mass (eq. 9) is obtained
from eq. 2 by replacing the density p once by (1 — ¢)p,, and
once by cp,, where ¢ is the concentration of suspended sedi-
ment by volume, and the subscripts “s” and “w” respectively,
denote sediment and water. The resulting two equations are
added, each term is expressed by its mean value and its fluc-
tuating component and the time average of all terms is taken.
Similarly, each of the three equations of linear momentum
(egs. 10-12) are obtained from eqs. 3-5 by replacing the den-
sity p once by (1 — ¢)p, and once by cp,. The resulting two
equations are added, each term is expressed by its mean val-
ue and its fluctuating component, and the time average of all
terms is taken. The equation of kinetic energy of turbulence
(eq. 13) is obtained as follows: multiplying the equation of
conservation of momentum in the x-direction (eq. 3) by u, the
equation of conservation of momentum in the y-direction (eq.
4) by v, and the equation of conservation of momentum in the
z-direction (eq. 5) by w, and adding the resulting three equa-
tions; in the resulting equations the density p is replaced once
by (1 — c)p,, and once by cp, and the resulting two equations
are added, each term is expressed by its mean value and its
fluctuating component and the time average of all terms is
taken, then subtracting the equation of kinetic energy of the
mean flow for a two component flow. The equation of kinetic
energy of the mean flow for a two component flow is obtained
from the equation of kinetic energy of the mean flow by re-
placing the density p once by (1 — ¢)p,, and once by cp, then
adding the resulting two equations (VASELIEvV, 1969).

Because flow in estuaries is essentially two dimensional
except for turbulence which is strongly three dimensional,
the changes in the y-direction could be neglected except for
terms representing turbulence, i.e. fluctuating terms. There-
fore setting v = 0, d(c,p,u,w)dz = 0, and dropping over bars
for convenience, eqgs. 1, 2, 3, 4, 5, and 7 for a two component
flow take the form given by eqgs. 8-13. In eqs. 8-13 w is the
settling velocity of the sediment particles and the viscosity of

the mixture (p,,) is expressed as: p,, = p (1 + 2.5¢).
Equation of conservation of volume:
du ow
—+—=0 8
ox Jz
Equation of conservation of mass:
ac dc ac P. . dc
—tu—+w— — | ——|w—
at ax Jz (p, — pu)| 0z
ac'u’)  ac’v)  ac'w)
+ + ey + ( =0 (9)
ax ay dz

Equation of conservation of momentum in the x-direction:
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a{l(1 — c)p,, + cp,lu} + a{l(1 — c)p,, *+ cp,Juu}
ot ox

+ 3l — o)p, + cpJuw}  d(p,weu)
0z 0z

el
— (ps — pwg sin 6 ¢ + (p, — p,Jg cos 6 J idz

P
3|1 + 250, i

o
ol + 250, =
)¢

-+
ox 0z
(1 — c)p,, + cp,l(u'u"} L ¥ - op, + cp v}
[5).¢ ay
[(1 — c)p,, + cpJou’'w’)
+ c)p. ach uw -0 10)

Equation of conservation of momentum in the y-direction:

fld = op,, + cp,Ju + Aa — C)F’wa: cpJ(u'v')}

+ ¢cpJV'V) L1 - op, + cp,Jotv'w") _ 0

+ a{l(1 — c)p,,
0z

ay

(11)

Equation of conservation of momentum in the z-direction:

a{l(1 — c)p,, + cplw} + a{l(1 — c)p,, + cp,luw}
at ox

+ {1 — cp, + cplww}  d(p,weu)
0z ox

+ Apew?)  9(2p,Wew)

+ —
™ ™ (ps — puwigec

3
a1 + 250, 2
0z

P
3l + 2.50p, 2
ox

+
ox 0z

L M0~ op, + cpJu'w) L A - op, + cpJ(v'w)}
0x ay

aw'w')
+ [(1 = o)p, + cp,] P 0 (12)

Equation of kinetic energy of turbulence:

a(q2
Sl1 = o, + cpslM

advection

+ {[(1 - op, * cp,l [u

aun’) 1 av'v)
+ -u
ox 2 93X
1 ow'w') v'ou’
+ u

-u
2 ox ay

v'ow’ w'ou’
+u
ay 0z

+w

d

1 u'u’ ) 1 av'v)
—-W —-W
0z 2 0z

+ Wa(w’w’)“
0z

production

(u'u’ ) (u'w’)a—w-
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+ (u'w")ou + (w’w')&w”

0z 0z
diffusion
aa'p’) + av'p") + a(w'p’)]
ox ay 0z
(u'u’)ou’ (u'v)ov’
+[a - + +
[(1 = op, + cp.l = e
(u'w')ow’ + (u'v")ou’
15).4 ay
v')ov + v'w')ow
9y oy
+ (u'w")ou’ + v'w")ov’
0z 0z
+ (w'w")ow
0z

suspension
+ {(pS - pw)l—(m)g sin 0

1 8(0 ) -
+§gcos9f( . )dz+(cw)g

}

dissipation

a(u’u’)

al(1 + 250,

12,
+(1+ 250, Puw)
Ty

0x

DN | =

o(u'u’)
0z
+ -
0z [):4

3|1 + 2.50m, ala + 2.5c)uwa(‘(;x )]

3|(1 + 2500,

av'v)
0z

PV
ay? 0z
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du’
ay

+ {(1 + 2.5¢)w,,

&6
ERERE
SRERGIR

The terms —(p, — p,.)g sin B¢ + (p, — p,)g cos 6 | (dc/ax) dz
introduced in the equation of conservation of momentum in
the x-direction (eq. 10) and appearing as —(p, — p,,)(c'u’)g sin
8 + (1/2)p, — p.)g cos 8 | [a(c’'u')/ax] dz in the equation of
kinetic energy of turbulence (eq. 13) represent the effect of
excessive density by considering deriving forces consisting of
gravity and pressure gradient. The gravity term (p, — p.)ge,
introduced in the equation of conservation of momentum in
the z-direction (eq. 12) and appearing as (p, — p,)(c'w')g in
the equation of kinetic energy of turbulence (eq. 13), assumes
that sediment loads in the water behave as a solid body. This
would make the magnitude of these two terms considerably
larger than the other gravity terms after eqs. 12 and 13 are
closed and expressed in dimensionless form. The gravity
terms would have the same order of magnitude by making g
dimensionless as g(g) in the terms {{—(p, — p,,)g sin 6c + (p,
— pL)g cos 6 | (8¢/dx) dzl, [—(p, — p,)c'u')g sin 6 + (1/2)p, —
p.)g cos B [ [a(c’u’Vox] dz]}, and by making g dimensionless
as (Lf2)g in the terms {[(p, — p.)gc], [(p, — p.)(c'w')gl} as given
later in section V—expressing the equations in dimensionless
form.

au'\?
0z

(13)

CLOSURE

The six eqs. 8-13 contain the following unknowns: (1) the
unknowns c, u, and w; (2) unknowns caused by the presence
of terms representing the fluctuations in the concentration of
suspended sediment (c¢’) and their space derivatives, i.e.:
(¢’'u;"), and u;'(3c’/3x;); (3) unknowns caused by the presence
of terms representing fluctuations of the flow field, i.e.:
{u;'uy’), the second moments of the velocity fluctuations and
their space derivatives (u,'du;"/0x),, (3u;'/9x,)% and the third
moments of the velocity fluctuations and their space deriva-
tives (u,"u;’du, '/6x;); and (4) unknowns caused by the presence
of terms representing fluctuations in the pressure field (p’),
ie:(u'p).

The number of unknowns is reduced to the number of equa-
tions as follows: (i) the semi-empirical theories of turbulence
presented by MoNIN and YAaGcLoOM (1971) are used for the
closure of the terms representing concentration and velocity
fluctuations appearing in the equation of conservation of
mass and in the suspension term of the equation of kinetic

energy of turbulence:
a_c), (c'v') —e(a—c) and (95)
X ay 0z
(14)

where € is the coefficient of exchange of mass. (2) The exper-
imental data of Tennekes and Lumely (1972) could be used

= (cw') = —e

T, = —e(

to close the terms representing velocity fluctuations appear-
ing in the equations of conservation of momentum and in the
advection, production, and dissipation terms of the equation
of kinetic energy of turbulence:

(w'w') = 0.64u,?

(15)

_(ulwr) — U*2, (ulu/) = 4U*2,

where u, is the shear velocity, a function of the water depth;
the wall shear velocity is denoted by u.,. The above relation-
ships are only valid in the inertial sub layer, i.e. (z/d) < 1.
Lacking similar experimental relationships for the core re-
gion, the terms representing velocity fluctuations are closed
using the core region approximation of Tennekes and Lumely
(1972) as follows:

1

(W) = —(v'v') = (W'w) = 0.64u,?,

and

'

—(u'v) = —(u'w) (16)
Herein, u,2? = (1/p) and uy,® = (7o/p) where 7 is the turbulent
shear stress, a function of the water depth, and 7, is the tur-
bulent shear stress at the wall. (3) Terms representing ve-
locity fluctuations and their space derivatives in the form
(u,'0u,"/6x,) which are part of the advection term are closed
as: d(au,2)/ox; where « is a numerical constant, e.g.,

(=)

(4) In the advection term, q2 is closed as: q2 = (v/ap), a =
0.52 (BRADSHAW et al.,, 1967). (5) The diffusion term is closed
1 :
Y obC(2w) =G (M
p 2 P

as in (BRADSHAW et al., 1967):
1/2
I
{ JG)
The function G is approximated as:
T 1/2 z 2 z 3
G=|-2= —9|<-| + 36.66|= 19
) o) - o) - )] o0
where U, is the outer velocity and is equal to unity; herein

U, =U.(6) Inthe dissipation term, v(du,'/6x,)? (= E) is closed
as in BRaDSHAW et al. (1967):

T3/2
g
p

where v is the kinematic viscosity, and [ is a dissipation
length parameter which varies as Xz near the wall and R
is von Karman’s constant. L is expressed as:

L z z\? z\° z\'
04[=) + 0.2079|=| — 1.9475|=] + 1. =
(8) k (8) 75 (8) 3792(8)

3
(21)

u’'du’
X

_ 1o(uu) _ 18(0.64u,?)
2 o 2 ax

ou,?
= 0328 an
0x

Pw (18)

YA

)

5.333(

(20)

I

where 8 is the thickness of the boundary layer and is equal
to 1. Eq. 21 shows that for small values of z, the dissipation
length parameter L reduces to the mixing length € = R 2z
where R = 0.4.

The closure of BRADSHAW et al. (1967), used above is based
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on the reasoning that the shear stress profile is more closely
related to the parameters describing the turbulence structure
than to the mean velocity profile; e.g. the turbulent intensity
is related to the local shear stress, the dissipation rate is
related to the local shear stress and a dissipation length pa-
rameter which is a function of (z/3), and the energy diffusion
is related to the local shear stress and the maximum value
of the shear stress [Figure 2 of BRADSHAW et al. (1967)].

Affecting the closures given by eqs. 14-21, the closed form
of egs. 8-13 is given as:

Equation of conservation of volume:

Ju  ow

—+—=90 (8) bis

0x 0z
Equation of conservation of mass:

ac ac oc Ps . ac
+u— + —_—
(ps

= = w— - W —
at 0x oz - pw)| Oz
Jc ac ac
ole— ol e— ol e—
ox ay 0z
- - - =0 (22)
ox ay 0z

Equation of conservation of momentum in the x-direction:

H[(1 — ¢)p, + cp,lu} + HI(1 — c)p,, + cpJuu}
at X

+ KA = clp,, + cpJuw}  dp,weun)
0z 0z

sl
_ l(ps - p,)gsin 6 ¢ — (p, — p,)g cos O j (gc{) dz

oJu ou
a1 + 25 —  8|(1 + 2.5¢)p, —
( el 9l g
+
ax 0z
ad o d
+064— - Z T 23)
Jx dy 0z
Equation of conservation of momentum in the y-direction:
o i d
(1 — cp, + cpJu — == + 0.64— — L =0 (24
ox dy 0z

Equation of conservation of momentum in the z-direction:

o{l(1 — op, + cpw) + (1 — c)p,, + cp.Juw}
ot 0x

+ H(1 = clp,, + cpJww}  apweu)
0z X

_ dlpew?)  a(2p,wew

) + [(p, — pylgel

oz 0z
o d
31 + 250p, | el + 2.50m,
X 0z
+
0x 0z
o o o
T T 064l =0 (25)
ox ady 0z

Equation of kinetic energy of turbulence:

T
a -
ap
- +
3 (1 — clpy, + cp,] o
advection
T T
1 \ae/ 1 \AP
— —_ + _—
+ | [(1 — ¢)p, + cp.] 2u p 2w %
T T
P p
+ 0.32u— + 0.32w——
0x 9z
T T
1 \P 1 p
T2y 2 ey
T
1 P
Eu 0z
production

T\ou T\ oW
+ {[(1 - C)pw + Cps] 0.64 (E)& — (B)&

. (z)a_u + 064 (_)B_w
p/oz p/ oz

}

diffusion

] ] a
+il=+ =+ =
{(ax ay az)

o) - -

suspension

Tmax
T

pU,

ac
+ = in 6| e—
(p, — pu)g sin (e ax)

1
- i(ps - pw)g cos 6 j

ac
- (ps — pw)g(ea)

dissipation

1/2 2
+ 402 lo.4s(Z) + 0.20798 (2
p ) )
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Kame!

41

3
z Z
~ 1.94758| = | + 1.37928

: o

(1 + 2.5¢)9| - P

- 0.96p,) P/ @0 + A+ 280 —

ax
T
1+ 2.5c)8(—)
+ 9 P/ l(az) ' =0 (26)

oz

EXPRESSING THE EQUATIONS IN
DIMENSIONLESS FORM

The physical data of the Delaware estuary, U.S.A. pre-
sented by EAGLESON (1966), and by KaAMEL (1972) is adopt-
ed. Maximum tidal amplitude A = 1.67 (m), average water
depth in estuary d = 6.41 (m), length of estuary L. = 1.438
X 10° (m), average width of estuary W = 1,463 (m), maxi-
mum longitudinal velocity U,,,, = 0.67 (m/s), maximum wa-
ter surface slope S,,, = 2.17 X 10-5, Manning’s coefficient of
roughness n = 0.024, depth averaged longitudinal velocity for
ebb flow departing from slack U= 0.0305 (m/s), average wa-
ter surface slope for ebb flow departing from slack S = 4.49
X 10-8, maximum concentration of suspended sediment by
volume ¢, = 10%, p, = 103 (kg/m?), and v, = 1.18 X 10°¢
(m?/s). With p,,.., = [(1 = cy)p,, + cop,] = 1.165 p,, (kg/m3), the
maximum difference between the densities of the water-sed-
iment mixture and that of water Ap = 0.165 X 10° (kg/m?).
The maximum turbulent shear stress for ebb flow departing
from slack is expressed as T,,, = Pmax £ W S and is computed
to be equal to 0.75 (kg/m s2). The maximum coefficient of
exchange of mass given by EAGLESON (1966), following an
analysis by G. I. Taylor for longitudinal dispersion in a
straight pipe, could be expressed as €, = 63.33 (//R"6) UR,
where R is the hydraulic radius of the estuary and is taken
to be equal to the average water depth in the estuary d. For
ebb flow departing from slack €,,,, is computed to be equal to
0.218 (m?%s).

To reduce eqgs. 8, 22, 23, 24, 25, and 26 to dimensionless
form,let £ ', L, R, W, U, 1...., €max> P> Ap, and p,, characterize
respectively, the typical time, the horizontal length, the ver-
tical length, the transverse length, the depth averaged lon-
gitudinal velocity for ebb flow departing from slack, the max-
imum shear stress for ebb flow departing from slack, the
maximum coefficient of exchange of mass for ebb flow de-
parting from slack, the density of the mixture of water and
sediment, the maximum difference between the densities of
the water-sediment mixture and that of water, and the dy-
namic viscosity of water. Replacing the variables f, x, y, z, u,
W, W, T, € p, C, i, and g, by their scaled counterparts f(f), (L)x,
(W)y, (R)z, (Uu, (RU/L)w, (Uw, (7,07, (€,.)€, (p,)p, (Ap/p)e,
()1, and (g)g, the dimensionless form of egs. 8, 22, 23, 24,
25, and 26 is given, after a little algebraic manipulation, by
egs. 8, 27, 28, 29, 30, and 31 which are for steady state con-

ditions since the intention is to present the steady state so-
lution of the problem.

Equation of conservation of volume:

du ow

—+—=0 (8) bis
ax oz
Equation of conservation of mass:
ac ac
3(6 —) ] (e ~)
P b g Ry ke ke AW
Jz ps — P 9z L| ox dz dy
3 e—
ox
B ax (27)

Equation of conservation of momentum in the x-direction:

. dlcu) or
W -z
0z firA

(p, = p.)g cos B f%dz ~ P
R or Ap R :
= + {?g@} (sin 8)X(p, — p.)gc}
R d(uu)
L P o

o(uw)
0z

d(cuu)
ox

}

ou

Pw)

+ (ps —

w

dlcuw) ot
+ e
dz ax

+ (py — pu)

da%u

l)\‘I

R

2.5, (28)

R 2
Equation of consevation of momentum in the y-direction:

ot

oy o (29)

Ror
+ — fu=——
lpw + (p, — puicl fu 0

Equation of conservation of momentum in the z-direction:

i — BEE o pates ¢
Ps P8 Ps 5z 3%
Tmax ROT R V.Va(cu) + Fo.4 dlew)
S A — o "'
pU2Way L P ox RS,
T ROT  (RY’|  a(uw) dcuw)
i e + (p, —
o2 L ax (L) {Pw ox (ps — pu) ox
+ pwG(WW) +(p, - w)a(cww)}
oz 0z
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UR/\L

2 a(caw)
] IS ) R
ox ox

Equation of kinetic energy of turbulence:
T

a_
Tdu lu p Ps — Puw ac
LR N N 0 Y g
paz 2 oz p & az

372
o T TmaxZ T
(pU1 p ‘5) (p)
+

0z Z

R b
W dy dy
T Tmax T
U b 8 e
R Pl p N ap
L ax ox
T T T
d— o— a- 5 3
N S N LN L
oz 0x 0z pox poz
_ (Ap R\ (RY
p SL?JUR \L
B oc
- X
uvzg cos GJ' dz
p ox
5T [ ag
—_ —_— _a R a 1
UR | 22 p oz (62)

2 2
L(ByTow  (Ryvw b P b P
L/ pox W/UR| p ay? p dy?

2
T

2t o|*

(B (e Vo m f P ) 31)
=]y = += — |(ox
L/ \UR/ | p ox? p ¢ X

The term [(7/p)*?/z] in the left hand side of equation 31 does not
present a singularity at (z = 0) since Lim,_, [(/p)¥%/z] = 0.

Nine w-terms appear in eqs. 27-31 namely; the aspect ra-
tios (R/L) and (R/W); the density gradient (Ap/p); a form of
Ekman number E = (e, /f L?); Reynolds number R = (UR
Pw/lky); @ form of Richardson number R, = (U%(Ap/p)g R);
which is Froudes number square (U%gR) divided by the den-
sity gradient (Ap/p); Rossby number R, = (UAL); and two
forms of an eddy Reynolds number namely; R* = (p U%7,,,.)
and R** = (U Rl/e,,). The numerical values of the nine
w-terms are as follows: (R/L) = 4.458 X 1075, (R/W) = 4.38
X 1073, (Ap/p) = 0.1416, E = 1.05 X 107, R = 1.6568 X 107,
R, = 1.0414 X 1074 Ry, = 2.121 X 103, R* = 1.445, and
R** = 0.8968. The magnitude of each term in eqs. 27-31 is
evaluated and the m-terms (R/L), (R'W), E, R, R, and Ry,
are used as perturbation parameters. Perturbation methods
for treating boundary layer problems (NAYFEH, 1985) are not
used here; the equations of the zeroth approximation for the
entire flow domain are solved analytically.

THE ZEROTH APPROXIMATION

The equations of the zeroth approximation, eqs. 33-37 are
obtained by setting the perturbation parameters equal to zero
in egs. 27-31 (vaN DYKE, 1964). To these equations, the
equation of conservation of volume (eq. 8) is added in the form
of eq. 32. Thus:

Equation of conservation of volume:

J o
Mo L WMo _ (32)
0x 0z

Equation of conservation of mass:

dc,
aﬁog
P L

w
0z ps — P 0Z

=0 (33)

Equation of conservation of momentum in the x-direction:

. dcou,)

ac
—pW—— + (p, — p.)g cos O f—o dz —
dz ax

a7,

Pl 0 4

Equation of conservation of momentum in the y-direction:
o
[py + (py = pulGolfay — — — — =0 (35)
oy
Equation of conservation of momentum in the z-direction:
ac,

0
% 4 (p, — pgc + 2 =0 (36)

w2
Pe oz oz

Equation of kinetic energy of turbulence:
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PoU, po d Po
+ + =0 (37)
0z 4

a(To)
Po To auCi Ps ~ Pw ( BCO)
—g|l e —
Po

In eq. 37 1,,,, has been replaced by 7 in view of the absence
of a reasonable estimate for 7, and since 7,,, has a signif-
icant effect on bed load movement rather than on suspended
sediment which is the subject of the present study. In egs.
32-37, pp=[p. + (p, — p) Cl, Ww=-1,f=U, =38 =1,
each of the coefficients [p/(p, — p.)], Psr (P. — Pw)E COS 6, p.,,
(p, — p.), and (p, — p,)g is equal to one, and the subscript (o)
refers to the zeroth approximation.

Substituting in eqs. 32-37 the numerical values of the con-
stants and the coefficients and dropping the subscript (o) for
convenience, the equations of the zeroth approximation take
the form:

Equation of conservation of volume:

g d
= (38)
ox 0z
Equation of conservation of mass:
ac
&
d
-%-0 (39)

Equation of conservation of momentum in the x-direction:

J a7
W (25, Ty (40)
0z ox 0z
Equation of conservation of momentum in the y-direction:
gt ot
l+chu—-——-—=0 (41)
dy 0z

T T
ad (—) )
p Tdu dc
+

u €—
9z poz oz 0z z

CONSTRUCTION OF THE SOLUTION OF THE
ZEROTH APPROXIMATION

Solution for the Concentration of Suspended Sediment

Adding eqs. 40 and 42 then differentiating the resulting
equation once with respect to z using Leibniz theorem for the
differentiation of an integral results in:

(1 + u)d2c/oz? + (1 + 2 9w/oz)ac/oz

+ (%u/0z?) ¢ + ac/ox = 0 (44)

The strategy is to reduce eq. 44 to a partial differential equa-
tion in the dependent variable ¢. To this end the velocity u is
considered to be a function of z only; i.e. u = u(z), and a
logarithmic velocity profile is assumed. The assumption that
u = u(z) is a reasonable one since the problem is formulated
for flow near slack where the changes in u in the x-direction
are small compared with the changes in the z-direction. This
assumption simplifies the solution of eq. 44 for c. The con-
centration of suspended sediment c is obtained from the so-
lution of the boundary value problem given by eq. 45.

duae  du e
dz/oz  dz? X

c(0,0)=1(c)) =1, cx,1) =0, c0,2z)=1flz) (45)

d%
l+uw—+|1+2
( u)az? (

where f(z) is a given function. A separable solution is selected
in the form:

c(x, z) = X(x)Z(z) (46)

Substituting equation 46 into equation 45 and dividing by
X(x)Z(z) results in:

VA du\Z" d%u X'
l+we +[l+2—=|7+-—=-= 4
( u) - ( dy) 7 " X (47)
Taking the partial derivatives with respect to x of both sides
of the separated equation 47, it is found that:

X’
dl

X
dx o,

which by integration becomes:
X' -BX=0 (48)

where B is a separation constant. Then

z" du\Z’' d2u
+ u)— + — |5+t —==-
1 u)Z (1 + 2dz) 7 + i B (49)

Equation 49 is written in the form:

7'+ o(2)2' + w(z)Z =0 (50)
where
1+ 2d_u
dz
o(z) = ———,
1+u
and
du |
dz? B
wlz) = ——
1 +u

Thus, c(x, z) = X(x)Z(z) is the solution of equation 45 if and
only if X and Z satisfy the two ordinary differential equations
48 and 50 for the specified boundary conditions for some 8.
X(x) and Z(z) respectively, are the solutions of the boundary
value problems given by equations 51 and 52.
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X' -BX=0 X0-=1 (51)
2" + o(z)Z' + w(z)Z = 0 Z20)=1, Z1)=0 (52)

The solution of the boundary value problem given by equa-
tion 51 is:

X = ek (53)

The solution of the boundary value problem given by equation
52 is obtained by substituting, in equation 52, the three con-
secutive transformations given by equations 54-56 (KAMKE,
1971), resulting in equation 57.

wz) = ZE (54)
1
¢(z) = v(z) + 5"(2) (55)
_ D@
¢(z) = ) (56)
D" + Wz)P = 0; ®0)=1, ®&1) =0 (67)
where
Yz) = — = — 0; + o.

The transformation from Z(z) to ®(z) is affected by equation
58.

Z = e (58)

The boundary value problem given by eq. 57 could be for-
mulated as a Fredholm integral equation with degenerate
kernel and solved by reducing it to a system of linear alge-
braic equations (KAMEL, 1978). The boundary value problem
could be also formulated as an integral equation with sym-
metric kernel where Green’s function is represented in terms
of the Fourier series of the orthonormal eigenfunctions, (2)2
sin(nwz),n=12 ..., (CHAMBRE, 1977). As a change of
pace, the solution of the boundary value problem given by eq.
57 would be presented as a Fourier series of the eigenfunc-
tions of the Sturm-Liouville problem given by eq. 59.

£+ NE=0,80=0,&1)=0 (59)

A considerable reduction in the mathematical labor could
be achieved, without much sacrifice in the accuracy of the
solution, by replacing {(z) by a constant. This is possible by
setting u = 1 in the expression for {(z). The assumption that
u = 1, a constant, is based on the uniformity of the logarith-
mic velocity profile except near the bed. The assumption does
not significantly affect the partial differential equation since
it only affects the coefficients which become numbers instead
of functions of z. Affecting this assumption, the boundary val-
ue problem given by eqs. 45 and 57 respectively reduce to
egs. 60 and 61.

d%c lac 1adc
_t ——

- +-—=0,
0z2 290z  20x

c(0,0)(=c¢cy) =1, cx,1)=0;
"+ yd =0, ®O) =1,

c(0, z) = f(z). (60)
1) =0 (61)

where vy = (B/2 — 1/16). To reduce the boundary value prob-
lem given by equation 61 to one with homogeneous end con-
ditions, substitute for ® a function { = (1 — z) which satisfies
these boundary conditions. Then the difference n = ® — (
satisfies a nonhomogeneous equation with homogeneous end
conditions, i.e.,

n==ao-

Substituting equation 62 into equation 61, the latter takes
the form:

1-2) (62)

7 +ynm+ 1 -2]=0,
ie.
- =yn + A(z), A(z) = y(1 — z) (63)

The Sturm-Liouville problem given by equation 59 has the
eigenvalues (\,) and eigenfunctions (¢,) given by:

N, =(m? n=12...; & (z) = 22sin(\,2z) (64)

The solution of equation 63 in terms of the eigenfunctions
(,) is given by the Fourier sine series, equation 65 (Myint-
U, 1987).

= 2 baby(2),
where
b, = G
A,
= J' [y(1 = z)b,"?] dz
2
= ()\—) (65)
le.,
%, sin(A,Y2z)
m =2y

amt MNEOG, — )
By equation 65 in equation 62, it follows that:

sin(\,Y?z)

2 —)\nw()\n . + (1 —2) (66)

Affecting the transformation given by equation 58, equation
66 takes the form:

sin(\,%z)

)\ 1/2()\ ) + (1 - Z)

(67)

Z(z) = e~ z/4>l2.y 2

By equations 67 and 53 in equation 46, it follows that:

sin(\,2z)
}\ 1/2()\ )

where y = [(B/2) — (1/16)]and A, = (nw)2,n =1,2,....
After expanding (1 — z) in terms of the eigenfunction ¢,,
it is easy, as given later in this section, to verify that eq. 68
is the solution of the boundary value problem given by eq. 60
except for not satisfying the boundary condition (0, z) = f(z).
To this end set x = 0 in eq. 68, the latter takes the form:

c(x, z) = ePx- 2/4"2 2 + (1 - z)‘ (68)
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= — @l z/4) = M + (1 — 9
o0,2) = fl2) = & |2y D, s+ (1 -2 (69)

Le.,

sin(\,V?z)

flz)e® — (1 — z) = 2 Z m

written as:

i 2y sin(A, V2 — z)

(z/4) 1 p— -
f(z)e ( z) Z T, =)

EJ

2y : ;
= 25, e 0

provided that [f(z)e** — (1 — z)] is a piecewise smooth func-
tion defined on 0 < z < 1, its Fourier sine series is:

2 a,sin(\,2z),
n—1

1
=2 j [flz)e=* — (1 — 2z)]sin(A,?z) dz (71)
0

Le.,

>3
Il

1
" 2f flz)e*¥sin(A22z) dz
0

1
— 2 J' (1 — z)sin(\,?z) dz
0

— 2 .
= a, - A2
1
a, =2 J f(z)e**sin(\,?z) dz (72)
0
Equating equations 70 and 71 results in equation 73.
= 2
> —ysin()\n"zz)

SN, — )

0 1
= 3 {2 f [flz) e#* — (1 ~ z)lsin(A,"?z) dz
n=1 0

[sin ()\n”zz)]} (73)

It follows that the boundary condition ¢(0, z) = {(z) is satisfied
if:

2y ! :
m =2 L [f(z)e""“ — (1 — z)]sm()\n”zz) dz

(74)
By equation 74 in equation 68, it follows that:

1

[flz)e — (1 — z)]sin(A,'?z) dz

x

ox, z) = e(Bx—zM){z 2

n 1

0

-[sin(A,2z)]

# (1 = Z)} (75)

The verification that equation 75 is the solution of the
boundary value problem given by equation 60 is as follows:
By inspection of equation 75 it is seen that ¢(0, 0) = 1 and
c(x, 1) = 0. To verify the boundary condition c(0, z) = f(z), set
x = 0 in equation 75, the latter takes the form:

c(0, z) = e {2 [2 f [flz)e® — (1 — 2)Isin(\,Y?2z) dz
n-1 0

(76)
+ (1 — z)}

By equation 73 in equation 76, the latter takes on the form:

(1 - z)}

(77)

-[sin(X\,?2)]

=

2y .
= al-z4) . (S 29| 4
(0, z) = e {?‘:1 ()\n”z()\n Z y))sm()\,, z)

= f(z) by equation 69, thus verifying the boundary condition
(0, z) = f(z). To verify that eq. 75 is the solution of the partial
differential equation 60, set

1
2 J [f(z)e*" — (1 — 2)]sin(A'"?2) dz = «a, = a, —
[}

equation 75 takes the form:

= 2
c(x, z) = ePx2d (nzl Han = (MW)

Differentiation of equation 78 results in

9 - 2
i = BetBx (E {an — )\n1/2]Sin()\"1/22)] + (1 - Z))

sin(\,, l’Zz)} (1- z))

9 (80)
(N, V2)cos(N, 2z) ¢ — 1)

sin()\“”?z)} ot ~ z))
(78)

(79)

It

dc 1 -
- — Z atBx z/da) _
4e ( § l a

0z nl

+ glBx-24) (E [
n 1

d%c
= T e(Bx zl4) (2

aZZ 0 “ )\ l/2)

1 2 2

z 2 (81)
+ elbx W (Z (—)a, — (W) A sin(\,2z) )
n-1 n

Substituting for

sm()\n”zz)} + (1 - Z))

in equations 79-81, it follows that:
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dz? 29z 20x

—la, —— +
= 16 N2 N2

2 1 2 2
M a“_)\nl/Z 8 a“_)\ 1/2+)\ 12

}sin()\nmz))
- a, 2
eBx—2/4) E ({1_6 — A\ ‘ N —

- + Ean}sin()\nl’zz)) =0

d%c ladc 1lac
+ +

Il
®
¥
8
&
™M

8 2
if and only if

a, a a,B
e Y N WL e L S
{16 o 8 2} 0

ie,

4A 1/2 1
LB (82)

=2\, —
B n an 8

Therefore eq. 75 is the solution of the boundary value prob-
lem given by eq. 60 if and only if eq. 82 is satisfied. By eq.
82 in eq. 75, it follows that the solution of the boundary value
problem given by eq. 60 is:

x

c(x,z) =ebx =z {E ‘(zf {{f(z)e”* — (1 — z)]sin)\nmz)} dz)

n-1
+(1—z)}

‘[sin(\,'?2)]

(83)
where:
A\, = (nm)?,
n=12...;
4)\ 1/2 1
= — n + =
B (zxn = 8),
1
a, = 2f [flz)e~*sin(\,?2)] dz,
0
a number.
Solution for the Coefficient of Exchange of
Mass

The coefficient of exchange of mass e(x, z) is obtained from
the solution of the boundary value problem given by eq. 84.

d(edc/az)/oz — dcloz = 0; e«x,0 =0 (84)
Integration of eq. 84 once with respect to z, results in eq. 85.
(edc/oz) — ¢ = f(x) (85)

Imposing in eq. 85 the boundary condition e(x, 0) = 0, it fol-

lows that f(x) =
results in:

—c(x, 0) which when substituted in eq. 85,

€ = [e(x, z) — c(x, 0))/(3¢/0z) (86)

By eq. 80 in eq. 86, the solution for the coefficient of exchange
of mass is obtained as:
+ @1 - z)} - eB")

+ @1 - z)}

))\n”?cos( )\,,”Zz)] - 1}})

(87)

e(x, z)

— (ele z/4){2 [(a — )\21/2)sm( \,V2z)

— _e(Bx z/4) {i

n-1
+ eBx z/4)
n=1

Solution for the Turbulent Shear Stress

Y 1/2) sin( A\, ?z)

a, )\ 1/2

The solution for the turbulent shear stress 7(x, z) is ob-
tained from the solution of the boundary value problem given

by eq. 42 subject to the boundary condition 7(x, 0) = 0, i.e.
ac/dz + ¢ + 97/0z = 0; T(x,0) =0 (88)

Rearranging the partial differential equation as d7/0z = —c
— dc/dz and integrating once with respect to (z), results in eq.
89.

= —Jecdz — ¢ + gx) (89)

Imposing in equation 89 the boundary condition 7(x, 0) = 0
results in:

0= —f o(x, z) dz - c(x, 0) + g(x);

z=0
Le.,

(90)

g(x) = c(x, 0) + J c(x, z) dz

z=0

By equation 90 in equation 89, the solution for the turbulent
shear stress is given as:

(%, z) = —f o(x, z) dz — ¢(x, z) + c(x, 0) +f c(x, z) dz

2=0

91D

The solution for the turbulent shear stress 7(x, y, z) is ob-
tained from the solution of the boundary value problem given
by equation 41 subject to the boundary condition given by
equation 91. i.e,

T(x, z) = —fc(x,z) dz — c(x,2z) + c(x,0) + fc(x, z)dz

z—0

(92)
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Integrating eq. 41 once with respect to z and imposing the
boundary condition given by eq. 91 results in the solution of
the boundary value problem given by eq. 92 as:

T(X,y, 2) = 7(x, z) + {[o7(x, 2)/0z] — (1 + cjuly (93)

where 1(x, z) is given by eq. 91, c(x, z) is given by eq. 83, and
a logarithmic velocity profile is assumed, for the longitudinal
velocity of the flow, in the form:

u=1+ 0.1848 In(z + 0.004465) (94)

Solution for the Longitudinal Velocity of the Flow

The longitudinal velocity of the flow u is obtained from the
solution of the boundary value problem given by eq. 43 sub-
ject to the boundary condition u(x, 0) = 0, i.e.

—ud(t/p)oz — (v/p)ow/oz — (edc/oz)
+ al(+/p)2zlaz + (v/p)*?¥z = 0; u(x, 0) = 0 (95)

The boundary value problem given by eq. 95 is written as:
oz + hix, z2u = k(x, 2); ux,0)=20 (96)
where

h(x, z) = (1/2)[a(+/p)ozl/(/p), k(x, z)
= —[edc/oz] + [a(/p)?z/az] + [(1/p)*¥z] (97)

The solution of the boundary value problem given by eq. 96

is:
T
)]y
u(x, z) = exp —j 1«7p7 (1) dz
2 oz P

| f * 6(5)22 . (p)w

T
- exp f ll (I) dz ¢ | dz (98)
2 o0z

p

No attempt is made to solve eq. 38 for the vertical velocity
w since the equations are getting to be cumbersome; a solu-
tion for w was given by KaMmEL (1976) and shows that w is
maximum at the water surface and decreases to zero at the
bottom of the estuary. Eqgs. 83, 87, 93, and 98 respectively
give the solution of the zeroth approximation for the concen-
tration of suspended sediment ¢, the coefficient of exchange
of mass €, the turbulent shear stress 7, and the longitudinal
velocity of the flow u.

RESULTS
The Concentration of Suspended Sediment

The sediment concentration profiles which were used as
f(z) in the boundary condition ¢(0, z) = f(z), eq. 45, are shown

Profile Pj
Profile P2
Profile P3
Profile P4
Profile PS
Profile PG
Profile P7

p® O = o e >

Relative depth of water Cz. d)

Relative concentration Cc/co)

Figure 8. Sediment concentration profiles studied (ASCE, 1963).

in Figure 8 (ASCE, 1963). The figure shows a plot of the rel-
ative concentration (c/c,) versus the relative depth of water
(z/d). The data used in the figure is the result of measure-
ments of the distribution of suspended sediment made by sev-
eral researchers in natural streams and canals and in labo-
ratory flumes. Mathematical necessity required that the data
in Figure 8 be presented as: (i) (¢/c,) on the x-axis instead of
(c/c,) as originally given in ASCE (1963) where c, is the con-
centration at a distance a from the bottom of the channel
equal to 0.05 the water depth; (ii) the origin of the z-axis is
at (z/d) = 0 instead of (z/d) = a as in ASCE (1963). Figure 9
shows the results obtained for the variation of the concentra-
tion of suspended sediment ¢ with the relative depth of water
(z/d) and along the estuary for an assumed bottom concen-
tration at the beginning of the estuary ¢, = ¢(0, 0) = 1. Since
dc/ox is positive, it follows that the concentration of suspend-
ed sediment increases along the estuary as shown in Figure
9; this is in agreement with previous research work on sedi-
mentation.

To save journal space the results are presented for only one
of the seven concentration profiles. In one instance, clarity of
the presentation required presenting the results for two pro-
files.

The Coefficient of Exchange of Mass

Figure 10 shows the variation of the coefficient of exchange
of mass € with the relative depth of water (z/d) for profiles
P1-P7 of Figure 8. It can be seen from the figure that € in-
creases from zero at the bottom to a maximum value at about
(z/d) = 0.1 then decreases to a nearly constant value towards
the water surface. This is in agreement with the profile of €
reported by ICHIYE (1966) for the nepheloid layer on the At-
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Figure 9. Variation of the concentration of suspended sediment along
the estuary.

lantic slope, which was determined from measured vertical
profiles of suspensoid. IcHIYE (1966) reported that e increase
from zero at the bottom of the sea to a maximum value at
100 to 200 (m) then decreases and reaches some constant
value towards the water surface.

The field data for the Enoree river originally reported by
CoLMAN (1969) and later reported by vaN RiJiN (1984), [Fig-
ure 5 page 1620], as a plot of (e/u,d) versus (z/d) is used for
the verification of the results of € as shown in Figure 11. The
figure shows a plot of (e/u, d)/(e/u, d),,., versus (z/d) for pro-
file P3 and for the data reported by van RiJiN (1984). The
reason for the disagreement between the analytical results
and the data reported by van R1JIN (1984)is that in the pres-
ent study e is given by eq. 86 as € = [c(x, z) — c(x, 0)]/(d¢/dz)
which is the solution of the second order partial differential
equation d(edc/dz)/9z — (dc/oz) = 0 [eq. 39]; while in vaN R1JIN
(1984) € is computed from the measured concentration pro-
files using the first order differential equation € = —we/(de/
dz).

The Turbulent Shear Stress

The expressions for the turbulent shear stress T and for the
longitudinal velocity of the flow u given by eqs. 93 and 98
respectively, are too cumbersome for mathematical manipu-
lation to find out the behaviour of the profiles of T and u and
the effect of the concentration of suspended sediment on
these profiles. Consequently in what follows the analysis
would be based on the interpretation of the numerical results
obtained from the solution of these two equations.

The results obtained for the turbulent shear stress 7 are
shown in Figures 12-15. The results shown in Figures 12-14
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Figure 10. Variation of the coefficient of exchange of mass with the rel-
ative depth of water.

are for 7(x, 0, z) while the results shown in Figure 15 are for
7(1, y, z); similar results are obtained for arbitrary values of
y and of x respectively. Figures 12 and 13 show the variation
of (1/pu?) with the relative depth of water (z/d); the figures
show that (1/pu?) increases from zero at the bottom to a max-
imum value at a relative depth of about 0.2 then decreases
towards the water surface. The figures also show the effect
of the concentration of suspended sediment on the profile of
the turbulent shear stress. Figure 12 shows that for the same
bottom concentration c,, (7/pu?) decreases with the increase
in the uniformity of the concentration distribution, e.g. (7/pu?)
for profile P1 where the concentration distribution decays
rapidly towards the water surface as shown in Figure 8, is
larger than (1/pu?) for profile P7 where the concentration dis-
tribution is more uniform. Figure 13 is a plot of (7/pu?) versus
(z/d), for profile P5, for bottom concentrations c, = 1, 1.2214,
1.4918, 1.8221, 2.2255, and 2.7183. The figure shows that (7/
pu?) is nearly invariant for the different bottom concentra-
tions. Figure 14, a plot of (v/pu®)/(1/pu?),,., versus (z/d) for pro-
file P4, exhibits the same trend shown in Figure 13. A study
which has some bearing on the above findings is that of KAr-
M and KENNEDY (1987) who reported that for (w > U S),
which is the case in the present study, the suspended sedi-
ment contributes less energy to the flow than its settling dis-
sipates suggesting that an increase in the concentration could
result in a decrease in the energy available to the flow.

The variation of the shear stress in the y-direction is shown
in Figure 15. The figure shows a plot of (7/pu?) versus (z/d),
for profile P3 of Figure 8 for y values of 0, |0.1], |0.2], |0.3|,
[0.4], and |0.5; here y = 0 denotes the center line of the es-
tuary. It can be seen from the figure that (7/pu?) increases
away from the center line of the estuary towards its sides; at
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the sides the shear stress would be zero although this bound-
ary condition was not affected in the solution since 7(x, y, z)
is obtained from the solution of the first order partial differ-
ential equation 92 which required imposing one boundary
condition, namely 7(x, 0, z) = 7(x, z) as given by eq. 92. The
literature does not appear to have experimental data on the
three dimensional distribution of the turbulent shear stress.
However, in a three dimensional analytical model of second-
ary flow, shear stress, and sediment transport for Rio Grande
conveyance channel, CHIU and HstunG (1981) obtained a
shear stress distribution in the y-direction (Figures 2, 5, and
7, respectively pp. 886, 889, and 890), similar to the one ob-
tained from the present study and shown in Figure 15.

The experimental data available for the verification of the
analytical findings of this study is scarce, even more scarce
is the data which corresponds to conditions similar to the
present study. The experimental data of ALFRINK and VAN
RN (1983), KouTrtas and O’CoNNER (1981), and LyN
(1988) is used for the verification. Of the above flume data
that of Ly~ (1988) is the only data which corresponds to con-
ditions similar to the present study in that the data is for
turbulent open channel flow over a flat well sorted natural
sand bed in equilibrium with a suspension of sand. The data
of ALFRINK and vaN RiJiN (1983) is for flow in a steep-sided
trench perpendicular to the main flow direction. The data of
Koutrtas and O’CoNNER (1981) is for a steep-sided channel,
dredged at right angles to the main direction of the flow and
sediment transport. In order to compare the results obtained
from the present study with those of ALFRINK and VAN R1JIN
(1983), KouTiTas and O’CONNER (1981), and Ly~ (1988), the
results are presented as a plot of (1/7,,,) versus (z/d). Figure
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Figure 15. Variation of the profile of (7/pu?) in the y-direction.

16 shows good agreement between the analytical results ob-
tained for profile P7 and the flume data of Ly~ (1988) for
equilibrium bed and for starved bed. Figure 17 shows a plot
of (1/7,,.,) versus (z/d) for the averaged profile of P6 and P7,
which is obtained by taking for each value of (z/d) the average
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Figure 16. Verification of the profile of the relative turbulent shear
stress using the experimental data of Lyn (1988).

Journal of Coastal Research, Vol. 14, No. 1, 1998



124

Present study, PB&P7
Alfrink and van Rijin,(2),1 o
Alfrink and van Rijin,(2),3
Alfrink and van Rijin,(22,8
Alfrink and van Rijin,(2),7
Alfrink and van Rijin,(2>,9

b o o m

Relative depth of water (z~/d>

=4 ~3 =2 =l

T T ‘!1 )1 T T T I { I |

Relative turbulent shear stress Cr/'rmx)

Figure 17. Verification of the profile of the relative turbulent shear
stress using the experimental data of Alfrink and van Rijin (1983).

of the two values of (1/7,,,,) for profiles P6 and P7, and for
the flume data of ALFRINK and vaN RiJin (1983) for the sets
of experiments number 1, 3, 5, 7, and 9. The figure shows
fair agreement between the analytical results and the exper-
imental ones. The agreement does not appear to be correlated
with the type of velocity profile measured by ALFRINK and
vAN RIJIN (1983), e.g. for the turbulent shear stress data from
the sets of experiments number 1 and 9, the velocity profile
is nearly logarithmic while for 3 and 5 there is return flow
near the bottom, yet the values of (t/1,,,,) for both types of
velocity profiles are equally scattered about the shear stress
profile of the present study which is for a logarithmic velocity
profile. Figure 18, which is a plot of (1/7,,,,) versus (z/d) for
the averaged profile of P6 and P7 and for the flume data of
KouTtiTas and O’CoNNER (1981) for the sets of experiments
number 2, 4, 5, 6, 7, 8, and 9, shows fair agreement between
the analytical and the experimental results. Here also the
agreement does not appear to be correlated with the type of
velocity profile measured by KouTtitaAs and O'CONNER
(1981). The only fair agreement between the analytical find-
ings and the experimental results of ALFRINK and VAN RIJIN
(1983) and KouTiTas and O’CONNER (1981) is likely to be
due to the difference in the hydraulic conditions of the pres-
ent study and the studies of ALFRINK and vaN RiJin (1983)
and KouTitas and O’ConNNER (1981) as stated earlier in this
section. To summarize the experimental verification, the ex-
perimental results presented in Figures 16-18 are combined
in Figure 19 which shows that the relative turbulent shear
stress profiles obtained from the present study and from the
experiments of ALFRINK and VAN RuJin (1983), KouTiTAs
and O’CoNNER (1981), and LyN (1988) have the same trend
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Figure 18. Verification of the profile of the relative turbulent shear
stress using the experimental data of Koutitas and O’Conner (1981).
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Figure 20. Comparison between the profile of the relative turbulent
shear stress for clear water and for sediment laden flows using the ex-
perimental data of Anwar and Atkins (1980), and Lyn (1988).

in that the shear stress increases from zero at the bottom, to
a maximum value at some distance away from the bottom
then decreases towards the water surface.

It is worth noting that the presence of sediment causes the
shear stress profile to deviate from that for clear water flow
in the upper region of the flow where (z/d) is larger than
about 0.5 as shown in Figure 20. The figure shows a plot of
(T/7ax) Versus (z/d) for profile P7 of the present study and for
the flume data of Ly~ (1988) for sediment laden flow and of
ANWAR and ATKINS (1980) for clear water tidal flow. It can
be seen from Figure 20 that for (z/d) larger than about 0.5,
the data for clear water flow gives larger values of (1/1,,,,) for
the same value of (z/d) than the data for sediment laden flow
indicating that the presence of sediment causes a faster
dampening of the profile of the relative turbulent shear stress
towards the water surface. Similar results were obtained by
CoLMAN (1969) who interpreted his flume data on velocity
profiles with suspended sediment, to mean that the presence
of suspended sediment reduces turbulence effects in the outer
part of the flow.

The Longitudinal Velocity of the Flow

The results for the longitudinal velocity of the flow are giv-
en in Figures 21-23. Figure 21, a plot of the relative velocity
(w/U) versus the relative depth of water (z/d) for the seven
concentration profiles P1-P7 and for the logarithmic velocity
profile, shows that the velocity profiles are nearly logarith-
mic. The figure is plotted using ENG1 of Enertonics Research
Inc. 1983 which, due to the large change in the slope of the
velocity profile in the vicinity of (z/d) = 0.1, cannot draw a
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Figure 21. Variation of the relative longitudinal velocity with the rela-
tive depth of water.

smooth curve starting from the origin to the value of (W/U) at
(z/d) = 0.1 without having the curve go slightly below the
x-axis [(z/d) < 0], this resulted in curves which intercepted
the (W/U) axis at (z/d) = 0. The effect of the concentration on
the velocity profiles is shown in Figures 22 and 23. Figures
22a and 22b show a plot of (WU) versus (z/d) for profiles P1
and P7 respectively for bottom concentrations ¢, = 1, 1.2214,
1.4918, 1.8221, 2.2255, and 2.7183. It can be seen from Figure
22a that the variation in bottom concentration does not have
an effect on the profile of the relative velocity; similar results
are obtained for profiles P2-P6. For profile P7 however, Fig-
ure 22b shows that an increase in the bottom concentration
results in a decrease in the relative velocity (wWU), i.e. a steep-
ening of the relative velocity profile. Figure 23 shows a plot
of [wW/U(c, = 1)] versus (z/d) for profile P2. Herein U(c, = 1)
is the water surface velocity at the beginning of the estuary
and is equal to unity. The figure shows that an increase in
bottom concentration c, results in an increase in the longi-
tudinal velocity u.

The experimental data of ASCE (1963), BARTON and LiN
(1955), EINSTEIN and CHIEN (1955), LYN (1988), and VANONI
and BrROOKS (1957) is used for the verification of the results
obtained for the longitudinal velocity of the flow as shown in
Figures 24-26. Figure 24 shows a plot of the relative longi-
tudinal velocity (w/U) versus the relative depth of water (z/d)
for the seven concentration profiles P1-P7 and for the exper-
imental data of BARTON and LIN (1955), EINSTEIN and
CHIEN (1955), Lyn (1988), and VanoNI and BROOKS (1957).
It can be seen from the figure that good agreement is ob-
tained between the analytical and the experimental results.
Figure 25 shows a plot of (u/U) versus (z/d) for profile P7, for
bottom concentration ¢, varying from 1.0 to 2.7183, and for
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the experimental data of ASCE (1963) for clear water and for
a concentration of 15.8 (g/l). The figure shows that an in-
crease in bottom concentration would result in a steepening
of the velocity profile particularly near the bottom, e.g. for a
given value of (z/d) the value of (W/U) for (c, = 1) is larger
than for (c, = 1.2214). The experimental data of ASCE (1963)
exhibits the same trend, i.e. the profile for a concentration of
15.8 (g/1) is steeper than the profile for clear water. The
agreement between the analytical and the experimental re-
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Figure 25. Verification of the profile of the relative longitudinal velocity
using the experimental data of ASCE (1963).

sults is only fair perhaps because the experimental data re-
ported in ASCE (1963) gives a considerably flatter velocity
profile than the logarithmic velocity profile, e.g. the velocity
profile for ¢, = 15.8 (g/l) coincides with the logarithmic ve-
locity profile for (z/d) values between 0 and 0.3 then becomes
flatter, and the profile for clear water is even more flat in-
stead of coinciding with the logarithmic velocity profile. Fig-
ure 26 shows a plot of [u/U(c, = 1)] versus (z/d) for profile
P2, for bottom concentration ¢, varying from 1.0 to 2.7183
and for the experimental data given in ASCE (1963). It can
be seen from the figure that the experimental data confirms
the analytical findings that an increase in the concentration
results in an increase in the relative longitudinal velocity.
CoLMAN (1969) reported that transported sediment increases
the velocity at all elevations with the increase being progres-
sively greater at large distances from the bed. Lyn (1988)
also reported that the presence of sediment causes the veloc-
ity profile to deviate from the clear water velocity profile with
the deviation increasing with increasing suspended load but
the effect of the presence of sediment on the velocity profile
is confined to a layer adjacent to the bed.

Effect of Concentration on von Karman’s (R )

It would be interesting to examine the analytical solution
presented in the present study in the light of the recent work
of CoLMAN (1981) on the effect of sediment concentration on
the velocity profile. For this reason the logarithmic velocity
profile, rather than the power law velocity profile presented
in ROUSE (1959), is used in the construction of the solution
of the zeroth approximation. Early work on the effect of the
concentration of suspended sediment on von Karman’s k

1
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Figure 26. Verification of the profile of the longitudinal velocity using
the experimental data of ASCE (1963).

[EiNsTEIN and CHIEN (1955), ELATA and IPPEN (1961), and
VANONI (1946)], shows that k decreases with an increase in
the concentration of suspended sediment. This is stated in
books on sediment transport such as that by Grar (1971).
Colman (1981) re-analyzed early data together with new data
of his own according to his method (CorLman, 1981), and
showed that k is essentially constant over a wide range of
flows varying from flows with no sediment suspension to
flows with near capacity load of suspended sediment. Accord-
ing to CoLMAN (1981) the reason for the contradiction be-
tween the results obtained by his method and by the tradi-
tional method, (VANONI, 1946), is that the traditional method
does not take into consideration the existence of the wake
region which was not known to researchers on sediment
transport at the time the traditional method was developed.

The results obtained, from the present study, for von Kar-
man’s k are given in Figure 27 which shows a plot of the
bottom concentration ¢, versus k computed according to the
traditional method of VANONI (1946) and to the more recent
method of CoLMAN (1981). The concentration near the bot-
tom c, is presented as a percentage of concentration by vol-
ume and plotted on logarithmic scale. In the figure the re-
sults are fitted by a linear regression and show that Colman’s
method gives higher values for k than the traditional method
of VANONI (1946). The figure also shows a significant de-
creases in k, with an increase in the concentration of sus-
pended sediment, when the results are analyzed by the tra-
ditional method; this would be more clear when the percent-
age of concentration by volume is plotted on arithmetic scale,
although such a plot is not given here in order to save journal
space.
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Figure 27. Effect of the concentration of suspended sediment on von
Karman’s k computed by the recent method of Colman (1981) and by the
traditional method of Vanoni (1946).

The verification of the analytical results with the flume
data of ASCE (1963), CoLMaN (1981), ELaTa and IPPEN
(1961), Ly~ (1988), PARKER and CoLMAN (1986), and VAN-
ONI (1946) taken from CoLmAN (1981); is shown in Figure
28. Some of the data of IPPEN (1961) is not shown in the
figure because the data is for a much higher concentration
than that used by the other investigators which makes it in-
convenient to include in the figure. In the figure both the
analytical results and the flume data are fitted by a linear
regression. The top line is the regression line for the flume
data analyzed by CoLMAN’s (1981) method; the second line
from the top is for the analytical results analyzed by the same
method. The third line is the regression line for the analytical
results analyzed by the traditional method and the bottom
line is for the flume data analyzed by the same method. Fig-
ure 28 shows good qualitative agreement between the ana-
lytical and the experimental results in that Colman’s method
gives higher values for k than the traditional method and
that the traditional method gives a significant decrease in k
with an increase in the concentration of suspended sediment.

CONCLUSIONS

The equations of conservation of volume, mass, and mo-
mentum, and the equation of kinetic energy of turbulence,
are formulated for the three dimensional flow of a mixture of
water and sediment. The equations are closed and expressed
in dimensionless form to represent conditions in well mixed
estuaries for ebb flow departing from slack. This results in
four partial differential equations (eqs. 8, 27, 29, and 30) for
the conservation of volume, of mass, and of momentum in the
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ASCE 1>, traditional method
Colman’s method
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Elata and Ippen (123, *

Lyn (22>, traditional method
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Figure 28. Verification of the effect of the concentration of suspended
sediment on von Karman’s k using the experimental data of ASCE (1963),
Colman (1981), Elata and Ippen (1961), Lyn (1988), Parker and Colman
(1986), and Vanoni (1946) taken from Colman (1981).

y and z-directions, and two integro differential equations
(egs. 28 and 31) for the conservation of momentum in the
x-direction and for the kinetic energy of turbulence.

Nine m-terms appear namely; the aspect ratios (R/L) and
(R/W); the density gradient (Ap/p); a form of Ekman number
E = (e, /f L?); Reynolds number R = (U R p,/u..); a form of
Richardson number R, = (U*(Ap/p) g R); Rossby number R,
= (U/f L); and two forms of an eddy Reynolds number namely,
R* = (p U%r,,..) and R** = (U R/e,,,,). The numerical values
of the nine m-terms are as follows: (R/L) = 4.458 X 10-5,
(R/W) = 4.38 X 10 3, (Ap/p) = 0.1416, E = 1.05 X 10", R =
1.6568 X 10° R, = 1.0414 X 10-%, R,, = 2.121 X 10°3, R*
= 1.445, and R** = (.8968. The magnitude of each term in
egs. 27-31 is evaluated and the w-terms (R/L), (R/W), E, R},
R, and R, are used as perturbation parameters.

The zeroth approximation is obtained by setting the per-
turbation parameters equal to zero; this results in five partial
differential equations (egs. 38, 39, 41, 42, and 43) for the con-
servation of volume, of mass, and of momentum in the y and
z-directions, and for the kinetic energy of turbulence, and an
integro differential equation (eq. 40) for the conservation of
momentum in the x-direction. The solution of the zeroth ap-
proximation is presented as a Fourier series of the eigen-
functions ($,) = (2)¥2 sin(A,'”? 2), of the Sturm-Liouville prob-
lem {” + N\, L = 0, {(0) = 0, {(1) = 0; where the eigenvalues
N, =(nmin=12....

The solution of the zeroth approximation for the concentra-
tion of suspended sediment c(x, z) shows that the concentra-
tion increases along the estuary in the downstream direction,
as shown in Figure 9; this is in agreement with previous re-
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search work on sedimentation. The results obtained for the
coefficient of exchange of mass € show that € increases from
zero at the bottom of the estuary to a maximum value at a
relative depth (z/d) of about 0.1 then decreases to a nearly
constant value towards the water surface as shown in Figure
10. This is in agreement with the distribution of € reported
by IcHIYE (1966) for the nepheloid layer on the Atlantic slope.

The results obtained for the turbulent shear stress T show
that: (1) (7/pu?) increases from zero at the bottom of the es-
tuary to a maximum value at (z/d) of about 0.2 then decreases
towards the water surface as shown in Figures 12-15. (2) For
the same bottom concentration c,, (1/pu?) decreases with the
increase in the uniformity of the concentration distribution,
as shown in Figure 12; e.g. (1/pu?) for profile P1, where the
concentration distribution decays rapidly towards the water
surface is larger than (1/pu?) for profile P7 where the concen-
tration distribution is more uniform. (3) For the same con-
centration profile, (1/pu?) is nearly invariant for the different
bottom concentrations c,, as shown in Figure 13. Also (1/pu?)/
(1/pu?),,., is invariant with the bottom concentration as shown
in Figure 14. (4) (7/pu?) increases away from the center line
of the estuary towards the sides as shown in Figure 15.

The flume data of ALFRINK and VAN R1JIN (1983), ANWAR
and ATKINS (1980), KouTiTas and O’CoNNER (1981), and
Ly~ (1988) is used for the verification of the turbulent shear
stress results obtained from the present study as shown in
Figures 16-20 which give a plot of (1/7,,,,) versus (z/d). Of the
above flume data that of Ly~ (1988) is the only data which
corresponds to conditions similar to the present study in that
the data is for turbulent open channel flow over a flat sand
bed in equilibrium with a suspension of sand. The data of
ALFRINK and VAN RiJiN (1983) is for a steep-sided trench
perpendicular to the mean flow direction, the data of Kou-
TITAS and O’CONNER (1981) is for a steep-sided channel
dredged at right angles to the main direction of the flow and
sediment transport, and the data of ANWAR and ATKINS
(1980) is for clear water tidal flow. Figure 16 shows good
agreement between the analytical findings of the present
study and the flume data of Ly~ (1988). Figures 17 and 18
respectively, show only fair agreement between the analytical
findings and the experimental results of ALFRINK and VAN
RN (1983) and of KouTiTAas and O’CONNER (1981) in view
of the difference in the hydraulic conditions for which the
present study is formulated and the hydraulic conditions un-
der which the experimental data was collected. Figure 19
shows a comparison between the turbulent shear stress pro-
files obtained from the present study and from the experi-
ments of ALFRINK and VAN RiJiN (1983), KouTiTAs and
O’CONNER (1981), and Ly~ (1988) which are shown in Fig-
ures 16-18. It can be seen from Figure 19 that the profiles
obtained from the present study and from the flume data of
ALFRINK and VAN RUJIN (1983), KouTiTAas and O’'CONNER
(1981), and Ly~ (1988) exhibit the same trend in that the
turbulent shear stress increases from zero at the bottom to a
maximum value at some distance away from the bottom then
decreases towards the water surface. Figure 20 shows that
the presence of sediment causes the shear stress profile to
deviate from that for clear water flow in the upper region of
the flow where (z/d) is larger than about 0.5 indicating a fast-

er dampening of the profile of the relative turbulent shear
stress towards the water surface for sediment laden flow
(LynN, 1988) than for clear water flow (ANWAR and ATKINS,
1980).

The results obtained from the present study for the longi-
tudinal velocity of the flow are given in Figures 21-23 and
indicate that: (1) The velocity profiles are nearly logarithmic
as shown in Figure 21. This is verified in Figure 24 which
shows good agreement between the velocity profiles obtained
from the present study and the experimental data of BARTON
and LiN (1955), EINSTEIN and CHIEN (1955), LyN (1988), and
VanonNI and Brooks (1957). (2) The profile of the relative
velocity appears to be invariant with bottom concentration;
this is particularly so for profiles P1-P6 as shown in Figure
22a for profile P1. For profile P7, an increase in bottom con-
centration results in a steepening of the profile of the relative
velocity as shown in Figure 22b. This is verified in Figure 25
which shows fair agreement between the velocity profiles ob-
tained from the present study, for bottom concentrations
varying from 1 to 2.7183, and the experimental data of ASCE
(1963). (3) An increase in bottom concentration results in an
increase in the longitudinal velocity as shown in Figure 23
and verified in Figure 26 which shows fair agreement be-
tween the results obtained from the present study and the
data of ASCE (1963). This is in agreement with CoLMAN
(1969) who reported that transported sediment increases the
velocity at all elevations. LyN (1988) also reported that the
increase in the concentration causes the velocity profile to
deviate more from the clear water velocity profile although
the deviation is confined to a layer adjacent to the bed.

Analysis of profile P7 for the effect of the concentration of
suspended sediment on von Karman’s k shows that: (1) Col-
man’s method (CoLMAN, 1981) gives higher values for k than
the traditional method (VANONI, 1946) as shown in Figure
27. This is in agreement with the experimental data of ASCE
(1963), CoLMAN (1981), ELATA and IPPEN (1961), LYN (1988),
PArRKER and CoLMAN (1986), and VANONI (1946) as shown
in Figure 28. (2) There is a significant decrease in k with an
increase in the concentration of suspended sediment, when
the velocity profiles are analyzed by the traditional method
as shown in Figure 27 (this would be more clear when the
percentage of concentration by volume is plotted on arith-
metic scale rather than on logarithmic scale; such a plot is
not shown here in order to save journal space). This is in
agreement with the experimental data of ASCE (1963), CoL-
MAN (1981), ELATA and IPPEN (1961), LYN (1988), PARKER
and CoLMAN (1986), and VANONI (1946) as shown in Figure
28.
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APPENDIX 1. NOTATION

The following symbols are used in this paper.

a = numerical constant.

A = maximum tidal amplitude.

c = concentration of suspended sediment by
volume.

c, = concentration of suspended sediment by
volume at a distance (a) from bottom of
channel.

c, = concentration of suspended sediment by

volume at bottom of estuary.

= average water depth in estuary.

Ekman number.

= Coriolis parameter = 2(} sin 0, taken as
10 * (sec ).

= acceleration due to gravity.

closure function for diffusion.

indices.

= mixing length.

length of estuary.

dissipation length parameter.

Manning’s coefficient of roughness.

= pressure.

hydraulic radius of estuary.

Reynolds number.

. Richardson number.

Rossby number.

eddy Reynolds numbers.

slope of water surface of estuary.

time.

u, v, w = respectively, longitudinal, transverse, and

vertical velocities of flow.

U = longitudinal velocity at free surface.

U = depth averaged longitudinal velocity for
ebb flow departing from slack.

= outer velocity = 1.

= shear velocity.

= shear velocity at bottom of estuary.
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s

< ™R R

o sE x>
[T 1 T 1

average width of estuary.
settling velocity of sediment particles.

= respectively, longitudinal, transverse, and

vertical coordinates.
dependent variables, functions of x and z,
respectively.

= numerical constant.

coefficient of Fourier series.
separation constant.

= a number dependent on the separation

constant B.

= eigenvalues.

thickness of boundary layer = 1.
coefficient of exchange of mass.
dissipation term.

von Karman’s constant.

dynamic viscosity.

kinematic viscosity.

density.

= maximum difference between the densi-
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Superscripts:

Subscripts:
m
max

w O

i

ties of the water-sediment mixture and
that of water = (p,... — p.)-

angle between water surface in estuary
and horizontal.

component of the earth’s rotation vector.

= functions of (z).
= eigenfunctions.

turbulent shear stress.

= turbulent shear stress at bottom of estu-

ary.
dependent variables, functions of z.

= fluctuation from the mean.
= mean value.

mixture of water and sediment.
maximum value.

zeroth approximation.
sediment.

water.





