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The hyperbotic distribution has four parameters and the logarithm of its probability density function is a hyperbola.
The distribution has been used to analyze data from different scientific areas and in particular data from earth science.
Some of the most important properties of this flexible distribution are discussed. Good agreements are found when
fitting the distribution to wind, sea-level and wave observations. These agreements are better than can be obtained
when applying the traditionally used distributions such as the Weibull, the log-normal, and the Rayleigh distribution.
Return periods calculated from the distribution are also in agreement with observations. A case of fitting the two-
dimensional version of the distribution to a set of data consisting of simultaneous recordings of wave height and wave

period is discussed.
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INTRODUCTION

Fréquency analysis of wind, sea-level and wave data is an
important element in the design of dikes and off-shore con-
structions and in the planning and management of coastal
protections. It is often concerned with the search of a statis-
tical distribution which could be used to fit adequately a giv-
en set of datda. From the chosen distribution, one can make
extrapolations in order to estimate extreme events corre-
sponding to a high return period (100-year wave or sea-level
for example). This estimation can then be used to design con-
trol structures that are able to withstand such extreme
events.

Obviously, such extrapolations (predictions) are only of val-
ue if there is a good agreement between the observations and
the fitted statistical distribution. The question of which dis-
tribution should be used to reach this objective has been dis-
cussed by several authors. Gaussian, log-normal, Rayleigh
and Weibull distributions have often been used when dealing
with sea-level and wave data (Houmg, 1981). However, sta-
tistical features of waves are often not in agreement with
such distributional models (Tana, 1986; GoDa, 1988; Gopa
and KoOBUNE, 1990). Therefore, some authors recommend the
use of mixtures of statistical distributions. RosEN and KiT
(1981) in their study of waves used the log-normal distribu-
tion for the central part of their wave observations and the
Weibull distribution for the extreme tails.

It is well known that wave-induced forces on designed
structures arise from pressure, velocities and accelerations,
all of which are proportional to wave height and depend on
the wave period. There is therefore a considerable engineer-
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ing interest in the joint distribution of wave heights and pe-
riods (NoLTE, 1979; Losapa and GIMENEz-CURTO, 1979).
Present work on joint distribution of wave heights and peri-
ods (e.g., DOERING and DONELAN, 1993) builds to a high de-
gree on the formulations of LONGUET-HIGGINS (1975, 1983)
where assumptions of gaussianity are inherent.

The 4-parameter hyperbolic distribution which will be the
subject of our investigation has two shape parameters, one
scale parameter and one location parameter. The hyperbolic
distribution, therefore, provides more flexibility than the
above 2 and 3 parameter distributions (CHRISTIANSEN and
HARTMANN, 1991). Inspired by BAGNOLD’s (1941) plots of log
grain-size vs. log probability density, the hyperbolic distri-
bution was introduced to describe the mass-size distribution
of sand samples (BARNDORFF-NIELSEN, 1977). The distribu-
tion has wide application, not only to other kinds of sedi-
ments (BAGNoOLD and BARNDORFF-NIELSEN, 1980; CiHRls-
TIANSEN, 1984; CHRISTIANSEN ef al, 1984; BARNDORFK-
NIELSEN and CHRISTIANSEN, 1988; CHRISTIANSEN and
KRISTENSEN, 1988), but also to other types of frequency data:
size distribution of oil fields (SEYEDGHASEMIPOUR and BHAT-
TACHARYYA, 1990), size distributions of droplets and aerosols
(DursT and MacaAGNO, 1986), turbulence (BARNDORFF-
NieLsEN, 1979), wind shear (BARNDORFF-NIELSEN et al,
1989), and in astronomy, biology, and economics (BARN-
DORFF-NIELSEN and BrasiLp, 1981, 1983; BARNDORFF-
NIELSEN et al., 1985). Data used in the present study come
from the inner Danish waters (Figure 1).

THE HYPERBOLIC DISTRIBUTION

The hyperbolic distribution is defined by its log probability
function being a hyperbola, just as that of the normal distri-
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Figure 1. Map of the central part of the inner Danish waters, showing
the sampling sites.

bution is a parabola. The hyperbolic distribution needs four
parameters for its specification, two of which define the po-
sition and scale of the hyperbola and two which define the
“shape” of the hyperbola. We give here one of the parametri-
zations of the model function:

P(x; K, 8, d)) ’Y) = G(B, (b) 'Y)exp[_l/z(d)h— + 'yh+)]r (1)

where x indicates the observed variable; p, 3, ¢, and vy are
parameters,

he =V +(x — w2 = —p
and

Vv

©, &, y) = ,
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K, being a Bessel function. For fixed values of p, &, ¢, and v,
equation (1) determines a probability (density) function.

Figure 2 shows the geometrical interpretations of the pa-
rameters and some of their useful combinations. The param-
eters ¢ and vy are simply the slopes of the two linear asymp-
totes of the hyperbolic log probability function. They there-
fore correspond to BagNoLD’s (1941) “small grade” and
“coarse grade” coefficient, respectively.

Similarly, w corresponds to the log of BAGNOLD’s “peak di-
ameter”. Applied to sediments, we prefer not to use p but

«

i)
2Vgy |

which is the mode point of the distribution and is referred to

Ln ( probability density )

Ln size

Figure 2. Geometrical interpretation of the main parameters in the hy-
perbolic distribution.

as the “typical log-grain size”. The scale parameter 3 has no
direct interpretation in Figure 2; but

{=3Vy

is the difference between the ordinate of the log-hyperbolic
curve at the mode point x = v and the ordinate at the inter-
section point x = p of the asymptotes.

The spread (sorting) of the distribution can be measured in
different ways. Near the mode point it may be described by

72 =372(1 — p?)
where

_b v
b+ v

The parameter 72 represents the curvature of the hyperbola
at the mode point x = v. The parameters 3, {, and k = (dy)*
are also measures of spread (see Figure 2).

The skewness and the kurtosis of the log-hyperbolic distri-
bution, as traditionally defined in statistics, are very compli-
cated functions of ¢, vy, and & (BARNDORFF-NIELSEN and
BL&SILD, 1981). In most cases ({ > 1 and |p| < 5" =~ 0.447)
we may approximate the kurtosis by

1

P

= — (2)
. V1+ ¢
and the skewness by
X = pt. (3)

The domain of variation of x and &, i.e, {(x, £): 0 < |x| < &<
1} is a triangle referred to as the hyperbolic shape triangle
(Figure 3).

From the probability density function of the hyperbolic dis-
tribution (1) it may, for example, be seen that for £ = 0 and
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Figure 3. (a) The hyperbolic shape triangle, i.e, the domain of variation
of the invariant parameters x and £ of the hyperbolic distribution. The
letters at the boundaries indicate how the normal distribution (N), the
positive and negative hyperbolic distributions (H* and —H "), the Laplace
distribution (symmetrical or skew) (L), and the exponential distribution
(E) are limits of the hyperbolic distribution. (b) Representative probability
functions corresponding to selected (x, &) values, including limiting forms
of the hyperbolic distribution. The distributions have been selected so as
to have variance equal to unity. (¢c) The logarithmic probability functions
corresponding to (b).

x = 0 (see also (2) and (3)) we obtain the normal distribution,
that for £ = 1 and —1 < x < 1 we obtain the symmetrical
and skew Laplace distributions, and that for £ = 1 and x =
1 we obtain the exponential distributions as three of the hm-
iting distributions of the hyperbolic distribution. Negatively
skewed distributions plot to the left of the central line in the
triangle and positively skewed distributions to the right in

the triangle; the more peaked a distribution is the higher it
plots in the triangle.

The hyperbolic distribution (1) belongs to a very large class
of distribution called the generalized hyperbolic distributions,
which were introduced by BARNDORFF-NIELSEN (1977) and
studied further by BL&ESILD (1981). It is important to notice
that these distributions may be defined as mixtures of normal
distributions in the following way:

H/ N, o, B, 0, u, A) = N + wBA, wA) /\ GIG(\, 82, k?).

w

(4)

In (4) the domain of variation of the parameters is given by
Ae R &=0,a =0, pne RY B e RY A is a positive definite
d X d matrix with determinant |[A] = 1 and k2 = o2 — BAB*.
Furthermore, N (., ) denotes the d-dimensional normal dis-
tribution with mean p and variance X and GIG(\, x, ) de-
notes the generalized inverse Gaussian distribution with
probability density

(‘b/X)VZ
2K,(V x)
The probability density function of the generalized d-dimen-
sional hyperbolic distribution H (X, a, B, 3, p, A) is given by
the following rather complicated expression:
(k/d)
(2m)2K, (8k)

wrtexpl{—1/2(xw ™ + Yuw)l, w = 0.

K, _aVe? + (x — WA (x — p)¥)
' (Vo2 + (x — WA x — ¥ a2
x € R, (5)

exp{B-(x — wj,

When evaluating the fit of a d-dimensional distribution to
a particular set of data, one often makes a number of plots
which compare the observed one-dimensional marginal dis-
tributions and some of the observed one-dimensional condi-
tional distributions with the similar marginal and conditional
distributions calculated from the fitted d-dimensional distri-
bution. As shown in BL&SILD (1981), the class of generalized
hyperbolic distributions has the convenient property that it
is closed under margining, conditioning and, furthermore, un-
der regular affine transformations.

Setting A = (d + 1)/2 in (5) one obtains the class of d-
dimensional hyperbolic distributions. Using the identity
K, (x) = (w/(2x))*¢~* formula (5) turns into

(K/B)(d+lJ/2
(27 ) =220 K, ., o(OK)

cexpl—aVa? + (x — wA x — wW* + Blx — ) (6)

Formula (1) is obtained from (6) by settingd = 1, a = (¢ +
/2, B8 =(b—vy)/2and A = 1.

The two-dimensional hyperbolic distribution, which we use
for describing the joint distribution of wave height and wave
period, is obtained from (6) by setting d = 2. Using the for-
mula K (x) = (1 + L/x)(mw/(2x))“e~* the probability density
function of the two-dimensional hyperbolic distribution be-
comes
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Figure 4. Hyperbolic and log-normal distributions fitted to observed
wind data. Data measured at Fornas Lighthouse at 3-hour intervals dur-
ing 1990-1991.

K3

2mwa(l + kd)

expl—aVe + (x — WA (x — w)*
+ Bx — i, x € R2 (7)

If (X,, X,) is distributed according to (7) it follows from
BLasiuD (1981) that the marginal distribution of X, and the
conditional distribution of X, given X, = x, are, respectively,

X, ~ H (N, of, B, 0, !, AY),

where

A= 3/2

B* = By + BafpAy)

=y

o = A7M2Vaz — By(Ap— Ay ATMA LB,

& = A

A =1 (8)
and

Xz|X1 =x, ~ HAy), oy, Bots 821y Moy, By)),

where
Ny =1
By = By
Moy = Mo + (0 = p)ARA,
a,, = aldlf?
8y = ARV + (x, — w)AMx, = 1)

Ay = A(Ay — Ay A7 ).

Note that these results imply, that the conditional distribu-
tions of the two-dimensional hyperbolic distribution are one-
dimensional hyperbolic distributions (d = 1 and A = 1) in
contrast to the marginal distributions which are generalized
hyperbolic distributions (d = 1 and A = 3/2).

METHODS

Estimation of the parameters of the hyperbolic distribution
was based on the likelihood method. Different programs were
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Figure 5. Hyperbolic and Gaussian distributions fitted to observed sea-
level data measured at Aarhus harbour at %-hours intervals during 1990.

used according to whether the data was grouped or un-
grouped. Recall, that a set of data is ungrouped if all the
single observations are recorded. In contrast, a grouped set
of data consists of the number of single observations in the
different groups (intervals) into which the sample space is
divided. For grouped data the estimates of the parameters
were obtained by the use of the SAHARA program (CHRIS-
TIANSEN and HARTMANN, 1988). For ungrouped data and for
fitting the two-dimensional hyperbolic distribution the HYP
program (BLAESILD and SURENSEN, 1992) was used. Copies of
these programs are available from the present authors.
Least-square estimation of the parameters of the one-dimen-
sional hyperbolic distribution is discussed in' MCARTHUR
(1987).

RESULTS AND DISCUSSION
One Dimensional Analysis

We have used the hyperbolic distribution on three types of
data from the coastal environment: (1) 2 years of observations
of wind velocity (recorded by the Danish Meteorological In-
stitute at Fornaes Lighthouse as 10 min’s average of mea-
surements every 3 hours); (2) 1 year observation of sea-level
recorded every quarter of an hour at Aarhus Harbour; and
(3) 2 years of observations from the Great Belt of both sig-
nificant wave height and wave period (T,, zero down crossing)
(recorded 20 min every 3 hours with a logging frequency of
2.56 Hz).

It can be seen from Figures 4-7 that for all types of data
a good agreement exists between observations and the fitted
hyperbolic distributions. This is specially the case when one
takes into consideration that the y-axis is logarithmic. There-
fore, even small deviations between data and the fitted dis-
tributions will look as if the agreement is not too good. As an
example, the apparent deviation in Figure 4 between the ob-
served frequency of wind speed 18 m/sec (0.72%) and the cal-
culated frequency (0.52%) is only small with a difference of
0.2%.

The good agreement between observations and fitted hy-
perbolic distribution in Figure 4 provides for good possibili-
ties for predictions/hindcasts. According to the distribution, a
wind speed of 36 m/sec has a return period of 100 years (In
probability density = —12.5). This is a slightly higher wind
speed than the maximal recorded wind speed of 33 m/sec at
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Figure 6. Distributional fits to wave heights measured in the Great Belt
at 3-hour intervals during 1989-1991,

the lighthouse during the last 100 years. One possible reason
for a higher hindcast is that the present wind climate (1960—
1990) generally is more windy compared to the 1930--1960
wind climate (KRISTENSEN and FRYDENDAHL, 1991).

Figure 5 shows the fit to sea-level data using both the
Gaussian and the hyperbolic distribution. The observations
are nearly symmetrical around a sea-level of 0.04 m and have
negative values. Therefore the log-normal distribution would
not give an adequate fit. The Gaussian distribution seems to
underestimate the frequency of the extremes. The highest
sea-level measured at Aarhus Harbour (Figure 1) during the
last 100 years is 1.9 m o. DNN (Danish Ordnance Datum).
Accc;rding to the Gaussian distribution, a sea-level of 1.4 m
has a return period of 100 years; whereas, the hyperbolic dis-
tribution would give a sea-level of 2.3 m with a return period
of 100 years. The hyperbolic distribution thus seems to give
too high sea-levels for such long return periods. However, this
is somewhat’in accordance with the present sea-level trend.
Yearly mean sea-level is rising with a rate of 0.6 mm/yr and
yearly maximum sea-level is rising with a rate of 10 mm/yr
(CHRISTIANSEN ef al, 1992). This possibly explains that the
predicted maximum sea-level for a return period of 100 years,
based on the hyperbolic distribution, tends to be overesti-
mated, in that the present prediction is based on data from
the very end of the 100 year period.

Figure 6 shows that for our observations the Rayleigh as
well as the Weibull distributions have difficulties in fitting
frequencies of wave heights. The log-normal distribution has
a good fit to small and average wave heights, whereas this
distribution seems to overestimate high wave heights. The
hyperbolic distribution gives a good fit in the central part of
the observations as well as in the extremes. The good fit in
the extremes is essential for the use of the distribution as a
prediction tool. Also wave periods (Figure 7) can be fitted
with high precision using the hyperbolic distribution.

Two Dimensional Analysis

Several authors, e.g,, BRETSCHNEIDER (1959) and BATTJES
(1971) have discussed the joint distribution of individual
wave heights and periods. They only considered the possibil-
ity of a linear correlation between height and period squared.
HARRIs (1972) argued from theories of wave generation and
wave mechanies that the highest waves correspond to inter-

e Observed

— Estimated
thyperbolic}

Ln ( Probability density )

Wave period s}

Figure 7. Hyperbolic distribution fitted to wave periods measured in the
Great Belt at 3-hour intervals during 1989-1991.

mediate periods. The wave height increases with an increase
in the wave period up to the maximum height and then de-
creases as wave period increases farther. Harris (1972),
therefore, found that a higher correlation generally was ob-
tained when a parabolic function is assumed to relate wave
height with the wave period. In a physical sense, this also
appears more logical as for short periods, waves of large
height break and do not occur; and for very long periods,
there is not enough fetch or duration to develop the very high
waves. It appears even more logical from a physical point of
view that the above two tendencies should be free to differ
from each other. This is allowed when the hyperbolic function
is used to relate wave height and period.

Only one set of long-term observations of wave heights and
periods are available to us. These observations come from the
Great Belt, the narrow sound connecting the Kattegat and
the Baltic (Figure 1). It can be seen from Figure 8 that a
bivariate plot of height and period has a boomerang-like
shape; and for small wave heights of approximately 0.25 m,
the period can vary between 2 and 7 sec. The reason for this
shape is that the observed waves partly consist of locally gen-
erated wind waves and partly of swells coming in from the
Kattegat. Some of the observations might also be ship gen-
erated waves as the measuring position is very close to the
most heavily trafficked ferry connections in Denmark.

20 =

Wave height (m}
>

0.5

0 10 20 30 w0 50
Wave period - squared (s']

Figure 8. Bivariate plot of wave heights and wave periods squared
(Great Belt, 1989-1991). The solid line represents the wave height-period
combinations for the longest local fetch.
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Figure 9. Equidistant contours of the logarithm of the estimated prob-
ability density function, for the joint distribution of wave heights and
periods (dotted), and the corresponding contours of the observed distri-
bution (unbroken).

We have tried to filter some of this “noise” away. Using the
wave prediction formula in CERC (1975), the solid line in
Figure 8 shows the possible wave height-period combinations
for the longest fetch. Observations above this line are then
considered to be locally generated wind waves.

For these waves, we have considered the two-dimensional
hyperbolic distribution as a model for the joint distribution
of wave height and period squared. The parameters of the
two-dimensional hyperbolic distribution have been estimated
using the HYP program (BL&SILD and SORENSEN, 1992).
This program also produces the plots in Figure 9 and Figure
10 from which the agreement between the observed and the
estimated distribution may be evaluated. The dotted curves
in Figure 9 are equidistant contours of the logarithm of the
probability density function of the estimated distribution,
and the unbroken curves are the corresponding contours of
the observed distribution. The estimated marginal distribu-
tions of wave height and period squared, respectively, are
obtained from the estimated two-dimensional distribution us-
ing (8). Figure 10 shows the logarithmic probability density
functions of the estimated marginal distributions together
with the observed marginal distributions. Figures 9 and 10
indicate a reasonable agreement between the observed and
the estimated joint distribution of wave height and period
squared.

As mentioned after Formula (8), a marginal distribution of
a two-dimensional hyperbolic distribution is a generalized hy-
perbolic distribution (d = 1 and A = 3/2) and not a hyperbolic
distribution (d = 1 and A = 1). The fact that the distribution
of, for instance, wave height earlier in the paper has been
described by a one-dimensional hyperbolic distribution may
therefore seem contradictory to the fact that the marginal
distribution of wave height in the two-dimensional mode] is
not hyperbolic. However, for suitable choices of parameters
the probability density functions of the generalized hyper-
bolic distribution with d = 1 and A = 3/2 and of the hyper-
bolic distribution (d = 1 and A = 1) are nearly identical.

The two-dimensional plot in Figure 9 shows the joint dis-
tribution of wave height and period squared. However, as the

Ln { Probability density |

05 1.‘0 1.5 2.0
Wave height (m}

Ln { Probabllity denslty )

5 0 15 20
Wave perlod - squared {s")

Figure 10. The logarithmic probability density function of the estimated
marginal distributions of wave heights and wave periods, respectively
(lines) and the observed marginal distributions (markers).

depth at the measuring station is 34 m and the observed pe-
riods are in the range of 2-5 sec, this means that the observed
waves all are short, deep water waves. For such waves L. =
1.56 T2 (in the MKS-system). Therefore, the horizontal axis
in Figure 9 corresponds to L/1.56 which means that we also
are given a joint distribution of wave-height and -length.
Wave steepness, defined as 8 = H/L, is therefore also ex-
pressed in this distribution, and we may express the one-
dimensional hyperbolic distribution of the wave steepness for
a given height, length or period. In relation to the design of
off-shore constructions, the wave steepness is an important
parameter.

CONCLUSIONS

We find it important to note that many of the distributions
traditionally used to evaluate wave and sea-level data are
limits of the hyperbolic distribution. Our findings suggest
that the hyperbolic distribution, because of its higher flexi-
bility (being a four parameter distribution), provides for bet-
ter description of the Jong-term probability density distribu-
tion of the one-dimensional observations.

Given the nature of our joint observations of wave height
and period, we consider our findings on the two-dimensional
distribution encouraging. We hope that more progress on this
matter will become available as data from other locales are
treated with the same approach. This would provide a better
possibility for finding the critical wave period values associ-
ated with a given design wave height.
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