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ABSTRACT _

HUTCHINSON, I.; CLAGUE, J.J., and MATHEWES, R.W., 1997. Reconstructing the tsunami record on an emerging
coast: a case study of Kanim Lake, Vancouver Island, British Columbia, Canada. Journal of Coastal Research, 13(2),
545-553. Fort Lauderdale (Florida), ISSN 0749-0208.

A pilot study was conducted at Kanim Lake on the emerging coast of western Vancouver Island, British Columbia,
to assess the efficacy of using lake sediments to determine tsunami run-up and recurrence. Sediment sequences in
lakes near the coast can complement tsunami records derived from deposits underlying intertidal marshes. Marshes
on emerging coasts are uncommon, of limited areal extent, and, most importantly, their deposits have a short lifespan.
Tsunami deposits in lakes are less susceptible to bioturbation and erosion and, generally, can be more accurately
dated than similar deposits in marshes and other terrestrial settings. An inferred tsunami deposit in Kanim Lake
has distinctive lithological characteristics and contains marine and brackish-water microfossils. Kanim Lake also
illustrates some of the limitations in using lakes to reconstruct tsunami run-up and recurrence. Although the lake
has been in the potential run-up zone for tsunamis triggered by great earthquakes on the nearby Cascadia subduction
zone for the last 3,500--4,000 years, it apparently has been inundated by only one tsunami in this period. This event
probably occurred about 2,800 years ago. Tsunamis since that time have failed to reach Kanim Lake as the lake basin
has continued to rise through the run-up zone and the distance to the sea has increased. The development of dense
forest stands on the progressively widening reach between the sea and the lake has probably been the most important
factor in limiting tsunami access to the site.

ADDITIONAL INDEX WORDS: Cascadia subduction zone, diatoms, lakes, relative sea level, tsunami deposits, Van­
couver Island.

INTRODUCTION

There have been no great (moment magnitude M; ~8)

earthquakes on the Cascadia subduction zone (the interface
of the Juan de Fuca and North American plates [Figure La])

in the historic period, but a variety of geological and geo­
physical data suggest that several such events have occurred
over the course of the late Holocene (ATWATER et al., 1995;
DARIENZO and PETERSON, 1995; HYNDMAN, 1995; ATWATER
and HEMPHILL-HALEY, 1996). The most convincing evidence
in support of this conclusion is derived from studies of strati­
graphic sequences in estuaries from northern California to
southern Vancouver Island. Deposits in the high intertidal
zone of these estuaries display repetitive sequences of peats
abruptly overlain by intertidal muds. The peat layers accu­
mulated slowly in intertidal marshes and floodplain forests,
whereas the overlying muds are inferred to have been depos­
ited in lower intertidal environments following sudden co­
seismic subsidence. In many cases the contacts between the
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buried marsh peats and the overlying muds are marked by
thin, landward-fining sand layers that are inferred to have
been deposited by tsunamis generated by these earthquakes
(ATWATER, 1987, 1992; DARIENZO and PETERSON, 1990;
CLAGUE and BOBROWSKY, 1994b).

Estimates of the height of tsunami waves generated by a
great earthquake along the British Columbia segment of the
Cascadia subduction zone were made by NG et al. (1990) and
WHITMORE (1993) from numerical models. They concluded
that 4-5 m high waves would reach the outer coast of Van­
couver Island 10-15 minutes after the earthquake, and that
these would amplify to heights of about 15 m at the heads of
some west coast fjords. In the sheltered waters in the lee of
Vancouver Island the height of the tsunami waves would pro­
gressively diminish, with waves :::;21 m reaching Victoria and
Vancouver (Figure 1b) some 3-4 hours after the earthquake.

Although these results convey the extreme nature of the
hazard and the short emergency response times for commu­
nities on the British Columbia coast, it should be noted that
numerical models but may not provide reliable forecasts of
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Figure 1. The study area. (a) Tectonic setting of the Cascadia subduction zone. (b) Vancouver Island, showing the location of the study site and places
mentioned in the text. (c) The environs of Kanim Lake. Elevations in metres. (d) The southern basin of Kanim Lake showing core sites.

tsunami magnitude. KAN"AMORI and KIKUCHI (1993) point
out that tsunamis display a wide range of individual behav­
iour and that the magnitude of a subduction zone earthquake
is a relatively poor predictor of sea-surface displacement. Rel­
atively small tsunamis may result from large thrust earth­
quakes if the fault rupture occurs instantaneously and at con­
siderable depth on a non-accretionary margin (e.g. Japan, Oc­
tober 1994). Some moderately large tsunamis (e.g. Nicaragua
1992) are thought to arise from slow rupture of the plate in­
terface at relatively shallow depths. Extremely large tsuna­
mis (e.g. Sanriku 1896) can result if fault blocks in the accre­
tionary prism slump during the earthquake (KAN"AMORI and
KIKUCHI, 1993). Given the variety of modes of interface de­
formation and sea-bed displacement, and the complex effects
of nearshore shoaling and coastal refraction, simulation mod­
els may only provide an approximation of the tsunami hazard
at specific coastal locations. More accurate estimates of the
magnitude and frequency of tsunamis in a coastal area may
be obtained from the stratigraphic record.

This paper examines the feasibility of documenting tsu­
nami run-up and recurrence on an emerging coast from the
depositional records of nearshore lakes. The paper includes

the results of a reconnaissance study of Kanim Lake, located
on the central west coast of Vancouver Island at the north
end of the Cascadia subduction zone (Figure 1).

RECONSTRUCTING TSUNAMI OCCURRENCE
FROM THE GEOLOGICAL RECORD

Previous geological investigations of tsunami run-up and
recurrence have largely focussed on the analysis of potential
tsunami deposits in modern or relict intertidal marshes and
lagoons (e.g. LONG et al., 1989; MINOURA and NAKAYA, 1991;
ATWATER and MOORE, 1992). The characteristic deposits in
these environments are slackwater muds and peats. These
low-energy deposits may be interbedded with laterally con­
tinuous, coarser material laid down during floods, wind­
storms, storm surges, or tsunamis. Fluvial deposits common­
ly coarsen and thicken landward and usually contain a sparse
freshwater microfossil assemblage (e.g . HUTCHINSON et al.,
1995). Strong onshore winds can transport sand from the up­
per shoreface and dunes and redeposit it in back-barrier set­
tings, but such eolian deposits are likely to be barren of mi­
crofossils. Storm surge and tsunami deposits consist of land-
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STUDY SITE
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Figure 2. Graphical model of inundation probability as a function of site
elevation in the run-up zone for a 5 m tsunami. Hatched lines indicate
the relative elevation of sites with respect to sea level for the last 5,000
years, assuming an uplift rate of 1 m ka " . The study site (Kanim Lake),
currently at ±6 m asl, emerged from the intertidal zone (upper limit ± 2
m asl in sheltered locations), about 4,000 years ago.
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Kanim Lake (490 24' N, 1260 20' W; Figure Ic) lies in a
partially bedrock-rimmed basin at 6 m as!. The southern part
of the lake (hereafter referred to as the southern basin) is
shallow «2 m water depth). The southern margin of this
basin is separated from the Pacific Ocean by a rocky isthmus
200 m wide with a minimum elevation of 10 m asl. The cen­
tral part of the lake is occupied by patches of aquatic vege­
tation and emergent marsh (Figure Ld); water depths in this
area are <1 m. A 1 km long outlet stream flows to the west
along a narrow channel from the central part of the lake to

these limits (3 m and 7 m asl) decreases with increasing el­
evation.

On the coastal plain of western Vancouver Island the su­
pratidal run-up zone is occupied by dense temperate rain for­
est and scattered bogs and lakes. Tsunamis that penetrate
the forest may leave patchy deposits, but these will be rapidly
obliterated by treefall and erosion. Lakes, in particular those
with low fluvial inputs, appear to be the best sites for pa­
leotsunami investigations. Not only is the lithology of a tsu­
nami deposit likely to be distinct from that of low-energy,
autochthonous lake deposits such as mud and gyttja, but the
associated marine or brackish-marine microfossils will con­
trast sharply with the freshwater forms native to the lake.
Moreover, a tsunami deposit has a much higher probability
of burial and preservation in a lake than in the neighbouring
forest.

ward-thinning and -fining sheets of sand and, rarely, gravel
containing brackish and marine microfossils (e.g. REINHART
and BOURGEOIS, 1987; DARIENZO and PETERSON, 1990;
DAWSON et al., 1991; ATWATER, 1992; DARIENZO et al., 1994;
HEMPHILL-HALEY, 1995). These deposits may be difficult to
distinguish.

The Pacific coast of southern Washington and northern Or­
egon, where much of the geological work on great Cascadia
earthquakes has been done, is indented by large estuaries
which are partly enclosed by sandy barrier beaches and spits.
The barrier beach and spit complexes provide an abundant
supply of sand for entrainment by tsunamis, and the exten­
sive intertidal marshes of the upper estuaries provide a suit­
able environment for sand deposition. Rising sea level along
the Washington and Oregon coast during the Holocene
(HUTCHINSON, 1992) has led to continuous estuarine infill­
ing, and burial and preservation of tsunami deposits.

In contrast to that to the south, the coastal plain along the
northern sector of the Cascadia subduction zone (Vancouver
Island) is narrow. Mountain ranges backing the coastal plain
are indented by narrow, steep-sided fjords. Patches of inter­
tidal marsh are restricted to small areas at the heads of shel­
tered inlets or the foreshores of fjord-head deltas. The latter
are high-energy fluvial systems; tsunami deposits in these
environments are rapidly destroyed through channel migra­
tion and avulsion. Moreover, unlike areas further south, rel­
ative sea level has fallen on the west coast of Vancouver Is­
land during late Holocene time (CLAGUE et al., 1~82; FRIELE
and HUTCHINSON, 1993). This area is rising relative to the
sea (taking into account eustatic sea-level rise) at a rate of
about 1 m ka". Intertidal marshes on this coast, which oc­
cupy a vertical range of about 1 m, therefore have a lifespan
of about 1,000 years before they emerge from the intertidal
zone (Figure 2). Present-day marshes are therefore likely to
record only those tsunamis that have occurred in the last
millenium. On Vancouver Island uplifted marshes are rapidly
colonized by forest, and their buried tsunami deposits are ob­
scured or destroyed by bioturbation and erosion. For these
reasons, there are only deposits from three tsunamis in the
marshes near Tofino (CLAGUE and BOBROWSKY, 1994a, b)
(Figure Ib), CLAGUE and BOBROWSKY (1994a, b) attributed
these deposits to the Alaska tsunami of 1964, a 100-400 year
old Cascadia tsunami, and a tsunami from an unknown
source sometime between 500 and 800 years ago.

To document older events on emerging coasts like western
Vancouver Island, depositional sites above the limit of tides
must be investigated. The probability of inundation in the
run-up zone can be illustrated by a simple graphical model
based on average tidal conditions (Figure 2). If, for instance,
a 5 m wave (the maximum suggested by NG et al. (1990) for
a local tsunami on the west coast of Vancouver Island) coin­
cided with low tide (-2 m asl), only sites below -2 + 5 = 3
m asl in the potential run-up zone would be inundated. Sites
below this elevation thus would be inundated at all states of
the tide (inundation probability (p) = 1; Figure 2). If this
model wave coincided with high tide (2 m asl), all sites below .
2 '+ 5 = 7 m asl (p = 0; Figure 2) would be within the po­
tential run-up zone. The probability of inundation between
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the sea (Figu re Id). The larger northern ba sin occupies a nar­
row vall ey directly southwest of Stewardson Inlet, part of the
Sydney Inlet fjord complex (Figu re Ic ), The adjacent moun­
tains rise to elevat ions of more than 600 m. Much of the east­
ern margin of the lake coincides with the edge ofa large land­
slid e derived from the rock slopes to the east. The age of the
landslide is unknown, but it postdates the last occupation of
the area by glacier ice about 13,000 14C years ago (CLAGUE,
1981).

The regional emergence model outlined above predicts that
the outlet of the Kanim Lake basin, currently at 6 m asl,
would have been located in the middle to upper intertidal
zone in the middle Holocene (Figu re 2). With an emergence
rate of 1 m ka" the ba sin would have undergone a transition
from marine to lacustrine conditions about 4,000 years ago
(Figure 2). The date of emergence sets a lower limit for the
detection of paleotsunami events in the ba sin because sandy
tsunami deposits are virtually indistinguishable from some
intertidal deposits.

After emerging from the sea, the lake basin continued to
rise through the t sunami run-up zone. Th e probability of in­
undation of the lake basin by a tsunami has therefore de­
clined through time from the date of emergence to the pres­
ent . During its early hi story, Kanim Lake would likely have
been inundated by any large tsunami st r iking this coast. Dur­
ing the last 1000--2000 years, however, it may have been too
high to be inundated by a tsunami , unless the maximum
wav e coincid ed with high tide.

METHODS

To re construct the paleotsunami record from Kanim Lake,
undisturbed cores were taken in the southe rn lake basin and
ne ar the lake outlet (Figu re l.d) with a Livingstone corer op­
erated from a pla tform constructed from two inflatable rafts.
Thi s lightweight coring equipment was necessitated by the
remoteness of the site, whi ch can be accessed only by heli­
copter. The cores were described in the field ; critical material
for diatom analysis and radioc arbon dating was returned to
the laboratory.

In preparation for diatom analysis , organic matter in 1 g
samples was removed by H20 2 dige stion and the remaining
material dispersed in 250 ml of distilled water. After repe ated
decanting and settling to remove fines and to bring the so­
lution to a near-neutral pH, aliquots of suspended material
were dried on glas s slides and mounted in Hyrax. The diatom
assemblage of eac h sample was determined at X 1,000 by
counting the first 200-300 specimens encounte red in random
parallel traverses. Taxonomic identifications were based on
descriptions in VAN DER WERFF and HULS (1957- 74), HEN­
DEY (1964), PATRICK and REIMER (1966 , 1975 ), RAO and
LEWIN (1976 ), FOGED (1981), LAWS (1988), and HEMPHILL­
HALEY (1993) . Species were placed in salinity-tolerance class­
es followin g the Halobian sys tem of KOLBE (1927) as modified
by HUSTEDT (1953 ). Th ese assign ment s were based on infor­
mation derived from the taxonomic sources listed abov e plus
data provided by HAWORTH (1976), Vos and DE WOLF
(1988 ), PIENITZ et al. (1991), and NELSON and KASHIMA

(1993 ). Source environme nts were determined from the range
of salinity tolerance exhibited by the diatom as semblages.

Radiocarbon ages obtained during this study, or quoted
from previous work, are cit ed in radiocarbon years before AD
1950 (14C yr BP ± 10"). Marine shell ages were normalized to
Bl3C = -25%0 PDB by th e laboratory, and a further regional
oceanic re servoir correction of 390 years (STUIVER and BRA­
ZIUNAS, 1993) was applied pri or to calibration. Calibrated age
ranges were determined from the dendro-calibrated data of
STUIVER and BECKER (1993 ) and STUIVER and BRAZIUNAS
(1993 ) with the CALIB 3.0.3A program of STUIVER and REI­
MER (1993 ). Th e laboratory multiplier was set equal to 2 for
all calibrati ons, and calibrated age ranges are express ed as a
68.3 % confidence interval in yrs BP .

RESULTS

Stratigraphy

The total thickn ess of cored sediment ranges from 0.85 m
near the lake outlet to 4.85 m at the most southerly site (Fig­
ure 3). Th e depth of pen etration was limited by basal , inter­
tidal sandy sediments.

Th e lowest un it in th e sequence is composed of olive-gray
(Munsell colour 5Y 4/2), fine to very fine sa nd, silty sand, and
sandy mud containing shell s of marine bivalves and, locally,
wood. Th e finer facies of this unit are comm on only a t the
most southerly site; here th e un it consists of interlayered
sa ndy mud and muddy fine sand. At most other sites, th e
sa nd is clean and lacks consp icuou s stratification.

The sand is overla in by yellowish-brown (10YR 3/2) gyttja.
The contact between the sand and the gyttja is abrupt and
ri se s ne arly 3.5 m towards the lak e outlet (Figu re 3). In six
of th e seven cores the gyt tja is st ru ctureless. At th e most
southe rly core site, however, th e lower part of th e sequence
contains two laminated zones 14 and 16 ern thick; individual
laminae within these zones are 1-3 mm thick and are defin ed
by differen ces in colour (brown to black). Th e gyttja unit thins
to th e north from about 4 m thick in the southern basin to
0.6 m at th e lak e outlet (Figu re 3).

Th ere are tw o cons picuous horizons in the gyttja sequence.
A thin (3- 10 mm ) layer of olive-gray (5Y 3/2, 5Y 4/2) clay
occurs near the middle of the gyt tja seque nce in th e three
most southe rly core s (Figu re 3). The basal contact of th e clay
layer is sharp; in contrast, th e upper contact grades through
a thin layer of organic-r ich mud into th e overlying gyttja. In
each of th ese three cores th e gyttja directl y below the clay
layer is unusually dark. Th e reason for this is not known.
Th e second conspicuous hori zon is a 9 ern thick mixture of
plant detritus (branches, twigs, bryophyte fragments and co­
nifer needles , seeds and cones) and sand in the lower part of
th e gyttja sequence in a core near th e lake outl et (core 6;
Figure 3). Thi s layer has a sharp lower contact and a gra­
dational upper contact. Th e sa me layer occurs in a core to th e
north (core 7; Figure 3), but is thicker (20 ern) and coarser
there. At that site th e plant debris coarsen s and increases in
abundance downward, inhibiting penetration by th e Living­
stone corer.
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Figure 3. Stratigraphy of cores from Kanim Lake . Core locations shown in Figure 1d.

Diatom Biofacies

The diatom assemblage in the basal sand in core 2 is dom­
inated by valves of marine and marine-brackish species (Fig­
ure 4a), providing further evidence for a marine origin of this
unit. Plagiogramma staurophorum and Opephora pacifica and
0. marina, which RAo and LEWIN (1976) noted as common
members of the epipsammon in an intertidal sandflat in the
Pacific Northwest, are particularly abundant in this basal
sand assemblage, and indicate that the sea had open access
to the basin at the time of deposition. The abundance of ben­
thic species, and the fact that many of the valves are not
broken or abraded, suggest that the basal sand unit is not a
storm or tsunami deposit.

Gyttja overlying the basal sand contains a freshwater di­
atom community dominated by Fragilaria species. Just above
the sand-gyttja contact, however, there are a few valves of

. marine diatoms, and valves of mesohalobous species such as
Navicula peregrina and Thalassiosira lacustris are common,
indicating a short-lived brackish phase transitional from a
marine to a lacustrine environment.

Diatom assemblages associated with the clay layer were
examined in core 1. Deposition of the clay layer coincided
with small-scale and short-lived changes in the freshwater
diatom community of the lake; Cymbella minuta, for example,
exhibited a transient increase in abundance at the expense
of other species such as Aulacoseira granulata (Figure 4b). No
diatoms of a marine or brackish affinity, however, were noted
in this layer or in the organic mud above it.

Diatom assemblages in the sandy forest detritus layer were
determined from single samples recovered from cores 6 and
7 (Figure 4c). The diatom communities in both samples con­
sist primarily of the same freshwater species found in the
gyttja unit, but there are also substantial numbers of brack­
ish diatoms (23% of the total in both samples) and some ma-

rine and marine-brackish forms (0.6% and 3% of the total in
cores 6 and 7, respectively). As in the case of the gyttja just
above the basal sand, the most abundant brackish diatom in
the sandy forest detritus layer is Navicula peregrina . About
two-thirds of the marine species in the forest detritus layer
consist of planktonic forms, and most of these valves are bro­
ken or abraded, indicating transport prior to deposition. The
diatom assemblage in the sandy detrital layer therefore ap­
pears to comprise material reworked from the lake bottom
(the freshwater species), nearby intertidal marshes (brackish
forms ) and coastal and offshore sources (the marine forms ).

Radiocarbon Ages

Whole shells and shell fragments collected from the upper
part of the marine sand-mud unit in cores 1 and 3 yielded
AMS radiocarbon ages of 4170 ± 70 and 4440 ± 60 14C yr
BP (Table 1). Five AMS ages were obtained on cones and
twigs from the layer of plant detritus and sand in cores 6 and
7 near the outlet. Four of the ages are between 2,650 and
2,800 14C yr BP; one sample yielded an age of 3,100 ± 70 14C
yr BP. A thin slice of gyttja taken from direc tly below the
clay layer in core 1 was dated at 2,130 ± 60 14C yr BP.

The calibrated ages of these samples (Table 1) indicate that
the changeover from a marine to a freshwater lacustrine en­
vironment at Kanim Lake probably occurred 3,500 to 4,000
years ago. The layer of coarse plant detritus and sand in the
vicinity of the lake outlet was deposited about 2,800 years
ago. The thin clay layer was deposited between 1,900 and
2,300 years ago.

DISCUSSION

The calibrated radiocarbon ages cited above indicate that
Kanim Lake emerged 3,500 to 4,000 years ago. Since emer-
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Table 1. Radiocarbon ages, Kanim Lake.

Conven-
tional
Radio-

Labora- carbon Calibrated
Depth Dated tory Age Age Range

Corel (rn)" Material No.3 (l4C yr BP)4 (cal yr BP)5

1 2.13 Gyttja TO-4708 2,130 ± 60 1,930-2,310
2 4.00-4.07 Marine shell TO-4707 4,170 ± 70 3,520-3,880
3 2.59-2.94 Marine shell TO-4704 4,440 ± 60 3,890-4,230
6 0.53-0.60 Twigs" TO-5310 2,650 ± 50 2,720-2,840
7 0.53-0.60 Cone? TO-4914 2,750 ± 60 2,750-3,000
6 0.53-0.60 Twig" TO-5311 2,800 ± 50 2,780-3,020
6 0.53-0.60 Twig" TO-4706 3,100 ± 70 3,060-3,440
7 0.63-0.83 Cone? TO-5309 2,700 ± 50 2,740-2,920

'Locations: Core 1-49°23.5' N, 126°20.2' W; Core 3-49°23.6' N,
126°20.3' W; Core 6-49°23.7' N, 126°20.2' W; Core 7-49°23.7' N,
126°20.2' W
2Depth of sample below lake floor
3TO: IsoTrace (University of Toronto)
"Laboratory reported errors are ± lIT. All ages corrected to 13C = - 25%0
PDB
5Calibrated age ranges for plant material (TO-4708, TO-4914, and
TO-4706) were determined from the dendro-calibrated decadal data of
STUlVERand BECKER(1993). Calibrated age ranges for marine shell frag­
ments (TO-4707 and TO-4704) were determined from the dendro-cali­
brated bidecadal data of STUIVERand BRAZIUNAS (1993), with ~R set to
390 ± 25 years. The ranges represent the 68.3% confidence interval based
on the 2IT error limits of the radiocarbon age (error multiplier = 2)
6Myrica gale? (sweet gale?)
"Thuja plicata (western red cedar)
"Picea sitchensis (Sitka spruce)
"Tsuga heterophylla (western hemlock)

gence, about 4.5 m of gyttja has accumulated in the deepest
part of the southern lake basin, and about 1 m of gyttja has
accumulated near the lake outlet. Gyttja accumulation in the
lake basin appears to have been interrupted on only two oc­
casions: about 2,800 years ago a layer of sand and forest de­
tritus was deposited near the lake outlet, and 1,900 to 2,300
years ago a thin layer of clay was deposited in the southern
lake basin.

Several lines of evidence suggest that the sandy forest de­
tritus layer was deposited by a tsunami or storm surge and
not by a flood or some other process. No creeks enter the lake
in the vicinity of cores 6 and 7; this and the presence of ma­
rine diatoms shows that the forest detritus layer is not a flood
or slopewash deposit. The layer is thickest and most distinct
near the lake outlet, which is the area where a tsunami or
storm surge would enter the lake, and where most of the
suspended and tractive load would be deposited. The sand
component of this layer is likely derived from the beach, from
shallow offshore sources, or from the outlet channel. The
presence of planktonic marine diatoms is further evidence
that at least some of this material came from offshore. Brack­
ish-water diatoms account for almost one-quarter of the dia­
tom assemblage in the forest detritus layer, implying that
brackish marshes existed near the lake at that time, perhaps
behind a barrier beach at the seaward end of the outlet
stream. The plant detritus consists of wood and bryophyte
fragments, and conifer needles, cones and seeds in various
stages of decomposition. This is typical forest floor material

in the temperate rain forest of western Vancouver Island and
was presumably entrained in the tsunami or in storm waves
as they surged up the channel between the ocean and the
lake.

Kanim Lake appears to bear the imprint of a single tsu­
nami or storm event about 2,800 years ago. At that time the
elevation of the lake outlet was close to 3.5 m asl (Figure 2),
and the waves had a minimum run-up of 1.5 m. The apparent
absence of similar deposits of greater age may simply reflect
our inability to distinguish these deposits from sandy subti­
dal and intertidal sediments that accumulated in the basin
before it emerged. The absence of younger deposits may be
due to the fact that the lake rose above the run-up limit for
tsunamis and storm surges. This would limit the maximum
run-up at this site to ca. 2 m, assuming that a high tide oc­
curred at some time during the event. It should be noted,
however, that even as the lake basin rose, other factors may
have further reduced the chances of a tsunami or storm surge
reaching the lake. In particular, the forest zone between the
lake and the sea grew wider as the lake emerged; dense
stands of trees reduce wave energy, and may inhibit inflow
to a lake still within the elevational range of the run-up zone
of a tsunami or surge on the open coast. The development of
a belt of forest nearly 1 km wide along the outlet stream
between Kanim Lake and the Pacific Ocean since emergence
has undoubtedly been a major hindrance to tsunami access
to this lake basin.

Although in the discussion so far both tsunamis and storms
have been considered equally likely causes of the sandy forest
detritus layer, we favor a tsunami origin. The emplacement
of this deposit by storm waves or a storm surge is considered
unlikely, for the following reasons. First, the mouth of the
outlet stream from Kanim Lake lies on the relatively pro­
tected eastern shore of Hesquiat Harbour (Figure Lc) and the
maximum shore-normal fetch in the vicinity of the stream
mouth is 10 km. Waves generated across this limited fetch
are unlikely to cause flow reversal in the outlet channel and
deposition of marine material in Kanim Lake. Second, storm
surges generated by onshore winds from the open Pacific are
of limited magnitude because the waters overlying the nar­
row continental shelf off western Vancouver Island are rela­
tively deep. The Tofino (Figure Ib) tide gage record, for ex­
ample, indicates a maximum super-elevation of the water
surface of 0.9 m during storms in the period 1929-1991 (Fig­
ure 5). Extrapolating from this record, we infer that storm
surges equivalent to the>1.5 m event that breached Kanim
Lake 2,800 years ago may have a recurrence interval exceed­
ing 1,000 years (Fig. 5). This is substantially greater than the
estimated average recurrence interval of interplate earth­
quakes on the Cascadia subduction zone, which is about 500
years (ATWATER and HEMPHILL-HALEY, 1996).

The third reason for discounting the storm hypothesis is
that the sandy detritus layer may be the same age as one of
the Cascadia plate-boundary earthquakes inferred from bur­
ied peat sequences in estuaries in Oregon (NELSON, 1992;
DARIENZO and PETERSON, 1995; NELSON et al. 1996) and
southern Washington (ATWATER, 1988; ATWATER and HEM­
PHILL-HALEY, 1996). Cappings of tsunami sand lie above this
buried peat in several of these estuaries. Radiocarbon ages
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of about 1 m ka- 1. Although th e lake still lies below the po­
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tion is shown by th e shaded band . Data supplied by F. Stephenson, In­
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character of the associated diatom community (Figure 4b)
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lake basin from the slopes to the east, possibly due to a severe
storm or to a landslide.
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