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ABSTRACT I

CHRISTENSEN, F.T., 1994. Ice ride-up and pile-up on shores and coastal structures. Journal of Coastal
Research, 10(3), 681-701. Fort Lauderdale (Florida), ISSN 0749-0208.

Simple techniques for selecting design ice ride-up and ice pile-up phenomena on beaches and coastal
structures, such as breakwaters and bridge abutments, are outlined. The size of the ice pieces breaking
off when the floe interacts with the slope is determined in a static analysis. Ride-up and instabilities
leading to pile-up are examined. Two conceptually different relations between driving force and pile-up
height arise from different mechanical models of the piling-up process. Design values are estimated by
limiting the pressure within the advancing ice sheet to the horizontal failure pressure, which is generated
as a floe when significant kinetic energy impacts a shore or a sloping coastal structure. Subsequent use
of ALLEN’s (1970) formula gives a good estimate of maximum pile-up heights for given ice conditions.
This implies that the entire pile-up must be pushed upward. Limiting heights based on the forces required
to overcome gravity of only the advancing ice and friction, as proposed by Kovacs and Sopbwr (1980),
give unrealistic pile-up heights. This presumes that the horizontal ice failure pressure is substituted for
the unit driving force, and no other limitations or instabilities in the piling-up process are considered.
Their model is suited for plane situations, where the ice velocity is nearly zero and the pressure is limited
by driving forces rather than by the failure pressure. A limit must be added to their pile-up process model
corresponding to buckling failure of the train of prebroken ice blocks riding up the seaward face of the
ice pile-up.
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INTRODUCTION

When a drifting ice sheet or ice floe comes in
contact with a continuous slope, such as a beach
or a mound breakwater, it begins to bend where
it is pushed up on the slope. If the driving forces
are sufficiently large, the ice will break, and the
ice sheet will continue to push broken-off pieces
up the slope. These may either form an ice pile-
up or continue to ride up and eventually overtop
the mound. Figure 1 shows an ice pile-up com-
pletely covering a breakwater. SPEERSCHNEIDER
(1927, p. 61) refers to a description from 1901 of
ice piling-up at the harbour of Drager immedi-
ately south of Copenhagen, Denmark. BrRUUN
(1989) offers an English translation of this de-
scription:

“... slowly, silently, the floes pressed up over the
stonework of the breakwater. Ice soon reached the
timberwork, stopped for a while as if to gather
strength, and then with two-three cracks and
crashes, the planking, framing and bolts shattered
like glass and broke like matchsticks, packice
pressing in everywhere, piled 20 feet high. Then
the packice went over the breakwater, and, with a
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hollow, snarling sound, fell upon the ships and boats
moored within. It was all over within a quarter of
an hour. The packice came to a stop as suddenly
as it had started, yet in that short while had wreaked
a havoc of destruction. Mounds of ice still cover
the outer part of the breakwater, and the total
extent of the damage cannot yet be assessed.”

This description captures well the brief and vio-
lent ice pile-up formation process, which is typical
of most piling-up events.

Ice pile-ups are formed when an ice cover is
forced against a coast line. The forcing towards
the coast line can be generated by stresses due to
wind and/or current, by thermal expansion of a
relatively large coherent cover or by a drifting ice
floe with substantial kinetic energy. Ice pile-ups
are often formed in a few minutes and can cause
considerable loading on the underlying base. When
the base is a natural or similar beach, the loading
is usually irrelevant, while issues such as sediment
transport can be of interest (BARNES et al., 1993;
DioNNE, 1993).

Based on observations in the Beaufort Sea,
Kovacs and SopHi (1980) stated that, “Pile-up
seldom occurs more than 10 m inland from the
sea, but ride-up frequently extends 50 m or more
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Figure 1. Ice pile-up covering the old breakwater at Knudshoved on the island of Fyn, Denmark, on 22 March 1940. This breakwater
was located a few hundred meters south of the present day western landfall of the Great Belt Link. Photo courtesy of Danish

Hydraulic Institute.

inland, regardless of ice thickness”. The 50 metres
should be seen in conjunction with the very flat
shores of Alaska’s north coast. Kovacs (1983, 1984)
even mentions inland ice thrusts extending 100
m behind the shoreline. Kovacs and Sopr (1988)
show a range of interesting pictures of ice ride-
up and pile-up.

The primary point of interest in design is the
magnitude of the protrusion of sea ice in any form
behind the shoreline, and/or the elevation reached
by the sea ice behind the shoreline. Also of interest
is the necessary clearance of low bridges, typically
near bridge abutments, to avoid ice pile-up im-
pact on the superstructures.

In the following, the size of the broken-off piec-
es is first determined. Ride-up is then analyzed
with particular emphasis on instabilities leading
to ice piling. Finally, the sizes and associated forc-
es of ice pile-ups are outlined. Two conceptually
different approaches are outlined, and a simple
method for deterministic design is recommended.

More complex approaches are needed in re-
search, e.g., by YEAN et al. (1981). The objective
of the following is to outline a simple method.
Probabilistic methods are not included in this pa-
per, although they may be of interest (HoMMEL
and BERCHA, 1983). New numerical methods, e.g.,
by Hoprkins (1992, 1993), might also be used as a
basis for rational design approaches, although this
would require some adaptation efforts.

Ride-up and pile-up phenomena are of impor-
tance to structures placed in ice-infested waters
such as the Beaufort Sea (CrRoaSDALE and MAR-
CELLUS, 1978; CROASDALE, 1980; CROASDALE et al.,
1988) and the Bering Sea (ETTEMA et al., 1983;
SACKINGER et al., 1983). Ride-up can take place
also in the more pronouncedly seasonal ice regions,
such as Scandinavia, and design measures against
overriding may be necessary. This is true for e.g.,
many breakwaters in subarctic waters, and the
writer has proposed design ride-up and pile-up
sizes for fill islands incorporated in two Scandi-
navian strait crossings, the Great Belt Link in
Denmark and the planned Sound Link between
Denmark and Sweden.

GENERAL EQUATIONS

Consider an ice floe of relatively large extent in
contact with a slope as shown in Figure 2. The
situation is considered to be plane, and the length
of the breakwater is infinite. If the coefficient of
friction between the ice and the slope is zero, the
horizontal and vertical reactions, H, and V,, are
related by:

H,/V, = tan « (1)

where « is the slope angle with horizontal. A tri-
angular volume of height z, and length z, is crushed
during the initial contact. The reaction forces are
assumed to be evenly distributed over the result-
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Figure 2.

Ice sheet in contact with slope.

ing inclined sea surface. The friction force acting
on the ice, parallel to the slope in the downward
direction, equals the product of the normal force
and the friction factor, u:

Fu = #(Hll2 + V“g)u{. (2)

When this friction force is included in the force
balance, the reactions become:

H =H,(1 + u cot «) (3)
V=V, (1 — utan «). (4)

By use of equation (1) the relation between H and
V becomes:

H/V = tan (1 + g cot «)/(1 — u tan «)
= (u + tan «)/(1 — u tan «). 5)

The horizontal driving force on the floe can be
calculated as:

F= Fwiml + F‘w;.m (6)
med = 0'003/)1|VI02A (7)
Fover = 0.003p,u%A (8)

where A is the top surface area of the ice floe, V,
is the wind speed 10 metres above the floe, u is
the current speed 1 metre below the floe, and p,
and p,, are the densities of air and water, respec-
tively. Note that these two driving forces should
be added vectorially. For small driving forces, F
and H might be in equilibrium, and no further
development takes place. For large driving forces,
the ice will ride up the slope and potentially form
an ice pile-up as explained below.

The following analyses are best understood if
one considers a vast ice floe pushed against a slope
with a constant velocity sufficiently small that
dynamic effects on ice deformations can be dis-

Figure 3. Localized crushing causing eccentricity of the hori-
zontal reaction component.

regarded. Upstream of the slope and outside the
interaction zone, an imaginary pressure Sensor re-
cords the horizontal compressive interaction force
in the ice. When this force reaches the magnitude
of the external driving force, F, the interation
stops. In reality, it will continue until the kinetic
energy of the floe has dissipated. For the purpose
of making the analysis clearer, this is disregarded
at first.

DETERMINATION OF MAXIMUM ICE
PIECE LENGTH

The size of the ice pieces breaking off as the ice
sheet pushes onto the slope is of interest for two
reasons. The piece size affects the stability of the
ride-up process, particularly at points where the
slope angle changes. This will be described later.
The piece size may affect the piling-up process,
although this is currently not well understood.

By using the reactions H and V determined
above, the stress in the critical cross-section i.e.,
the cross-section with maximum combined stress-
es, can now be determined as:

o, = (H/Bh) + 6(VQ, - Hfth)/(Bh?) (9)

where B is the ice floe width, ¢, is the stress in
the critical cross-section from combined com-
pression and bending, ¢, is the distance from the
floe edge to the critical cross-section, and f is a
dimensionless eccentricity factor defined as the
ratio of vertical eccentricity to thickness, f = e/h,
where e is the eccentricity. After determining the
eccentricity coeflicient, f, the piece length, £, can
be found from the above equation. When the ice
floe first meets the slope some initial localized
crushing will take place. This is shown in Figure
3. If, for simplicity, it is assumed that the height
of the crushed zone equals:

z, = H/(0,B) (10)
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Figure 4. Dimensionless piece length as a function of the di-
mensionless parameter S, the shore slope angle a, and the fric-
tion coefficient u, based on a static analysis.

where ¢, is the uniaxial compression strength, the
eccentricity can be found as:

e= Yt —z) an
f=eh=1%1-12/h)= %0 -S" (12)
S = ¢ ,hB/H (13)

where S is a dimensionless parameter expressing
the ratio of the compressive ice failure load and
the external forcing. The last parameter needed
in order to determine &, is the ice strength under
combined bending and compression, a,.. It may
be calculated from:

ope = 01 — (1 =8 1)) (14)

Failure takes place when the stress given by equa-
tion (9) reaches the magnitude of the combined
bending-compression strength given in equation
(14). This leads to a formula for the length of the
broken-off ice pieces, c¢f. TryYDE (1972, 1973), who
also referenced KorzHAVIN (1962) for inspiration:

&:tana_(l+uC()La)<S+6_(Z>>. (15)
h 12 (1 — ptana) S

Note that for S = 1 the piece length is zero. The
relationship (15) is shown in Figure 4. It is valid
only when an ice sheet is in contact with the slope
while at rest with external driving forces acting
upon it. As a static analysis, it fails to predict the
correct piece size when the velocity of the ice floe
is significant. A dynamic analysis can predict the
piece size correctly (REEH, 1972), regardless of the
velocity of the incoming ice floe. This quite com-

plicated analysis has been conducted by Ser-
ENSEN (1977, 1978).

As an example, consider a nearly circular ice
floe of 1,000 m diameter forced against a slope by
a 16 m/sec wind, and in contact with that slope
over a width of 200 m. The driving force on the
floe is 3.11 MN according to equation (7). The
horizontal ice pressure per unit width is then 15.6
kN/m. With an ice thickness of 0.5 m and a uni-
axial compressive ice strength of 2 MPa, the S
parameter in equation (13) becomes 64.3. On a
35° slope with a 0.1 friction coetlicient this leads
to an ice piece aspect ratio, £,/h, of 5, correspond-
ing to a piece length of 2.5 m.

Kovacs and Sopni (1988) offered an approxi-
mation which is quicker to calculate:

2,/h = (a,/(3y,h))>* (16)

where o, is the flexural ice strength and 7, the
specific weight of the ice. The above 0.5 m thick
ice floe could reasonably have a flexural strength
of say 500 kPa, corresponding to 25% of the com-
pressive strength. With a specific weight of 8.9
kN/m?, the aspect ratio of the ice pieces becomes
6 according to equation (16). This is a little higher
than the value of 5 estimated by equation (15)
but within reasonable uncertainty.

The technique of equations (9) through (15)
appears to give reasonable results, but some res-
ervations are necessary. The unit force of 15.6
kN/m is far from the limiting horizontal failure
pressure within the ice sheet. The larger pile-ups
are most likely formed through focusing of force
or energy so that a large floe causes a highly vari-
able pressure along the shore. When a point ex-
periences a large pressure, the pile-up may in-
crease at this point in time and space, while other
points along the shore experience only modest
pressure. After a failure of the sheet ice, different
points may experience high pressure and pile-up
formation. In this way, a modest average unit force
can actually build a relatively high ice pile-up
through a non-simultaneous process along a shore.
This explanation would indicate that the average
unit force is not representative of actual contact
stresses. The use of average unit force to calculate
piece sizes is only suitable for situations of perfect
contact. This may be the case where an intact ice
sheet is frozen onto e.g., a breakwater, and the
wind subsequently increases. This may lead to a
nearly plane two-dimensional stress state. This
distinction will be applied again for determina-
tion of ice pile-up heights.
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Figure 5. Schematic ice ride-up.

GRAVITY: Lbh

EXTERNAL FORCING: F

ICE RIDE-UP

The broken-off ice pieces are pushed against
the slope by the advancing ice sheet behind them.
They continue up the slope and may even reach
levels as high as 10 to 12 metres above water level,
although levels about 3 metres are more common.

Cox et al. (1983) added an upper limit to the
aspect ratio of the broken-off pieces by consid-
ering the bending of a piece resting with one end
on the slope and the other end on the edge of the
advancing ice sheet. By demanding that the max-
imum bending moment in the piece, v,bh,3/6, be
less than or equal to the breaking moment, o,bh?/
6, the limiting aspect ratio becomes:

0,/h < (a,/(vh))s (amn

If the piece length found from equation (15) is
larger than the maximum permissible length ac-
cording to equation (17), the piece will break in
half during the initial part of the ride-up.

If the driving force on the floe is larger than
the resistance offered by the pieces on the slope,
ride-up may occur. The resistance may be found
from:

R = Ly,bh(sin « + u cos «) (18)

where R is the resistance parallel to the slope, L.
is the length of the slope covered by ice pieces, v,
is the specific weight of the ice, b is the width of
ice on the slope, h is the ice sheet thickness, « is

the slope angle (with horizontal), and u is the
friction coefficient. This formula implies a con-
tinuous cover of ice pieces over the length L. If
the available horizontal driving force, F, has a
component parallel to the slope, F cos «, larger
than the parallel resistance, R, ride-up may occur.
This happens when:

Fcosa >R
F > Lybh(u + tan o) (19)

where L is the slope length above water. (Note
that some authors have wrongly projected onto a
horizontal line and arrived at F > R cos a instead).
The criterion (19) is in principle conservative as
the normal reaction at the contact point at the
water line, ¢f. Figure 5, has been neglected. It
would cause an additional resistance of u(R/cos
«)tan «. The parentheses in equation (19) would
then contain the terms (¢ + tan o + u tan’a +
u’ tan «), where the two latter terms are of a
smaller order of magnitude. If condition (19) is
not satisfied, a partial ride-up occur instead. The
length of the slope that might become overridden
by ice in a partial ride-up can be found by isolating
the slope length in condition (19). This yields:

L, = F/(y,bh( + tan a)) (20)

in which L, is the length of the slope that is cov-
ered with ice. If an ice floe has a relatively limited
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Figure 6. Ice pieces passing a decrease in slope steepness.

extent but a considerable kinetic energy, it may
still ride up the slope turning some of its kinetic
energy into potential energy and dissipating some
by overcoming frictional resistance. The work done
during the ride-up may be expressed as:

W = % L%y bh(sin o + u cos a) (21)

in which the first term expresses the work to over-
come gravity and the second term the work to
overcome friction. The kinetic energy of the ice
floe immediately prior to impact is:

E, = (1 + C,)aD*hp,v2/8 (22)

where E, is the kinetic energy of the ice floe, C,,
is the added mass coefficient, D is the diameter
of the ice floe, p; is the density of the ice, and v
is the ice floe velocity prior to impact. The. floe
may cause a ride-up to the top of the slope if the
E,/W ratio exceeds one:

(1 + C,)naDzVz
4blg(sin a + u cos «)

E./W = >1  (23)
where g is the acceleration of gravity and b the
width of the ride-up zone. The value of the added
mass coefficient depends on water depth, floe, ve-
locity, etc. With lack of accurate expressions, a
central value of 0.2 may be used. The criterion
(23) does not consider the work done in breaking
off pieces of the ice floe. This amount of work may
be significant on a relatively steep mound break-
water, while it may be of no importance on a long
shallow beach. Ignoring it makes the criterion
conservative.

In order to determine whether a given ice floe
can cause a ride-up to the top of a given slope, it
is necessary to check both criteria (19) and (23),
i.e., whether the environmental driving forces can
push the ice up the slope, and if not, whether the
floe possesses enough kinetic energy to ride-up
while dissipating this kinetic energy.

Complex profiles with one or more slope changes
between the water line and the crest may warrant

detailed investigations in case ride-up and pile-
up are critical. One such example is the break-
water in Nome, Alaska, which was studied in a
physical model, ¢f. ErrEmMA et al. (1983) and
SACKINGER et al. (1983). Complex profiles have
also been used in the Beaufort Sea, cf. e.g., CroAS-
DALE and MARCELLUS (1978). Physical model
studies were used here as well, ¢f. e.g., ABDELNOUR
et al. (1982).

ICE PILING-UP
Ice Pile-Up Initiation

On shores and breakwaters an ice pile-up may
form as a result of an instability in the ride-up
process. Designs favouring instabilities may
therefore be desirable. They can limit the maxi-
mum ride-up by ensuring that a pile-up is initi-
ated close to the water line. Instabilities usually
occur where there is a change of slope angle and
where there is sufficient compression between the
individual ice pieces.

Forces and deformations are governed by the
ice strength rather than the available driving force
for ice that is on the slope. The following equa-
tions consequently focus on reactions, H and V,
for given deformations, rather than on the exter-
nal driving force, F.

The in-plane forces in the ice on the slope are
largest at the ice edge at the water line. The hor-
izontal and vertical force components here, cf.
Figure 5, are:

H = R cos « (24)
V =R sin « (25)

in a simple static analysis. Note that H = F cos?q,
where F is the horizontal driving force, and H is
the horizontal projection of the slope parallel re-
sistance. If the height from the water line to the
point that the ice has reached, is denoted Z, with
Z = L sin «, and the expression (18) for R is used,
the force components become:

H = Zvybh cot «(sin a + p cos a)  (26)
V = Zy,bh(sin « + u cos «). (27

If the in-plane (horizontal) force is ignored in the
calculation of bending and the theory for a simple
beam on an elastic foundation (HETENYI, 1946) is
used, the critical vertical load at the edge of the
ice becomes:

V., = 0.68g,b(y;h>/E)o2 (28)
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If the vertical edge load expressed by equation
(27) exceeds the critical load expressed by equa-
tion (28), the floating ice floe will break, and ride-
up becomes impossible. For a ride-up to be pos-
sible, the vertical edge load must be less than the
critical load i.e., the V_/V ratio must exceed one:

V”/V = 0.68(01/2)(}1/]3)”2"‘7, 0.75
(sina + pcoser) "> 1 (29)

If this criterion is not fulfilled, a pile-up will form
at the water line provided adequate driving forces
are present. The ignoring of in-plane forces is not
necessarily a good assumption, and caution is rec-
ommended in applying this criterion. A “conser-
vative” criterion may require either higher or low-
er values depending on the problem in question.

On a very shallow beach the edge load on the
floating floe may not be able to cause breaking,
because the floe will touch the bottom. On mound
breakwaters, the above criterion (29) is applica-
ble. In its simplicity the criterion is a handy rule-
of-thumb, but more detailed analyses are war-
ranted if pile-ups constitute a governing criterion.

As the ice rides up a slope, it may eventually
reach a change of slope angle, typically at the
“top” where the surface slope changes to zero, i.e.,
horizontal, as shown in Figure 6. If the change in
slope angle is too large, an ice piece which has
tilted to horizontal but still overhangs the slope
with half the piece length will be tilted over by
the following piece.

This may take place if h > £ sin «/2 assuming
no friction between the individual pieces on the
slope. In reality, a piece will ride slightly more
than £,/2 over the top before tilting to horizontal.
A local failure near the corner of the piece may
occur if the contact point is too close to the corner.
It may be more realistic to use a criterion like:

h > 0.6¢,sin o — ride-up continues  (30)
h < 0.68,sin « — pile-up forms. (31)

The magnitude of this correction was suggested
by CROASDALE et al. (1978).

Another form of instability may occur if there
is a bump in the slope as shown on Figure 7. If
the compressive force in the ice is sufficiently large,
the bump will initiate an ice piling when ice pieces
ride over it. With « = 0 for simplicity a balance
of moments yields:

b _ &bhy,

" 92 tan ¢ (32)

POTENTIAL JAMMING

INSTABILITY

ADVANCING
ICE SHEET

(PN P!

Figure 7. Instability at a bump in the slope.

2
p ~ &bhv (33)

2e
where in the second expression the approximation
tan ¢ = sin ¢ has been applied. The parameters
¢ and e are the inclination angle of a floe on the
bump and the maximum height of the bump, re-
spectively. If the compressive force is known, for
example from equation (18), the necessary height
of the bump to cause an ice piling may be found
by inverting equation (33) to read:

~ 2,2
2L.(sin o + u cos «a)

e (34)
with the expression (18) inserted. This instability
mechanism may be utilized by the designer to
reduce the risk of ice riding over the top of the
slope. It is important that the bump has a hori-
zontal extent along the breakwater larger than the
width of the ice pieces. This means that the bump
must be part of the cross-section at any point of
the breakwater. Local bumps with limited extent
will not necessarily be effective, ¢f. ABDELNOUR
et al. (1982).

Ice Pile-Up Height

Once the pile-up is initiated, a complex variety
of processes takes place as the pile-up grows. If
the ice sheet rides up over the seaward face of the
pile-up, it will fragment at the top. Most frag-
ments will fall on the landward face of the pile-
up, thereby adding to the height and the landward
horizontal extent of the ice pile-up. As a limiting
height is reached, fragments will fall on the sea-
ward face eventually leading to a disruption of
the sheet ride-up by breaking apart the pieces.
The advancing floating ice sheet may push itself
either on top of or into this new rubble, adding
to the seaward horizontal extent of the ice pile-
up.

Journal of Coastal Research, Vol. 10, No. 3, 1994
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Figure 8. Geometry of the ice piling process in Kovacs and Sops1’s (1980) model.

A calculation of the limiting maximum ice pile-
up height requires knowledge of the forces in-
volved. Two different approaches can be taken,
based on either ALLEN (1970) or Kovacs and SopH1
(1980). Kovacs and SopHI gave equations for the
forces required to overcome gravity of the ad-
vancing ice sheet itself and friction. Adding these
terms to obtain the total piling force implies that
the ice sheet is riding up over the front (seaward)
face of the pile-up in what may be characterized
as a very steep ride-up over ice rubble. Allen as-
sumed a somewhat more complex rubble building
process in which the advancing ice sheet must
essentially lift the existing pile-up in a pushing-
up process. The former approach leads to limiting
heights proportional to the ice thickness, whereas
the latter approach leads to limiting heights pro-
portional to the square root of the ice thickness.
Both pile-up process models appear to describe
actually observed mechanisms.

It is of interest to compare these conceptually
different approaches to see which one is best suit-
ed for determination of pile-up heights to be used
in design of coastal structures. Each approach is
therefore outlined in more detail below.

Ice Pile-Up Heights Based on Kovacs and
Sodhi’s Model

Kovacs and SopH1 (1980) described the forces
required to overcome gravity of the advancing ice
itself and ice-to-ice friction in a ride-up over the
seaward face of an ice pile-up. The force required
to overcome gravity, F,,, is found from a balance
of the work done by the force and the increase in
potential energy of the ice piling. The geometry
of the ice pile-up is shown in Figure 8. The volume

per unit width of the ice pile-up is:

V/b = Y (h*(cot 6, + cot 6,)

—h,2(cot a + cot 6,)) (35)

where V is the volume of the ice piling, b is the
width of the ice piling (plane situation), h, is the
height of the piling above water level, h_ is the
beach elevation increase under the ice piling, 6,
is the slope of the seaward face of the ice piling,
0, is the slope of the landward face of the ice piling
and « is the slope of the beach. The beach ele-
vation increase, h,, can be expressed in terms of
h,, a, 6, and 8,. Consequently, expression (35) may
be reformulated to avoid using h, and only use
h,. It becomes:

V/b = (h,?/2)G(«, 8, 8,) (36)

(tan 6, — tan «)(tan 6, + tan 0,)

Gla, 0,, 0,) =
(cx, 6y, 0.) (tan « + tan 8,)tan%),

(37)

By relating the mass transport in an incremental
advance of the ice sheet, p,hdx, to the associated
incremental increase in mass in the ice piling,
p,dV, the expression for an increment in height,
dh,, becomes:

dh, = (p/p,)(h/h,)(1/G(a, 6,, 6,)) dx

The potential energy per unit width in the ice
piling is established from simple geometrical con-
siderations:
E, /b = (1/6)v,(h(cot 0, + cot 6,)
—h *(cot a + cot 8,))

(38)

(39

where v, is the specific weight of the pile-up. It
is again possible to eliminate h, by expressing it
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in terms of h,, «, #, and 6,. The expression then
reads:

E,/b = (1/6)v,h,’Q(e, 6,, 6,) (40)

(tan 0, + tan 0,)

6, 6,) =
Qlev 61, 62) (tan 6,tan 6,)

(tan 6, + tan 0,)’tan’x
(tan a + tan #,)tan0tan 6,

(41)

Finally, by equating the increment in potential
energy, dE,, to the work done by the driving forces
to overcome gravity, F,dx, these may be ex-
pressed:

Q(tY, ﬁl) ()z)
"G, 0,, 6,) ’

In the area of interest (0 < « < §,) the ratio Q/G
generally varies between 1 and 2. For « = 0 it is
equal to one. It is shown in Figure 9.

Friction must also be overcome in order to add
to the pile-up. The necessary force was expressed
by Kovacs and SopHI as:

F,, = wybhL cos 6, (43)

Fw=%ybhh (42)

where p is the ice-to-ice friction coefficient, v, is
the specific weight of ice, b is the width of the
ride-up zone, h is the ice sheet thickness, L is the
length of ice on the slope, and 6, is the slope angle
of the seaward face.

By using the relationship L = h /sin 6, assuming
that the ride-up continues to the top of the ice
pile-up, equation (43) can be rewritten:

F,, = wy,bhh,cot 0, (44)

and eventually the total force to add to the ice
piling becomes:

F,=F, +F,

_ 1Q(e, 6, 6,)
F, = v,bhh, (u cot , + 3 Gla, 0, 02)). (45)

If the height of the pile-up is only limited by the
magnitude of the driving forces, it may be cal-
culated from:

h

b

F
- » 4
S bhlacoth, + 74 1Qe 010/l 00)] 1O

which is a simple inversion of equation (45) in
order to isolate h,. The driving forces, F,, nor-

mally consist of wind shear forces on the ice sheet
and current drag on the underside of the ice cover.
The current drag is normally small for directions
perpendicular to a coast, but may have significant
along shore components, that are relevant fore.g.,
breakwaters. The height of the pile-up predicted
by equation (46) is directly proportional to the
magnitude of the driving forces, F,. This reflects
the fact that the equation limits the height by
equating the driving forces and the force required
to push the “last” piece to the top of the pile-up.

Ice Pile-Up Heights Based on Allyn and
Charpentier’s Formula

ALLYN and CHARPENTIER (1982) further devel-
oped a somewhat similar model originally created
by ALLyN. They developed it to take temperature
and salinity effects into consideration, but the
original model is of primary interest here. ALLYN
and CHARPENTIER’s formula for pile-up height is:

_ (cos 8, — psin §)F — (sin 8, + u cos 6,)V
P vh(1 + ucot 8,)(1 + (s'/s))

(47)

where F is the external force and V the vertical
edge load on the incoming ice sheet. The assumed
pile-up formation process is quite similar to that
described by Kovacs and Sopni (1980), but a cor-
rection factor is added to account for ice blocks
riding on top of the primary train of ice blocks.
The length of the primary train of ice blocks in
the ride-up over the front face is denoted s, and
s’ is the cumulative length of ice blocks riding on
top of the primary train. Allyn and Charpentier
quote s'/s = 0.5 as a typical value. While this
correction factor accounts for ice blocks on top of
the primary train, it does not apply to situations
where the ice sheet pushes deep into the pile-up.
Because of the similarities with Kovacs and So-
dhi’s expressions, notably the linear relationship
between external force and pile-up height, equa-
tion (47) is not analyzed any further here.

Ice Pile-Up Heights Based on Allen’s Formula

A formula was derived by ALLEN (1970) under
the assumption that the driving forces had to push
the entire front part of the pile-up upwards, rath-
er than just the outermost layer. Figure 10 shows
an impression of how the piling-up process takes
place in Allen’s model. More precisely, Allen as-
sumes that the ice sheet pushes horizontally into
the pile-up. He views the volume of ice above

Journal of Coastal Research, Vol. 10, No. 3, 1994



690 Christensen

2.00
/G \
(01.92) = (30, 307
(e1,92) = (307, 40) //
1751 (e1.02) = (30, 500 AL > /
.//// Aez) = (40, 40}
/// A (01.02) = (40°, 509
f/ e (01.092) = (40, 607
1.50 / / /
//
/ (01.02) = (507, 507)
(61.92) = (50°, 60%)
(61.02) = (50°, 709
1.25 ///‘Z =2
1.00 a (deqg)
0 10 20 30 40 50

Figure 9. Plot of Q/G as a function of a for different values of pile-up slopes (4,, 6,).

water level and in front of the top as a number
of slices, each of which has to be pushed upward
by the incoming ice sheet. Figure 10 actually shows
the ice sheet pushing somewhat upward after hav-
ing entered the pile-up and as such the Figure
depicts a process between the two extremes rep-
resented by ALLEN (1970) and by Kovacs and
SopHI (1980). ALLEN’s (1970) formula is derived
from fairly straightforward balances of driving
forces, gravity, and friction. The formula reads:

sz 0.5
B, ('ypb(l + (f/tan 01))> (48)
where v, is the specific weight of the pile-up i.e,
ice and air, and f is a coefficient of internal friction
in the pile-up. This formula is conceptually dif-
ferent from equation (46) in that the predicted
height is now proportional to the square root of
the driving force. Like equation (46), however, it
also assumes that the available driving force is
the limiting factor. For design calculations, ice
strength should be the limiting factor. This will
be explained in the next section. Allen’s formula,
equation (48), is based on a balance between the
force, F,, which in the horizontal plane acts against
the base of the ice pile-up, and the force required
to further pile up the ice. Other parameters are

the specific gravity of the pile-up (ice and air-
filled voids), v, the coefficient of internal friction,
f, and the slope of the pile-up with horizontal 6,.
The reader should confer with the original ref-
erence for a detailed account of how the formula
is derived. ALLEN (1970) stated that his formula
is conservative because most observed heights are
smaller than predicted by his formula. One very
plausible explanation is that the entire ice volume
behind the pile-up top i.e., the landward side, is
disregarded in his analysis. Some force will be
required for redistribution of ice blocks there. An-
other important point is that ,, f, and « are not
necessarily completely independent (BRUNN and
JOHANNESSON, 1971). Weaknesses normally oc-
curring in ice sheets may furthermore be respon-
sible for the observations being generally smaller
than his predictions. A wider base of observations
is necessary.

LIMITING ICE PILE-UP HEIGHTS FOR
DESIGN

The formulas discussed above relate the height
of an ice pile-up to the available driving force.
However, owing to typical ice floe shapes, large
ice floes can interact with shores or coastal struc-
tures over widths many times smaller than the
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hp (cot®q + cot@2) = hqg (cota + cot®2)

Figure 10. Geometry of the ice piling process in ALLeN's (1970) model, slightly modified (see text).

floe diameter. The interaction i.e., the piling-up
process, may thus be sustained past the limiting
height as the floe energy is dissipated in a rela-
tively narrow interaction zone. The floe or struc-
ture shape causes a focusing of the energy.

In general, there are three ditferent limitations
applicable in most ice engineering analyses, cf.
CROASDALE (1984), viz.:

limited driving force,
limited ice strength, and
limited kinetic energy.

The pile-up heights, or e.£., an ice load, may nat-
urally be limited by the available driving forces.
If the driving forces are unlimited, the ice itself
will limit the load through its strength, whether
compression strength associated with crushing or
flexural strength associated with bending, etc.
Thirdly, with the driving forces limited e.g., be-
cause of a small surface area of a single floe, kinetic
energy might still be sufficient to generate a ride-
up or pile-up event of a certain magnitude.

The theoretical upper limit for horizontal ice
pressure corresponds to the critical failure pres-
sure in the ice in front of the pile-up. The ice
cannot impose more pressure on the pile-up than
that which corresponds to this critical failure
pressure. More pressure would lead to failure of
the ice in front of the pile-up, extending the pile-
up seawards instead of increasing the height. In
cases of a moderate ice thickness, the pile-up
height is often limited by the ice buckling pres-
sure. For large ice thicknesses, the limitation may
correspond to ice crushing.

For the case of a beam on an elastic foundation
(HeTENYI, 1946; ASHTON, 1986), the critical buck-
ling pressure may be estimated as ck®” where k is

the density of the sea water and ¢ is the charac-
teristic length of the ice defined as the fourth root
of the ratio between the plate stiffness and the
foundation stiffness. The reaction of the water to
a given downwards deflection of the ice is equal
to the buoyancy of the ice, and the apparent
“foundation stiffness” is equal to the specific
gravity of the seawater. For long beams, the di-
mensionless constant ¢ varies between one and
two depending on the boundary conditions of the
beam. For small values of ice thickness, a mod-
erate critical buckling pressure is obtained, cor-
responding to a modest height of the ice pile-up.
PaLosuo (1971) noted an “almost linear” rela-
tionship between ice thickness and the wind ve-
locity needed to break up stationary sheet ice. His
observations covered ice thicknesses in the range
0.07 m to 0.25 m, where buckling is a dominating
mode of failure. Since the plate buckling load is
proportional to the thickness to the power of 9/4
(beam buckling is 6/4) and the wind shear is pro-
portional to the wind velocity squared, the wind
velocity required to cause break-up of stationary
ice through plate buckling becomes proportional
to the thickness to the power 9/8. The curvature
of a best-fit line to PALosuo’s (1971) data actually
suggests a power slightly larger than one. It ap-
pears realistic that the buckling pressure consti-
tutes a limit pressure in this range. For large ice
thicknesses, a high critical failure pressure is ob-
tained, and the pile-up height becomes limited by
the magnitude of the driving forces instead.

In order to determine the pressure which is
transferred to the ice pile-up, it is theoretically
necessary to calculate both the critical failure
pressure, whether buckling, crushing or fracture,
and the pressure offered by the driving forces. The
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Table 1. Largest possibleice pile-up heights based on ALLEN'S
(1970) formula and on expressions by Kovacs and Sonui (1980),
with the critical buckling pressure applied as the pressure
induced by the driving forces, and with E = 2 Gpa, v = 0.33, k
=10 KN/m’, 8, = 35° f = 0.25, and v, = 6 KN/m". In Kovacs
and Sodhi’s expressions, a = 11.3°(1:5), 8, = 45°and u = 0.1,
have furthermore been applied. Note that for thick ice, buck-
ling is not necessarily the dominating failure mode.

Ice  Character- Ice Pile-Up Height (m)

Thick- istic Buckling
ness Length Pressure Kovacs
(m) (m) (MN/m) Allen and Sodhi
0.1 2.1 0.043 3.2 (57.8)
0.3 4.7 0.225 74 (100.9)
0.5 7.0 0.484 109 (130.2)
0.7 89 0.801 14.0 (153.9)
0.9 10.8 1.168 16.9 (174.5)

lowest of the two is the maximum pressure trans-
mitted to the pile-up. In many cases it might be
reasonable to use only the failure pressure limi-
tation. This corresponds to assuming that there
is always sufficient driving force to form the max-
imum limiting pile-up height. The reason for this
recommendation is that long stretches of shore-
line directly exposed to ice attack combined with
ice floe geometries may engender focusing of the
driving forces. A single floe of say more than 1
kilometre diameter may interact with a revetment
over a width of say less than 100 metres. The
conservative ice strength limitation for pile-up
heights is recommended as a first estimate. In
cases where it can be documented that floes can-
not attain sufficient kinetic energy, the driving
force limitation for a floe at rest may be used
instead. In example calculations, a modulus of
elasticity of 2 GPa for the ice, a density of the
water of 10 kN/m®, and a Poisson’s ratio of 0.33
are applied. Based on this, the maximum possible
ice pile-up height can be calculated for various
ice thicknesses by application of the critical buck-
ling pressure in Allen’s formula. The result of this
calculation is shown in Table 1. Obviously, the
heights predicted on the basis of the model pro-
posed by Kovacs and SopHi (1980) are quite un-
realistic. The heights based on ALLEN’s (1970)
formula are of a more reasonable magnitude. The
high values resulting from Kovacs and Sodhi’s
expressions will not occur in nature where other
limitations e.g., sliding stability of the entire pile-
up, come into play. The larger Allen-based heights
are only quite rarely obtained. These pile-ups re-
quire simultaneous occurrence of several condi-
tions t.e., ice thickness, floe size and geometry,

direction of driving forces, etc. Pressures of this
relatively large magnitude are attainable, how-
ever, provided the ice sheet has sufficient strength.
Kovacs and SopHi (1981) estimated pressures up
to 3 MPa in 1.5 m thick sea ice at Fairway Rock
in the Bering Strait. Kovacs et al. (1982) also
analyzed five different failure modes of the ice for
the Fairway Rock icefoot: creep, crushing, fiexure,
rubble formation and buckling. For the 1.5 m thick
ice, they arrived at pressures ranging from 0.4
MPa to 2.6 MPa for the different failure modes.

In the same manner, actual pile-up heights can
be calculated based on the driving forces pertain-
ing to e.g., wind velocities when it is assumed that
the ice strength does not impose any limitations
on the height or, rather, that other limitations
come into play first. T'ypical pressures in plane
models would be in the order of 8 kN/m, using a
1 by 5,000 m ice strip in equation (7) with V,, =
20 m/sec and p, = 1.29 kg/m?. Even with different
values of the involved parameters, pressures in
the order of magnitude of 100-1,000 kN/m such
as the buckling pressures in Table 1 cannot be
obtained clearly. For perfect contact situations,
i.e., nearly plane stress states, it is thus likely that
the driving forces constitute the limiting factor.

There are thus two different models predicting
the ice pressure, viz.:

(1) thelimit-force model,i.e., plane accumulation
of driving shear, or

(2) the limit-strength model, where focusing takes
place to obtain the failure pressure.

Similarly, there are two different models of the
piling-up process where the essential difference is
whether to overcome

(1) gravity of the entire pile-up (ALLEN), or
(2) only gravity of the advancing ice itself (Kovacs
and SoDHI).

The two piling-up models furthermore have dif-
ferent approaches to the overcoming of friction.
Allen’s formula is based on a coefficient of internal
friction, as the ice sheet is pushed into the pile-
up. Kovacs and Sodhi’s expressions consider sim-
ple friction at the ice underside in a ride-up type
process. Allen’s formula works well with the fail-
ure pressure inserted for the unit driving force
but would grossly underestimate pile-up heights
if the average unit driving force was used. Kovacs
and Sodhi’s expressions work well with average
unit driving force inserted, see e.g.,, CAMMAERT
and MUGGERIDGE (1988) but grossly overesti-
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Table 2. Largest ice pile-up heights based on ALLEN's (1970)
formula and on expressions by Kovacs and Sopti1 (1980), with
the unit pressure induced by wind shear 5,000 m upstream of
the shore as the unit driving force, and with 0, = 35° f = 0.25,
and vy, = 6 kN/m’ in Allen’s formula. In Kovacs and Sodhi’s
expressions, a = 11.3° (1:5), 8, = 45° and u = 0.1, have fur-
thermore been applied.

Iee Wind dg‘r:;g Ice Pile-up Height (m)
Thickness  Speed force Kovacs
(m) (m/sec) (kN/m) Allen and Sodhi
0.3 10 1.94 (0.69) 0.87
0.3 15 4.35 (1.03) 1.95
0.3 20 7.74 (1.38) 3.47
0.3 25 12.1 (1.72) 5.42
0.3 30 174 (2.07) 7.80

mates pile-up heights if the horizontal failure
pressure is used. Kovacs and Sodhi claimed that
the high pressures suggested by Allen pertain to
freshwater ice.

There are no simple arguments that connect
the limit pressure models with the pile-up for-
mation models so that reasonable heights can be
predicted. The combinations that give under- and
over-estimation, i.e., those in parentheses in Ta-
bles 1 and 2, are not less likely to occur than those
that work well. The explanation most likely is that
all four combinations of pressure and pile-up pro-
cess models do occur, but in the case of near-
failure pressures and Kovacs and Sodhi’s pile-up
process, another limit applies to maximum pile-
up height. This other limitation could be the slid-
ing stability of the entire ice pile-up, or it could
be a buckling of the series of ice pieces riding up
the front face of the pile-up. These pre-broken
pieces will have end faces at different orienta-
tions, and weak points will occur. To observe the
piling-up process in detail, a model test program
would be very helpful. A broad base of simulta-
neous full-scale observations of the many param-
eters included in the theoretical models would be
of interest as well. A limited base of field obser-
vations is examined below.

SAYED and FREDERKING (1986) have analyzed
the formation of floating ice ridges and found sim-
ilarly that a potential energy method alone un-
derestimates the involved forces. It would thus,
overestimate the ridge size parallel to what was
found for Kovacs and Sodhi’s expressions with
the failure pressure inserted. TiMmco and SavED
(1986) further conducted physical model tests of
the ridge building process. They concluded that
the external forcing, “appear to be proportional

to the keel depth and sail height raised to a power
greater than one”. Inverting this relationship to
express heights in terms of external forcing, they
found powers less than one. For ice pile-ups, Ko-
vacs and Sodhi’s expressions correspond to a pow-
er of one, and Allen’s formula corresponds to a
power of 0.5. The study by Timco and SAYED
(1986) thus supports the notion that Kovacs and
Sodhi’s pile-up formation model leads to conser-
vative height estimates for high driving pressures.
It should be noted that sheet ice is more likely to
move into a floating ice ridge, whereas it may
move both into a pile-up or ride up the front face
of a pile-up (which by definition is grounded).

COMPARISON WITH FIELD OBSERVATIONS

The limiting pile-up heights in Tables 1 and 2
should preferably be substantiated by observa-
tions. As an example, look at the Danish domestic
waters where two major tunnel and bridge proj-
ects are under way. The “Great Belt” crossing
(CHRISTENSEN and SKOURUP, 1991) is nearly com-
pleted, and the “Sound” crossing is in the design
phase. The latter will connect Copenhagen in
Denmark with Malmo in Sweden. For these proj-
ects, the author has collected observations of ice
conditions and ice pile-ups. Both local sources,
museums and local residents, and more general
sources, scientific and engineering literature, have
been consulted. This material contains informa-
tion on the largest ice pile-ups that have occurred
in the respective areas in this century. It is as-
sumed that these results are representative of the
area.

BruuN and JOHANNESSON (1971) describe Bal-
tic experiences of interaction between ice and
coastal structures. They show pictures of the
Nordre Rese Lighthouse a few kilometres to the
north of the planned Sound Link with ice pile-
ups more than 10 m high in 1892 and also note
pile-ups exceeding 8 m in 1956. In 1956 STATENS
[STIENESTE (1907-1992) reported the amount of
cold as 226 °C-days. This leads to a maximum ice
thickness estimated at 0.42 m. The piling most
likely took place somewhat before the end of the
winter. The thickness may have been around say
0.3 m. Table 1 suggests a limiting pile-up height
of 8.1 m in this case. It appears that the Nordre
Rase ice pile-up may have reached its limiting
height in 1956. The ‘“1892” observation by BRuuN
and JOHANNESSON (1971) is assumed to actually
be from 1892-1893, a severe ice winter, whereas
1891-1892 was rather mild. With 257 °C-days the

Journal of Coastal Research, Vol. 10, No. 3, 1994



694 Christensen

Figure 11. Ice pile-ups about 9-10 m high in front of Kockum’s shipyard in Malmo, Sweden, allegedly during World War I and
then probably 1917. Note the persons on the ice. Photo courtesy of Limhamn’s Museum.

estimated maximum ice thickness becomes 0.46
m. With 0.40 m at the time of piling, the limiting
height would be 10.0 m. Again, it appears that the
piling reached its limiting height, given the as-
sumed values of thickness, Young’s modulus, etc.
Bruun and Johannesson included a photo of the
“1892” pile-up, but due to a very poor photo-
graphic quality, it is not reproduced here. The
winters of 1893 and 1956 are far from the only
winters with high ice pile-ups in the region.

Large ice pile-ups also occurred in the Sound
region in at least 1823, 1881, 1888, 1893, 1895 and
in 1901, 1912, 1917, 1922, 1929, 1936, 1940, 1941,
1942, 1947, 1956, and 1963. Large pile-ups have
been observed on shores facing both east, south,
and west near the future Link. Pictures from Salt-
holm (DanisH HyprauLic INSTITUTE, 1974) in-
dicate that 10 m high ice pile-ups occurred near
Svaneklapperne in 1940. With a freezing degree-
day index of 368.5 °C-days that winter, h,,, be-
comes 0.57 m and the thickness at the time of
piling-up say 0.40 m corresponding to a limit height
around 10 m.

Limhamm’s Museum near the planned Swedish
landfall has located a photo in their files showing

ice pile-ups about 9-10 m high in front of Kock-
um’s Shipyard in Malmo, c¢f. Figure 11. The photo
is allegedly from World War I, in which case 1917
is the only possibility. The theoretical h,,, for
1917 is 0.35 m, and the pile-up must then have
formed at the end of winter to reach that height,
cf. Table 1. It should also be noted that the highest
portions of the pile-up in the photo appear to be
supported by a sloping sea wall. The upper ice
pieces might actually have been pushed up in a
ride-up mode, rather than by ice piling in which
significant amounts of ice rubble must be pushed
upward as well. This would explain that the ob-
served height (9-10 m) exceeds the limiting height
(8.3 m).

Figure 12 is a photo of ice pile-ups outside the
city of Malmo, immediately north of the eastern
landfall of the planned Link. The height appears
to be around 9 m again, and the photo is allegedly
“from World War II”. The thickness appears to
be in the range of 0.35-0.40 m in the photo, and
the pile-up may have been close to its limiting
height.

Danisa HyprauLic INSTITUTE (1974) reported
pile-ups of 11 m height off Kastrup in 1881, and
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15 m height on long stretches of the Danish Sound
coast in 1823. For the latter, the freezing degree-
day index is not readily available, but for the for-
mer, it is 196 °C-days and the h,,,, thus 0.39 m.
The limiting pile-up height would then be about
10 m, reasonably close to the observed 11 m.

A relatively minor ice pile-up off the harbour
of Helsingborg, on the Swedish coast some 50 km
north of the planned Sound Link, is shown in
Figure 13. The photo was taken in 1922. The 1921-
1922 winter had 165.4 °C-days and the maximum
thickness might have exceeded 30 cm. From the
photo, however, it appears that the pile-up formed
when the ice was about 10 ¢cm thick. Very inter-
estingly, it appears that the pile-up has begun to
grow seawards in some places indicating that the
limiting height might have been reached. Table
1 suggests a 3.2 m limiting height for this ice
thickness. The height in the photo is estimated
to be just under 3.0 m especially in the back-
ground. This is quite close to the limiting height
suggested in Table 1, and Figure 13 thus provides
an interesting verification for small ice thick-
nesses.

In the Great Belt region, ice pile-up conditions
are quite similar to The Sound. Figure 14 shows
an ice pile-up in 1946-1947 off the town of Korser
immediately south of the present-day eastern
landfall of the Great Belt Link. From the photo,
the ice thickness and pile-up height are estimated
to be 0.35 m and 8 m, respectively. This is close
to the limiting height of 8.3 m. Figure 15 shows
a pile-up north of the western landfall, allegedly
from early 1929. From the photo, an ice thickness
of 0.4 m and a pile-up height of 9 m are estimated.
Again, the pile-up seems to have been close to the
Allen-based limiting height.

The largest ice pile-up ever reported in the
Sound area is a 20 m high pile-up on the “Bre-
degrund” shoal some 12-15 km south of the
planned Link. The observation was made by fish-
ermen from Drager in 1893. Investigations and
interviews by the DanisH HyprauLIiCc INSTITUTE
(1974) did not reveal reasons to doubt the obser-
vation as such. From a theoretical point of view,
it appears exaggerated since the 1893 h,,,, of 0.46
m would only be capable of building an 11 m high
pile-up according to Table 1. The exposed loca-
tion of Bredegrund might account for larger
heights.

This observation means that the “100-year” pile-
up in the area is most likely larger than 10 m,
probably in a range of 12-18 m depending on

Figure 12. Ice pile-ups about 9 m in height at the Malmo coast
during World War II. From LyBeck (1943).

location. This relates well with the ice thickness
of 0.67 m determined for an average recurrence
period of 100 years by CHRISTENSEN and SKOURUP
(1991). The Allen-based limit height correspond-
ing to this thickness is 13.5 m. It appears that for
exposed coasts the ice pile-up heights may be de-
termined from the ice thicknesses. This is inter-
esting because ice thicknesses can be determined
from air temperature records combined with just
a few observations for calibration. Air tempera-
ture records are far more common than ice pile-
up observations and reservations are necessary.
This analysis has not covered all the possible lim-
itations to pile-up heights, and the framework is
not yet complete.

CROASDALE et al. (1988, p. 227) reports the rub-
ble height contours around the caisson retained
island “Amerk 0-09” in the Canadian Beaufort
Sea on 30 January 1985. The highest peak is 15
m, and the rubble reaches 12-14 m height in sev-
eral places around the island. The rubble field has
apparently grown seaward after formation of at
least one of the 14 m peaks so 14-15 m is most
likely the limiting height. The sea ice thickness
is not reported, but typical values of h,,, in this
area are 1.8-2.0 m. In late January, if half the
degree-days of the winter have passed, the ice
thickness would then be about 1.35 m, the buck-
ling pressure 2.1 MN/m and the Allen-based limit
height about 23 m. This apparent overprediction
of limit height is probably due to an unrealistic
buckling pressure. The average contact stress is
1.6 MPa, common for limited contact areas, but
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Helsingborg:
o e

Figure 13. Minor ice pile-up at the Helsingborg, Sweden, breakwater in 1922. Photo courtesy of Swedish Meteorological and

Hydrological Institute.

unlikely to occur simultaneously over a rigid con-
tact area of 50 m by 1.35 m. The ice sheet may
have crushed at lower global loads, or buckling
may have occurred along pre-existing cracks in
the ice and at lower global loads. Another expla-
nation might be that the rubble itself was not

Figure 14. Ice pile-up formed off Liitgensvej in the town of
Korser, Denmark, in the 1946-1947 winter. Photo courtesy of
Danish Hydraulic Institute.

stable. Finally, the uncertainty of the ice thick-
ness estimate must be borne in mind. This ex-
ample illustrates clearly that a full explanation
and understanding of ice piling-up processes and
the associated forces and limitations has yet to
be formulated.

WRIGHT et al. (1978) describe ridges in the
Beaufort Sea. They report observations of

Figure 15. Ice pile-up formed off Teglvarksskov on the island
of Fyn, Denmark, allegedly in (early) 1929. Photo courtesy of
Danish Hydraulic Institute.
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grounded ridges where ice blocks have been pushed
up to increase the sail height after the grounding.
The feature becomes an ice pile-up. They report
observations of heights up to 17 m off the east
coast of Herschel Island and up to 18 m off the
northwest coast of Banks Island. These obser-
vations confirm that the mid-winter limit height
observed by CroasDALE et al. (1988) at Amerk
0-09 is of a correct order of magnitude.

It must be recognized that a fairly substantial
observation base is necessary to obtain reliable
design values from field observations. SPEER-
SCHNEIDER (1915, 1927) has collected historical ice
information on Danish waters covering the years
690-1906, a period of 1,216 years. He concluded
that ice conditions in Danish waters do not differ
significantly over the centuries and that 3-5 win-
ters per century have particularly severe ice con-
ditions. Dedicated scientific observation pro-
grams are, therefore, difficult to plan, and designs
typically have to be based on whatever informa-
tion is available. Furthermore, the industrial de-
velopment and its potential impact on climate
and thus ice conditions occurred after the com-
pletion of Speerschneider’s analyses. It remains
an open question whether ice conditions are
changing due to a greenhouse effect caused by
human activity.

Although the many observations described cov-
er only a fairly narrow range of thicknesses and
heights, they do support the central result well.
None of the described pile-ups appeared to be
limited by fetches or local geometrical conditions.
Naturally, it is desirable to substantiate the result
by comparing with observations in other areas as
well. This suggests that one should always search
for local observations and attempt to calibrate an
ice pile-up model for the area in which a design
is to be used. Nevertheless, for first estimates the
use of Allen’s formula with the failure pressure
inserted appears to give results that are consistent
with observations. The presented base of obser-
vations covers most of this century which is im-
portant when probabilistic aspects have not been
addressed. The average recurrence period for the
joint occurrence of ice and forcing conditions to
build large pile-ups reaching their limit height
might be in the order of decades. ALLEN (1970)
found that his formula overpredicted observa-
tions, but his observation base may just have been
too small.

The question of a limiting pressure for ride-up

of pre-broken ice pieces on the seaward face of an

ice pile-up was left open, and a full investigation
of this point is beyond the scope of this paper. A
rough estimate is possible if the Allen-height is
accepted as a limit height. In that case when the
pile-up heights from equations (46) and (48) are
set equal, one finds:

re-broken
Fhurk]p

Yibh[“ cotf, + 2 {Q(”a 01,02)/(}(04:61,02)}]

QFI)ucklinma o5
B <7pb(1 + (f/tan 0,))) (49)

where the driving force F, has been replaced by
the buckling loads for pre-broken and intact (fric-
tionless, i.e., ¢ = 1) ice beams, respectively. With
Fooaa™ /b = k@ and 3y, = 27, the limit unit
buckling load for the pre-broken pieces becomes:

Fou™ ™5e0/b = (u cot 6, + 12(Q/G))
(1 + (f/tan #,)) °5(3v;k)*h®
(50)

where Q and G were defined in equations (41)
and (37), respectively. With an example of p =
0.2, 0, = 35°, Q/G = 1.5, f = 0.2, and 7, = 0.9k,
equation (50) reduces to the simpler expression
Fyoareteken/b = 1.50 khQ. For thick ice in Table
1, € can be approximated by 12 h leading to a limit
pressure in the order of (1/8)k9? as compared with
k@2 for the intact ice. For thin ice in Table 1, €
can be approximated by 21 h leading to a limit
pressure of (1/14)k®? as compared with k{* for
intact ice. The ratios 1/8 and 1/14 are naturally
the approximate ratios between the two different
heights estimated in Table 1. It must be empha-
sized that a range of values is possible. Never-
theless, ratios of eight to fourteen between buck-
ling loads for intact frictionless ice beams and for
pre-broken ice pieces appear plausible. Finally, it
should be noted that the buckling load for long
beams with one frictionless end, k{2, has been
used throughout this paper. Under conditions
where only hinged and fixed boundary conditions
apply, the buckling load would rise to 2k&2, cf.
e.g., AsHTON (1986), and the Allen-based pile-up
height would then increase by the square root of
two. Another possibility is a plate buckling failure
with a failure load in the order of 5k®*, ¢f. ASHTON
(1986), leading to even higher loads. As noted by
Allen, however, local weaknesses in the ice sheet
precludes the attainment of the theoretical max-
imum pressures.
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CONCLUSIONS

Techniques for predicting ride-up and pile-up
of ice against shores and coastal structures have
been outlined. Parameters of special interest for
design purposes include the maximum landward
extent of ride-ups and pile-ups, as well as the
maximum height of ice pile-ups. Methods for de-
termining design values of all these parameters
were described. For protected shores or coastal
structures, where e.g., a limited fetch hampers the
accumulation of driving forces and the attainment
of significant velocities, a probabilistic approach
may better describe the resulting ice pressure.

For ride-ups, equations were given for deter-
mining the maximum landward extend on a con-
tinuous slope. Dynamic effects have been neglect-
ed.

For determination of limiting ice pile-up heights,
two ice pressure models and two ice piling-up pro-
cess models can be combined in four different
ways. It was demonstrated through comparisons
with field observations that reasonable estimates
are obtained using ALLEN’s (1970) formula with
the driving force limited to the horizontal failure
load of the advancing ice sheet in front of the pile-
up. Allen’s formula assumes that the advancing
ice sheet must overcome gravity of the entire pile-
up pushing it upwards. Kovacs and SobHr’s (1980)
expressions include gravity of only the advancing
ice itself as it rides up a rubble pile. This latter
model works reasonably well when an ice pressure
corresponding to the driving forces on a floe at
rest is inserted. There is a lack of a logical upper
bound to the area in which to accumulate driving
stress. From a logical point of view, both ice pres-
sure scenarios and both ice piling-up process mod-
els appear likely and probably occur regularly.
Regardless of which model is used, sliding sta-
bility of the pile-up should also be checked. This
may limit the extreme heights predicted in Table
1 with Kovacs and Sodhi’s model to a reasonable
magnitude. Another possible limitation is the
maximum compressive load that a series of riding-
up ice pieces can sustain without buckling. This
limit load should be determined in a research pro-
gram. As the geometry of the failure surfaces will
greatly influence the limit load, sea ice of a natural
thickness, as opposed to a scale model, should be
used in the experiments. A rough estimate re-
sulted in values in the order of magnitude of 10%
of the buckling load for an intact beam with one
frictionless or free end.

An important lesson from this investigation is
that there is a lack of consensus on how to predict
ice pile-up heights. Different models work best
under different assumptions. It is therefore rec-
ommended to always establish a model, whether
theoretical or numerical, to explain prevailing ice
pile-up conditions when a height has to be se-
lected for design. It is furthermore recommended
that the world community of ice researchers at-
tempt to establish a sufficiently broad base of
observations and model test results to describe
and understand the piling-up process clearer.
Kovacs and Sopn1 (1988) gave a similar recom-
mendation.

PHOTO QUALITY

Many of the photos included in this paper are
of a quality inferior to present day standards. They
illustrate well the standard of materials a designer
has to work with when faced with having to de-
termine design ice pile-up heights in a mild sea-
sonal ice zone based on historical records. Nu-
merous investigated pictures were of an even
poorer quality.
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Ii

il

vertical extension of crushed zone
vertical coordinate of uppermost ice front
slope angle with horizontal

specific weight of ice

specific weight of pile-up including voids
specific weight of water

slope of seaward face of ice piling

slope of landward face of ice piling
density of air (1.29 kg/m? at 0 °C)
density of ice

coeflicient of friction (ice-to-ice)

i
Py
Pw

Ty

ay

u

b

= coeflicient of friction (ice-to-slope)

Poisson’s ratio

density of pile-up (ice and air)

density of sea water

combined bending-compression strength
stress in critical cross-section from the
combined effects of compression and
bending

flexural ice strength

uniaxial compressive ice strength
inclination angle of bump

Journal of Coastal Research, Vol. 10, No. 3, 1994





