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Two numerical schemes for the solution of a one-line model equation for shoreline evolution are reviewed.
'l~hf' i~t1uence of l.he ord~r of occurrence of the combination of ocean wave parameters, viz wave height,
direction and period which do not follow a predictable pattern, on the shoreline evolution are studied.
Case studies of shoreline evolution adjacent t.o Madras and Beypore harbours on the east and west coasts
of Ind ia respectively are presented. Limi tat.ions of the one-l ine sirnulation model in predicting the shoreline
evolution are indicated.
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INTRODUCTI()N

Coastal Engineers frequently encounter the
problem of changing shorelines in regions where
variations in the wave climate and longshore lit
toral transport rates result from construction of
coastal structures (such as breakwaters, groynes,
jetties, etc.) which act as partial barriers to wave
propagation and littoral transport. A review of
littoral transport, shoreline configurations and
their evolution may be found in BRUUN (1990).

Most studies of shoreline simulation are based
on the one-dimensional sediment balance equa
tion which is referred to as the one-line model
equation. LEMEHAUTE and SOLDATE (1980) ob
tained the analytical solution to the linearized
form of the one-line model equation, for a shore
line which is initially straight with a breakwater
projecting perpendicular to it when unidirectional
waves of constant amplitude approach the shore
line. But, because the general one-line model
equation is nonlinear and the environmental con
ditions are complex (due to the variations in the
wave field and consequent long shore littoral
transport rates), the simulation of shoreline evo
lution requires numerical methods for its solution.

In this paper, the numerical schemes of LE
MEHAUTE and SOLDATE (1980) and KRAUS and
HAHIKAI (1983) for shoreline simulation are re
viewed. When numerical schemes are used for long-
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term prediction of shoreline evolution, the fore
cast of wave statistics is required in the form of
a time series. Unfortunately, it is seldom possible
to know in advance the exact sequence in which
the wave parameters will occur in an ocean en
vironment. Hence, numerical experiments are
conducted in an effort to study the model re
sponse to changes in a wave parameter sequence.

'Two case studies of shoreline evolution, one
adjacent to Madras harbour and the other near
Beypore harbour on the east and west coasts of
India (Figure 1) are presented. The instabilities
observed in the evolution of the shoreline for cer
tain input wave parameters and the limitations
of the one Iine model are explained.

Model Formulation

The mathematical modelling of shoreline evo
lution correlates the change of beach volume due
to the change in shoreline to the rate of material
transported from the beach along the shore. When
changes in the mean sea level and the changes in
the beach slope are not significant, the one-di
mensional sediment balance equation (after LE
MEHAUTg and SOLDATE, 1980) is given by

(b + hJ(ay/at) = - (aQ/ax) + q(x) (1)

In this formulation, the orientation of the coor
dinate system is chosen so that the x-axis lies
roughly parallel to the beach. The shoreline is
represented by y(x, t}, where t is the time, b is
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Figure 1. Location map.

the height of the beach berm, he is the water depth
at the limit of active sand transport beyond which
profile changes can be assumed to be negligible
and q (x) is the quantity of sand dredged or de
posited along the beach.

The long shore littoral transport rate Q in
Equation 1 which varies along the shoreline is
responsible for the evolution of the shoreline.
There are several formulae for the estimation of
Q which relate Q with the angle of approach of
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Figure 2. Sketch defining angles H, 0'.. and HI"

where L" and O'll are respectively the deep water
wave length and wave angle with respect to the
seaward normal to the shoreline. The deep water
wave angle 0' measured counter clockwise from
x-axis is related to 0'0 (Figure 2) by

As the wave parameters used in the present
computations are only statistical averages and as
there are no records of the beach profiles and
beach material characteristics, the longshore
transport Q in ~~quati()n ] is estimated using the
relation

which essentially has the same form as that of
Equation 2. In Equation 5, A = AIHo~T and AI is
a dimensional constant which depends on the units
used for the deep water wave height H, and wave
period T. K/ ~-:- (cos O!,jcos 0'1l) and K, are re
spectively the refraction and diffraction coeffi
cients at the breaking point. K, = 1 for 0' :s 7[/2.
For (\' > 7[/2 and in the diffraction region of the
breakwater, K, is estimated by an approximate
procedure (see chapter 4, DEAN and DALRYMPLE,

1984).
Expressing the variables in the nondimensional

form Equations 1 and 2 become

(4)

(5)

tan I (dy/dx) ± 7[/2

Q = (pH;\/1')(H/I.J(,)l'm'l(H/I):,(Jrsin~(20'h) (2)

where Hand T are the wave height and period,
p = fluid density, L" = deep water wave length,
Dt,o = characteristic grain size, m = beach slope,
(\'h = breaking wave angle and p, q, rand s are
exponents. The breaker angle (\'1) and the bed slope
change with time and along the shoreline as it
evolves and therefore their time histories are
needed to accurately estimate the changing long
shore transport.

In the present study, the average wave param
eters obtained from the wave roses reported in
the quarterly publications of the ports are used
in the computation of longshore transport rate.
As the wave roses give only the direction of ap
proach of waves in deeper waters, the breaker
angles are estimated using the empirical relation
(LEMEHAUTE and KOH, 1967)

all = [0.24 + 5.5(H(jL,,) ]0'0 (3)

incident waves and their energy. But BHUlJN (1990)
points out that it is more realistic to expect the
littoral drift rate to be related to beach profile
and beach material characteristics in addition to
the parameters of the approaching waves. The
most recent formula is of KHAMPHlllS (1991)
given by

-lourual of Coastal Research, Vol. 9, No.4. 199:1
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Figure 3. Grid specification for finite difference schemes.

Q = Q/A = K(/cos n'ocos n h (7)

where x = x/(b + h), Y = y/(b -+- h.), t = At/(b
+ hJ;I. An alternative form to Equation 7 given
by

(aQ/at) = a(a 2Q/ax2 ) - a(aq/ax)

and

(ay/at) --(aQ/ax) + q(x) (6)

(8)

chosen for the integration and subscript t refers
to quantities at time step t. Then the longshore
transport Q at the time step (t + 1) is expressed
in terms of Y, by first isolating the terms involving
(\'p (a p is defined in Figure 2). Expressing one of
the terms involving a p as a first order quantity in
Y at the time step (1, + 1), we get

Q = K(/cos«(\' -- (\',)sin O'h

where Kd~(COS n' sin n'pcos H" + sin n' sin ap)sin O'b

a = K}(l3cos O'lJCOS (t" - sin n'o sin n'h)
~ [1 + (dy/dx)"]

is derived by differentiating Equation 6 with re
spect to x and using Equation 4. In subsequent
discussions, the overbars on all nondimensional
variables will be dropped.

and

where

and

Qn.l f I = En(Y n I,. t 1 - Yn,l t I) + F,

En = (KdLCOS a sin n'p,tsin O'h,J/OX

(10)

BEnQn I,tI I --- (1 + 2BEn)Qn,t t I + BEnQn t 1,1 t 1

As the boundary conditions are expressed in
terms of Q, by eliminating Y between Equations
9 and 10, we get the difference equation as

For n = 2 to N, Equation 11 represents a set of
(N "-- 1) linear equations in (N - 1) unknowns.
The end values QI and QN-f 1 are specified by
boundary conditions. For a breakwater which pre
vents longshore transport, QI = o. At the other
boundary, it is assumed that QN+I = QN; i.e., (aQ/
ax) = 0 for large x. This linear system of equations
is in tridiagonal form which can be solved using
standard procedures. Then the set {Yn,t4 1} is de-

Numerical Schemes

Scheme-A: In this scheme, the non-dimensional
equations of sediment balance and longshore
transport (Equations 6 and 7) are expressed in
finite difference form (KRAUS and HARIKAI, 1983).
Using a staggered grid system, Equation 6 in im
plicit finite difference form is given by

Yn,t t 1 = B(Qn,tt 1 - Qn+ 1,1 , I) -+ C (9)

where B = ot/(20x) and Cn = Yn,1 + B(Qn,t - Qn t 1,1

+ 2oxqn,t)·
Note that in the staggered grid system, the set

{Qn} is specified at the grid points, whereas the
sets {qn} and {Yn} are defined at the centre of the
grid spacing (Figure 3). ox is the distance between
two consecutive grid points, ot is the time interval

F, K(/sin a sin O'",tsin ah,l

= En(Cn - Cn J) - F, (11)

Journal of Coastal Research, Vol. 9, No.4, ] 993
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termined using Equation 9, and this procedure is
repeated to simulate the evolution of shoreline.

Scheme-B: In this scheme, the finite difference
equation is formed by discretizing Equation 8
(LEMEHAUTE and SOLDATE, 1980). In the stag
gered grid system, the difference equation in im
plicit form is given by

Qn,t+1 = (Qn 1.111 - 2Qn.lll + Qnll,111)

(12)

where

Fn= Qn.t + (Qn I.t - 2QII,1 + QIl I 1,1 )(aot/20x2
)

- (qn,1 - qn I..)(aot/lTx)

and a is a function of shoreline coordinates ~ Yn }

which is calculated at the previous time step. For
n = 2 to N, Equation 12 forms a linear system of
equations similar to that in Scheme-A.

Numerical Experiments

Before using numerical schemes for case stud
ies' we have first used them to simulate the evo
lution of shoreline adjacent to a breakwater with
waves from deep water approaching the coast con
tinuously from one direction. A typical simulated
shoreline obtained using both the schemes is pre
sented in Table 1. Computations carried out for
various deep water wave directions show that, for
numerical stability, Scheme-A generally requires
a smaller integration time step ot than that re
quired by Scherne-B for the same spatial descre
tization interval ox. Hence, in subsequent nu
merical experiments, Scheme-B is used.

For case studies on shore line evolution, the
input required is the wave parameters (a, 1\ H o )

in the form of time series. This is seldom available
and the required information has to be derived
from the monthly statistical summaries or wave
roses of the near shore region. These monthly
summaries are used to estimate the average wave
direction, average wave height and period. But in
estimating these averages, we lose information on
the sequence in which the combination (a, T, H(J
occurs. In order to study the effect of change in
sequence of occurrence of wave parameters on the
shore line evolution, numerical experiments are
carried out. For all the experiments, initial shore
line is taken to be straight with a shore-connected
breakwater perpendicular to the coast and q(x)
=0.

In the first experiment, the waves are assumed
initially to approach the breakwater at a constant

Table 1. Shoreline coordinates after (non-dimensional) i =

400.

Shoreline Coordinates

y-Coordinate

Scheme-A Scheme-B

No. x-Coordinate (K& H) (LMS)

1 2.5 6.802;) 6.8014

2 7.5 3.5048 3.5049

:3 12':) 1.4497 1.4500

4 17.5 0.3851 0.3848

5 22.fl 0.0522 0.0521

6 27.;) 0.0041 0.0061

7 :~2.5 0.0006 0.0019

8 37.5 -0.0005 0.0011

9 42.5 0.0005 0.007

10 47.5 0.004 0.005

11 52.5 0.0002 0.0005

Non-dimensional
integration
time step 0.20 0.50

Note: Shoreline coordinates are non-dirnensionalised with re
spect to (b + D..). Real time t = i(b + DJ,ljA. Non-dimensional
grid spacing ox = 5. Wave parameters: (~ = 45°. T -"'- 8 sec and
H, = 0.5 m

angle of 45° to the shoreline for a period of 6
months. Subsequently for the next six months,
the wave angle is changed to 60°. The other two
wave parameters, namely, average wave height
and the wave period are taken as 0.5 m and 8 sec
respectively. The computations are repeated re
versing the order of occurrence of incident wave
angles, but keeping the other wave parameters
the same. From the simulated shoreline profiles
presented in Table 2, it can be seen that the order
in the sequence of occurrence of incident wave
direction has significant influence on shoreline
evolution closer to the breakwater. Hence, these
models require the exact sequence of occurrence
of wave parameters over long periods of time (sev
eral months and years) for the shoreline simula
tion. But this data requirement for the shoreline
forecasting cannot be met from wave forecasting
models as they predict the wave field only for a
short period (a few days). Also, the exact sequenc
es of observed wave data are not published by
Port authorities; they publish only the summaries
of wave data in the form of wave roses which are
again not in the required form for shoreline hind
casting. Therefore, one has to be cautious in in
terpreting the predicted shoreline close to the
breakwater, obtained from numerical models.

Similar numerical experiments are performed
to study the effect of changes in the sequence of

-Iournal of Coastal Research, Vol. 9, No.4, 1993

digitstaff
Text Box



920 -layakumar and Mahadevan

'I'able S, Parameters used in the simulation of shoreline ad
jacent tu Madras Harbour.

1977 1977
Pre-Monsoon Post-Monsoon

Table 2. Shoreline coordinates after time t - 12 months using
Scheme-B (a =I- constant). Run /: H - 45°f()r the first six months
and 60° for the next six months. T - H sec; H" ~ 0.5 m. Run
/ /: 0' = 60° for the first six months and 45° for the next six
months. T = 8 sec; H. = 0.5 m.

Shoreline Coordinates

y-Coordinate

No. x-Coordinate Run-I Hun-II

1 2.5 8.7987 lO.62:{O

2 7.5 6.:~865 6.9:~58

3 12.5 4.4224 4.25:~1

4 17.5 2.8864 2.:nS9

5 22.5 1.7504 1.1609

6 27.5 0.971:-3 0.4757

7 ~2.5 0.4871 0.16:~5

8 :n.5 0.2198 0.0508

9 42.5 0.0896 0.0154

10 47.5 O_l);-~:t~ 0.0042

11 52.5 0.0114 0.0014

Depth of water at the limit of
active sand transport (h.)

Height of berm (b)

I ..ength of breakwater
Depth of water at the seaward

end of hreakwater
No. of grid points (N)

Average wave direction Ut-)
(wi th respect to the line per
pendicular to the break wa
ter)

Average wave period (1')

Average wave height (A)

Percentage of sediment
hy passing

12.20 m

:t05 m

788 m

a.os m

50

59.6°
8 sec

0.95 m

44.7

l()5.8°

8 sec
1.28 m

27.09

Note: Shoreline coordinates are non-dirnensionalised with re

spect to (b + D,)

occurrence of other wave parameters, viz. wave
heights and wave periods, on shoreline evolution.
No significant differences in the shoreline evo
lution over the same period (12 rnonths) is ob
served when the shoreline was simulated consid
ering the occurrence of these wave parameters
(wave height or period) in one particular order or
in the reverse order, keeping the other parameters
constant.

Case Studies

Madras Harbour

The Madras harbour which lies on the east coast
of India (Figure 1) was developed along a straight
open coastline by the construction of breakwaters
perpendicular to the shore.

A case study of the shoreline evolution adjacent
to the Madras harbour is carried out using the
numerical Scheme-B. The input data used in this
simulation are listed in Table ~). The average wave
parameters are extracted from the annual hydro
graphic survey reports released by the Madras
Port Trust Authorities. The shoreline coordinates
south of Madras harbour corresponding to the
March, 1977, survey are taken to form the initial
shoreline. From the details of annual accretion
and erosion of material outside the harbour and
dredging particulars available from the Port Au
thorities, the percentage of sediment by-passing
the breakwater is computed.

The simulation of shoreline is carried out for a

period of three years. During that period, no major
change in the shoreline was reported in the annual
survey reports. The predicted shoreline for the
year 197His found to agree only qualitatively with
the measured shoreline of the annual 1978 survey
(Figure 4).

A possible reason for getting only a qualitative
agreement between the measured and the pre
dicted shoreline is that when the average wave
parameters are used as input to the simulation
model, the average measured shoreline should have
been used as the initial shoreline to estimate the
evolution of the average profile. Instead, in the
present investigation, we used the measured
shoreline as the initial profile and the average
wave parameters as input to the model.

Further studies are carried out to investigate
the effect of waves which make a large incident
angle in deep water on simulation (i.P., the effect
of large 0',,). Taking the 1977 annual shoreline
south of Madras harbour as the initial profile, the
shoreline is simulated for waves approaching at
an angle of 5Go (in deep water) with the normal
to the shoreline at the extreme southern end of
the study area (Figure 5). The simulated shoreline
after six months from the 1977 annual profile
showed instabilities at certain locations along the
beach (locations A and B in Figure 5). In this
context, it is worthwhile to note the following:

(a) For a given wave height and wave period, the
sediment transport rate (Q in Equation 5) in
creases continuously with 0'", and attains the
maximum value around O'u -== 50° (Figure 6).

.Journal of Coastal Research, Vol. 9, No.4, l!:m:1
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Figure 4. Predicted and observed shorelines south of Madras Harbour. Distances are non-dimensionalised with respect to (h -+

h.]. D-Initial shoreline (1977) measured, O-Predicted shoreline (6 months), O-Predicted shoreline (12 months), L.-Measured
shoreline (12 months), L.-- Predicted shoreline (24 months), lJ-Predicted shoreline (;~6 months).

For the shoreline corresponding to the year
1977, (\Ill can he seen (Figure 5) to reduce con
tinuously towards the breakwater from the
value assumed ii.e., 55°) at the southern end
of the study area. 'I'his implies that inside the
study area where all = 50°, the sediment trans
port would be maximum and that transported
into this area through the southern end would
be less than the maximum value, since at this
end (\'0 = 55°. 'This obviously leads to the in
stability in the shoreline evolution at certain
locations (locations A and B in Figure 5) where
the sediment transport rate becomes maxi
mum.

(b) In one-line simulation models, approximate
methods are used to estimate the refraction
co-efficient and the wave breaker angle in the

nearshore region. In the present investiga
tion, the breaker angle O'll is estimated using
I.Jl<~MEHAUTE and KOH'S (1967) approximate
formula which is only valid for small deep
water angle (Yo, since it predicts (Y h to increase
monotonically with (Yo. But in reality, (Yh will
not be increasing uniformly without any limit
since the wave fronts approaching the shore
line always tend to align themselves parallel
to the shoreline even for large deep water wave
angles. Hence, an accurate method of esti
mation of O'h is needed especially for large 0'0'

to get improved estimates of littoral transport
rate and shoreline evolution.

The present study suggests that since the phe
nomena of refraction, wave breaking and reflec-

-Iournal of Coastal Research, Vol. 9, No. 4, 199;~
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Figure 5. Predicted shoreline south of Madras Harbour for (\' .x: 55°. Distances are non-dimensioualised with respect to (b + h.).

Figure 6. Variation of Q/AH,/r with «..

83.40

10.9 sec
0.64 m

July to
December

~3.47 m
1.50 m

48:3 m

2.01 m

50

January
to June

86.20

10.5 sec
0.50 m

Depth of water at the limit of
active sand transport (h)

Height of berm (b)
Length of breakwater
Depth of water at the seaward

end of the breakwater
No. of grid points (N)

Average wave direction ({d
(with respect to the line per
pendicular to the break wa
ter)

Average wave period (1')

Average wave height (A)

Table 4. Parameters used in the simulation of shoreline ad
jacent to Beypore Harbour.

Beyporc Harbor

Beypore Harbour on the west coast of India is
located near the inlet of the Reypore estuary (Fig
ure 1). The inlet is flanked by two parallel break
waters (constructed in the year 1984) to maintain
the navigability of the approach channel to the
harbour. The coastline on the southern side of the
inlet channel consists of rocky outcrops whereas
on the northern side it consists of sandy beaches.
The evolution of this sandy shoreline as a con-

6020 ltD
o(,o(Degrees)~

0.00 r 1 I I I

o

0.16

tion from breakwaters and entrance channel are
not represented properly in the one line models,
these models have serious limitations in their
applicability to realistic environmental condi
tions.

0.12

I
I--

NO

I
~ 0.08
a

0.04
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Figure 7. Predicted and observed shorelines north of Heypore Harbour. Distances are non-dimensionalised with respect to (b +
h.). O--Initial shoreline (1984) measured, 6-Predicted shoreline (199l)t D-Measured shoreline (1991), X-Predicted shoreline
(1999).

sequence of the breakwater construction is stud
ied.

The input data, used in the simulation (Table
4) are extracted from the hydrographic survey
reports published by Port authorities. The initial
shoreline considered for this simulation study is
the shoreline profile measured during December)
1984.

Figure 7 shows the initial shoreline (1984) and
the measured and simulated shorelines of 1991.
The simulated shoreline of 1991 can be seen to
retreat from the 1984 shoreline near the break
water and to advance into the sea away from the
breakwater and agrees qualitatively with the mea
sured shoreline of 1991. The simulated shoreline
of 1999 (Figure 7) shows no significant deviations
from that of 1991 which is to be expected as the
annual average wave direction is nearly normal
to the coast.
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