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ABSTRACT |

SCARLATOS, P.D., 1993. Tidal energy dissipation in well-mixed estuaries. Journal of Coastal Research,
9(4), 907-914. Fort Lauderdale (Florida), ISSN 0749-0208.

Long water waves are strongly distorted and lose substantial energy as they propagate through shallow
estuarine waters. The energy dissipation is mainly due to increased bottom frictional effects. Using the
linearized Telegrapher's equations, an analytical expression is obtained for tidal energy dissipation in
terms of estuarine geometric features and tidal harmonic parameters. For estimating the harmonic pa-
rameters, the full St. Venant system of equations is numerically solved and a large amount of data is
generated for hypothetical one-dimensional, well-mixed estuaries, subject to semi-diurnal tidal action.
Relations are then developed expressing the tidal energy dissipation as a function of prevailing macroscopic
estuarine features. The effectiveness and applicability limitations of linearization are discussed. Simulation
results are verified with actual data. The average tidal energy dissipation was found to be proportional
to the third power of the tidal Reynolds number. This result is in agreement with experimental data and
theories pertaining to rate of energy dissipation, diffusion in homogeneous turbulent flow and dispersion
in shear flow.

ADDITIONAL INDEX WORDS: Friction, dispersion, harmonic analysis, hydrodynamics, waterways.

INTRODUCTION

Estuaries are very complicated natural systems
subject to a variety of physical effects such as
tides, winds, riverine flow, overland runoff,
groundwater seepage, direct precipitation, and
evaporation (ScarLATos, 1988). In most cases,
however, astronomical tides are the predominant
driving force. Therefore, it is very important to
quantify the tidal oscillations before initiating any
engineering or environmental estuarine study. In
spite of the fact that tides can be accurately pre-
dicted in the deep ocean (SILVESTER, 1974), their
prediction in shallow estuarine waters is very
complicated due to the nonlinear effects induced
by advection and bottom friction (SCARLATOS and
SiNGH, 1987a). Theoretically, the propagation of
tides can be described by the St. Venant system
of partial differential equations. Due to the com-
plexity of these equations (nonlinear PDE of the
hyperbolic type), direct solution of the full system
is feasible only by means of numerical techniques
such as the methods of characteristics (ABBOTT,
1966), finite differences (DRONKERS, 1964), or fi-
nite elements (ScarLATOS, 1982). Closed-form so-
lutions can be obtained only by using harmonic
analysis; i.e., linearizing the governing equations
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and decomposing the predominant tidal constit-
uents into a series of periodic functions
(DRONKERS, 1964; PROUDMAN, 1957). One of the
most advantageous methods of harmonic analysis
is the one developed by Ippen and Harleman for
channels of infinite and/or finite length (IPPEN,
1966). Analytical solutions for the tidal wave mo-
tion can be used to derive closed-form expressions
for the energy dissipation. For channels of finite
length, this can be accomplished by defining en-
ergy dissipation as the difference between the en-
ergy of the incident and reflected waves (IPPEN,
1966). Knowledge of the tidal energy dissipation
is useful for estimation of other important phys-
ical parameters such as the relative diffusion D,
and dispersion coefficient D, (IPPEN, 1966; SCAR-
LATOs and SiNGH, 1985). Although the Ippen and
Harleman method has the advantages of simplic-
ity, efficiency, and adequate accuracy, its main
drawback is the need for estimation of certain
harmonic parameters such as the dimensionless
parameter ¢ and friction damping modulus pu.
These quantities require actual field data for their
calibration and verification (IPPEN, 1966). SCAR-
LATOS and SiNGH (1987b) using computer simula-
tion data presented a methodology for calibration
of the dimensionless parameter ¢.

The purpose of this paper is to investigate the
behavior of tidal energy dissipation using the Ippen
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Figure 1. Schematic features of a tidal estuary.

and Harleman harmonic analysis and computer
simulation results of the full St. Venant system
of equations. The energy dissipation is related to
certain macroscopic estuarine and tidal features
(e.g., water depth, wave amplitude, bottom fric-
tion, current velocities, etc.). Energy dissipation
in well-mixed estuaries as related to diffusion and
dispersion processes is also discussed. The results
are compared with available experimental data
and existing theories.

ANALYSIS OF TIDAL EQUATIONS

Tidal wave propagation in one-dimensional es-
tuaries can be accurately quantified by the St.
Venant system of equations written as

A, + (uWA),=q (1)
(UA),L + (UZA),x + gAHx = gA(So - So) + qu
(2)

where A = wet-cross section area, u = mean ve-
locity of the cross-section, q = lateral inflow, H
= water surface elevation measured from a ref-
erence datum, S, = bottom slope, S; = energy
gradient, and g = acceleration due to gravity. The
subscripts x and t represent the independent vari-
ables; i.e., longitudinal distance and time respec-
tively. A comma in front of the subscripts denotes
partial differentiation with respect to the sub-
script, e.g., A, = dA/dt. Equation (1) describes the
conservation of mass while Eq. (2) describes the
momentum balance. A schematic representation
of the estuarine system is given in Figure 1.

For prismatic estuaries without lateral inflow
and negligible side effects (i.e., unit width ap-
proximation), Egs. (1) and (2) can be reduced to

7. + [uth + )], =0 (3)

u, +uu, +gg, +g35,=0 (4)

where h = water depth below mean sea level
(MSL), and n = water surface elevation above (or
below) MSL. The energy gradient term can be
expressed as a quadratic velocity formula:

S; = u|u|/(C:H' ") (5)

where C = coefficient of friction, and 8 = numer-
ical constant. For 8 = 0, the coefficient C equals
to the Chezy’s coefficient of friction C,. The ab-
solute value of the velocity in Eq. (5) is used to
maintain the directionality of the flow. The sys-
tem of Eqs. (3) and (4) is nonlinear with respect
to the depended variables u(x, t) and 7(x, t). For
negligible bottom slope; i.e., S, < 1 (h = con-
stant) and small wave amplitude; i.e., h > 5 and
n/L < 1, where L. = wave length, Eq. (3) is lin-
earized as

n,+ hu, =0 (6)

Similarly, Eq. (4) can be linearized by omitting
the nonlinear advective term and modifying the
energy gradient term as

S, = Mu 7

where M = linearized friction factor defined by
Parsons (IpPeN, 1966) as

M = [8/(37)]u,./(C,*h) (8)

where u,, = idealized maximum velocity that can
only be a spatial function;i.e., u,, = u,(x). In terms
of the Darcy-Weisbach friction coefficient f, Eq.
(8) reads

M = [/(37)]u,/(gh) = [f/(3m)]u./c*  (9)

where ¢ = [g(h + 1)]"? = (gh)'”? = phase velocity.
Combination of Egs. (4), (6) and (7) yields the
Telegrapher’s equation
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My = 1y + gMn, (10)
or
clzu.xx = u.tl + gMuJ (11)

Double subscript denotes a second partial deriv-
ative with respect to that subscript, e.g., h,, = 8h/
dt2. Assuming a sinusoidal disturbance at the ocean
end of the estuary and total reflection conditions
at the upstream end of the estuary, the solution
of Eq. (10) is given as

7(x, t) = ale **cos(ot — kx)
+ ecos(at + kx)] (12)

where a = tidal amplitude at the closed end, u =
damping modulus, « = 2x/L = tidal wave number,
o = 2x/T = tidal frequency. L and T are, respec-
tively, the tidal wave length and tidal period. Sub-
stituting Eq. (12) into Eq. (6) and integrating with
respect to x, the tidal velocity u is defined as

u(x, t) = (ac/h)[x/(x* + p?)'"]
x [e~**cos(at — «kx + @)
— e*cos(ot + xx + a)] (13)

where x, = («* — p?)"? = wave length corresponding
to frictionless bottom conditions, and o = phase
shift between tidal wave height and tidal current.
Based on the solutions given by Egs. (12) and (13)
the linearized friction factor can be re-defined as

M = (o/g)tan[2tan'(u/k)]

= 2(o/g)ux/(k* — u?) (14)

The total wave energy within the channel is
comprised of both kinetic and potential energy.
Assuming a channel of length 1,, the average en-
ergy dissipation per unit mass E,,, between any
station x and the tidal boundary can be estimated
as the difference of the energy flux between the
incident and reflecting wave (IPPEN, 1966). Thus,

E;, = gca?[sinh(2ul,)
— sinh(2ux)]/{h(l, — x)] (15)

Based on Eq. (15), the energy dissipation per unit
mass for the entire channel E,, is obtained by
setting x = 0, L.e.,

E;, = gca®sinh(2¢l,)/(hl,) (16)
Eq. (15) can be rewritten as

E; = gen,?/sinh(2ul,)
x {[(cos(2«],) + cosh(2ul,)](2hl)} (17)

where 7, = wave amplitude at the ocean end of
the channel. From Eqgs. (15) to (17), it is evident

that whenever p — 0, sinh(2ul,) — 0 and, therefore,
E,, = E, - 0. For small estuaries where 1,/L. <
1, cos(2«1.) — 0. In that case, Eq. (17) is reduced
to

E, = gen,2tanh(2ul,)/(2hl,) (18)

Knowledge of the energy dissipation rate is very
useful for understanding saline, thermal and solid
particle mixing processes in estuarine waters.

EDDY DIFFUSION AND LONGITUDINAL
DISPERSION

The flow field in estuarine waters is always tur-
bulent. Under homogeneous turbulent condi-
tions, energy is transferred from large eddies to
small eddies through vortex stretching and pair-
ing (energy cascade) (LANDAHL and MoLLo-
CHRISTENSEN, 1986). These small eddies are
controlled by viscosity and as suggested by Kol-
mogorov, they are in a state of statistical equilib-
rium (BATCHELOR, 1953). Assuming u’ and A as
the characteristic velocity and length of these
small-scale eddies, the energy dissipation rate E
is approximated as

E = v(u'/A)? (19)

where » = kinematic viscosity. Also, for these small
surviving eddies, the Reynolds number is of the
order of one, so that inertial forces are in balance
with viscous forces, i.e.,

uN =y (20)

Combination of Eqs. (19) and (20) yields the well-
known Kolmogorov’s length scale

A= (Va/E)m (21)

Based on Eq. (21) which is valid only for fully
developed turbulence, BATCHELOR (1952) derived
the coefficient of relative diffusion D; for a quasi-
asymptotic state as

Dli = e}Z“l/3>\4/ﬂ (22)

where ¢ = proportionality constant of order one.
In case of solid particle suspensions, the charac-
teristic length \ is indicative of the particle dis-
placement distance within the flow field. Exper-
imental evidence of the validity of Eq. (22) was
provided by OrLoB (1961) for a two-dimensional
particle diffusion under homogeneous turbulence
conditions. MoNIN and Ozmipov (1985) confirmed
the 4/3-power law by performing oceanic exper-
iments. Whenever Kolmogorov’s length does not
change substantially, the relative diffusion coef-
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Table 1. Data of study cases.

Length of estuary, 1, in km
Depth of estuary, h, in meters
Chezy's coefficient, C,, in m'*/sec 30, 45, 60, 75, 90, 105
Ratio n,/h 0.025, 0.050, 0.075, 0.100
Tidal period, T, in hours 12

45, 60, 75, 90
10, 20, 30

ficient is directly proportional to the one-third
power of the energy dissipation rate; i.e.,

D, = ¢E» (23)

where ¢ = proportionality constant. In shallow,
well-mixed estuaries with regular configuration,
the assumption A = constant seems to be a rea-
sonable approximation since variability of the size
of the vertical eddies is restricted by the water
depth. For estuarine flows with a fully developed
turbulent boundary layer, the turbulent energy
dissipation E can be assumed to represent the
energy losses E,, generated by bottom friction;i.e.,
E = E,,. In that case,

D; = ¢E,” (24)

For one-dimensional parallel flows, the diffu-
sion coeflicient is replaced by the dispersion co-
efficient D,. The dispersion coefficient incorpo-
rates the mixing effects due to the vertical velocity
profile whenever an average along the depth ve-
locity is used. Based on TAYLOR’s (1954) experi-
ments in flow through pipes, and on the gener-
alized analysis given by FISCHER et al. (1979), the
dispersion coefficient for tidal flow is given as

D, = 14.3(2g)V*R./C, = 7.150R, (25)
where R, = tidal Reynold’s number defined as
R, =2(h + ) |u,|/(mv) (26)

Based on Eq. (5), the rate of energy dissipation
per unit mass of fluid within a tidal estuary can
be generally estimated as

E; = guS, = gu’/(C*H!+#) (27)

Combining Egs. (25) to (27) and taking the time-
averaged velocity over half a tidal cycle; i.e., u,,
= (2/7)u,,, the dispersion coefficient reads

DL = 20_22g1/s[(h + n)q/:a/Czl/:i]EDu:x (28)

As described in Eqgs. (24) and (28), both the rel-
ative diffusion and the dispersion coeflicients are
proportional to the one-third power of the rate of
energy dissipation. These conclusions have been
verified experimentally (IPPEN, 1966).

“
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Figure 2. Energy dissipation E|, versus Chezy’s coeflicient of
friction C,.

METHODOLOGY AND STUDY CASES

The average energy dissipation per unit mass
in a tidal estuary can be estimated by means of
Eq. (18). Application of Eq. (18), however, re-
quires tidal records at the estuarine mouth, geo-
metric data along the estuary and the frictional
damping modulus x. The damping modulus x can
be obtained only through analysis of tidal data
from different stations within the estuary (IPPEN,
1966). For this study, a large amount of data was
generated by means of computer simulation using
a finite element model. The model used for sim-
ulation is described in detail elsewhere (Scar-
LATOS, 1982; ScARLATOS and SINGH, 1987b). The
simulation results provided tidal wave heights »(x,
t) and current velocities u(x, t) at a number of
stations. From this data, the damping modulus u
and the frictional wave number « were calibrated
according to the Ippen-Harleman harmonic anal-
ysis. The estuarine and tidal characteristics of the
cases studied were combinations of the quantities
given in Table 1. It should be noted, however,
that the estuarine length 1, never exceeded 20%
of the tidal wave length L.

A tidal period of 12 hours was used for all of
the simulations. The 12 hour period is close to
the period of the semi-diurnal tidal constituent
M1 (12.46 hours). Once the harmonic parameters
u and « were estimated, the average tidal energy
dissipation per unit mass E,, and the linearized
friction parameter M were obtained respectively
from Eqgs. (18) and (14). Knowing the parameter
M, the idealized maximum velocity u,, was de-
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Table 2. Values of constants m,, m, (E,, = m,10™*> ),

L =75km, h= 20 m 1,=90 km, h=20m

m, x 10%, m, x 10", m, x 10°, m, X 10%

n/h  in m’fsec® insec/m'” in m?/sec’  in sec/m'*

(1) (2) 3) (4) (5)

0.025 1.594 -12.126 1.988 —10.688
0.050 7.372 -10.375 7.179 - 6.761
0.075 13.669 —6.708 15.728 —5.176
0.100 21.679 —4.857 20.234 —2.521

fined, and based on the velocity u,, the tidal Reyn-
olds number R, was estimated.

Eq. (25) indicates dependency of the dispersion
coefficient D, to the tidal Reynolds number R..
Thus, the behavior of R, was investigated with
respect to energy dissipation.

RESULTS AND DISCUSSION

Due to space limitations, only part of the sim-
ulated data is presented in this paper. Indeed,
results are primarily given for two estuarine
lengths; i.e., 75 and 90 km for a mean depth of
20 m. However, the results presented in this paper
are similar to the results of the unreported sim-
ulation cases. Any particular observation pertain-
ing to the unreported cases is included. Tidal en-
ergy dissipation as expressed by Eq. (18) depends
on linearized bottom frictional effects (u). How-
ever, since the damping modulus g is used only
in harmonic analysis, it is interesting to see the
relation of E;, versus the Chezy’s coefficient C,. In
Figure 2, data plotted on a semi-log paper yields

the relation
ED = mllotmzt‘n (29)

where m,, m, = dimensional coefficients. Coefli-
cient m, depends on the dimensionless ratio 7,/

Table 4. Ratio of u,/u,,, for different wave heights and bot-
tom friction.

.L=75km, h=20m, T = 12 hr

gy 1IN

U, /U
meters:

C,, in m'?/ 0.50 1.00 1.50 2.00

sec: (1) (2) (3) (4)
30 0.834 0.699 0.580 0.554
45 1.172 0.853 0.782 0.716
60 1.071 0.976 0.892 0.817
75 1.100 0.839 1.093 0.859
90 1.049 0.997 1.094 0.978
106 1.072 0.883 1.139 1.145

on coefficient m, (m, < 0) affect only slightly the
behavior of Eq. (29). Therefore, an average, con-
stant value for m, can be used for a particular
estuary of constant length and depth. The values
of the coeflicients m, and m, for the study cases
presented in Figure 2 are given in Table 2. The
negative slope of the E,, versus C, curves is in
qualitative agreement with the energy dissipation
per unit mass under steady-state uniform flow
conditions defined as

Epy = gUR/(szH) (30)

where U = uniform velocity. Equation (30) is sim-
ilar to Eq. (27) with the only difference based on
the interpretation of the velocity; i.e., U versus u
or u,. The values of the uniform velocity U ob-
tained from Eq. (30) and the linearized maximum
velocity u,, as obtained from Eqgs. (8) and (14) are
presented in a number of cases in Table 3. In the
same table, the maximum velocity u,,, as com-
puted by the numerical simulations is also pro-
vided. By looking at the results, it is evident that
the corresponding uniform velocity U is always
smaller than either the linearized velocity u,, or

H;i.e., m, = m,(n,/H). On the other hand, changes the actual maximum velocity u,,,,. This is in
Table 3. Uniform, linearized and simulated maximum velocities.
L h L8 C, E, x 10 0) Ug [T

[km] [m] [m] [m/sec) [m*/sec?] {m/sec] [m/sec] [m/sec)
1) (2) (3) (4) (5) (6) (7 ®)
45 10 0.50 60 0.088 0.318 0.386 0.386
45 20 2.00 45 0.480 0.271 0.358 0.679
60 10 0.25 30 0.049 0.165 0.180 0.250
60 20 1.50 90 0.225 0.719 1.012 0.741
15 20 2.00 45 1.400 0.834 0.859 1.199
75 30 2.25 60 0.550 0.357 1.171 0.952
90 20 1.00 30 0.420 0.426 0.382 0.528
90 30 0.75 75 0.017 0.308 0.358 0.393
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Table 5. Values of constants n,,

n, (M = n,(n/h)n,).

l.=75km,h =20m

l,=90km,h =10m

n, x 10, n, x 10,
Cz,inm'?/ in sec/m n in sec/m n,
sec: (1) (2) 3) (4)
30 7.819 0.466 6.319 0.364
45 6.921 0.577 5.166 0.384
60 7.580 0.781 5.096 0.445
75 7.149 0.900 4.352 0.466
90 7.500 1.000 4.206 0.510
105 9.958 1.192 3.800 0.532

T T 1TrT7T T T T T T 11T a
301 1275 km T =90 km
201 hy} 1 h:m/m>//a
ol / | / :
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2 05 o 1 030
> o 45
03 - A T 860 ]
z
02 - 1 (m’2/sy® 75
— 1 ® 90 |
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0.02 005 010 002 005 010

Mo/h

Figure 3. Linearized friction factor M versus dimensionless
wave amplitude 5,/h.

agreement with experimental data reported by
Ippen and Harleman (IppeN, 1966). Indeed, in
their test No. 28, U = 0.851 m/sec, while u,, =
1.834 m/sec. In Table 4, the values of u,/u,,, are
given for an estuary of length 1 = 75 km and depth
h = 20 m. From this table, some trends can be
identified for the ratio u,/u,,,. For example, the
ratio generally increases with increasing Chezy’s
number (decreasing roughness) and decreases with
increasing tidal amplitude. Generally, the range
of u,/u,., was found to be 0.3 < u,/u,.. < 3.0.
Since u,, is being used to estimate the linearized
friction parameter M, it is clear that measured
maximum velocities u,,,, cannot be deliberately
used in place of u,,.

The computer simulations revealed that 0 <
u/k < 0.637,and 0 < 2 tan "(u/x) < 1.134 < w/2.
Therefore, from Eq. (14) it can be seen that the
linearized friction factor M follows monotonically
the behavior of u/«. Plots of M versus 5,/h and C,
on a log-log scale for different study cases are
given in Figure 3. From Figure 3, the following
relation is obtained

M= 1'11(770/}1)"2 (31)

where n, = proportionality constant with the same
units as the M (s/m), and n, = dimensionless ex-
ponent. The values of the constants n, and n, for
the cases presented in Figure 3, are listed in Table
5. It is generally evident from the data that n,
depends on bottom friction; i.e., n, = n,(C,). Con-
stant n, does not seem to follow any recognizable
pattern.

Once the velocity u,, is determined, the tidal
Reynolds number R, can be estimated by using
Eq. (26). In Figure 4, the energy dissipation per
unit mass E,, is plotted on a log-log paper against
the tidal Reynolds number. From this figure, it is
evident that

E,=rR.> (32)

where r, = dimensional constant and r, = dimen-
sionless exponent. The values of the exponent r,
for all of the simulated cases were 2.8 < r, < 3.2,
with an average value of 3.0. Similar results were
found in the experiment data reported by Ippen
and Harleman (IppEN, 1966). A straight line is
obtained by plotting constant r, against Chezy’s
coeflicient C, on a log-log paper (Figure 5). There-
fore,

r, = 8,100 (33)

where s, s, = constants. Equation (33) is in agree-
ment with Eq. (29). Combination of Egs. (25) and
(32) yields

DI, = alEl)(l/r‘z» ~ a‘El)l/:« (34)

where a, = proportionality constant. Eq. (34) ver-
ifies Eq. (28) which was derived by analytical
means. Experimental verification of Eq. (34) was
documented by OrroB (1961). Physical interpre-
tation of Egs. (34) and (24) implies that for a
homogeneous turbulent field, the scale of turbu-
lent eddies are proportional to the estuarine depth.
Inaccuracies resulting from harmonic analysis ap-
plications were observed in cases where the es-
tuarine length exceeded one-fourth of the tidal
wave length. The reason for the inaccuracies was
due to excessive frictional damping. In these cases,
the wave amplitude at the closed end was not
maximum (SCcARLATOS and SINGH, 1985, 1987b) so
the harmonic analysis was not applicable.
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Figure 4. Energy dissipation K, versus tidal Reynolds number
R..

CONCLUSIONS

A large number of estuaries under co-oscillating
tidal conditions were studied by means of the
Ippen and Harleman’s harmonic analysis. The data
required for calibration of the harmonic param-
eters are generated by computer simulation using
the full St. Venant system of equations. Emphasis
was placed on the energy dissipation as related
to various physical parameters.

The conclusions of the study are as follows:

(a) Energy dissipation is related exponentially to
Chezy’s coefficient of friction (Eq. 29). Since
the exponent is a negative number, the result
is in qualitative agreement with energy dis-
sipation under steady-state, uniform flow
conditions. The proportionality constant de-
pends on the ratio n,/h (Table 2).

(b) The same amount of energy dissipation is pro-
duced with much less velocity in a uniform
steady state than in tidal flow; i.e., U < u
(Table 3).

(c) The idealized maximum velocity u,, intro-
duced by Parsons is different than the actual
maximum velocity u,,,. The range of varia-
tion is 0.3 < u,/u,,, < 3.0.

(d) The linearized frictional factor M is exponen-
tially related to the ratio 5,/h (Eq. 31). The
exponent is proportional to bottom friction
(Table 5).

(e) Energy dissipation is exponentially propor-

max

S IR S i S I L
l= 90 km
h=20m

TT T T TTTI0

I

| L) Jaanl

\ PO S VI S S W e oo HFSN BV BTUN PR SO S I |
30 60 S0 30 60 50
2

C, (m

Figure 5. Constant r, versus Chezy’s coefficient of friction C,.

tional to tidal Reynolds number (Eq. 32). The
exponent of this relation varies between 2.8
and 3.2 with an average value of 3.0. This
number is in agreement with available exper-
imental and theoretical data. Also, the pro-
portionality constant is exponentially related
to Chezy’s coefficient of friction (Eq. 33).

(f) In agreement with theoretical analysis, the
simulated dispersion coefficient was propor-
tional to the one-third power of energy dis-
sipation. The physical interpretation of this
result is that the energy carrying turbulent
eddies in an estuarine environment are of the
order of estuarine depth.
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Notation

The following symbols are used in this paper:

A = wet-cross section area, [L.’]

a — tidal amplitude at the closed end, [I.]

a, = proportionality constant, {L' "]

C = coetlicient of friction, [L." » T |

¢ = phase velocity, [LT ']

C, = Chezy’s coetficients of friction, [L' T ]
E = rate of energy dissipation, [L'T |

D, = relative diffusion, |LT ']

D, = dispersion coeflicient, [L*T ]

E,, = energy dissipation per unit mass, [L'T |
E, = energy dissipation for uniform, steady-state flow, [L,T /]

E,. = energy flux between incident and reflecting wave, [L-T

= Darcy-Weisbach friction [ |

= acceleration due to gravity, [LLT |

= water surface elevation measured {rom a reference da-
tum, [L]

T
|

h - water depth below mean sea level, |L|
L = tidal wave length, [L]

1 = estuarine length, [1.]

M — linearized friction factor, {[. 'T)

m, = dimensional proportionality constant, [L'T "}
m. = dimensional exponent, [[. ' T}

n, = dimensional proportionality constant, [L 'T}
n, — dimensionless exponent,| |

q = lateral inflow, [LI" ']

R, = tidal Reynold’s number, | |

r, = dimensional proportionality constant, [L*T ‘|
r, = dimensionless exponent, [ |

S, = energy gradient, [ -]

S, = bottom slope, [ -]

s, = dimensional proportionality constant, [I.'T *}
. = dimensionless exponent, [[. ' "T]

t = time, [T]

U = uniform velocity, [L'T ']

u = mean velocity of the cross-section, [L'T ']
u, -~ time-averaged velocity over half tidal cycle, [LT ]
u, = idealized maximum velocity, [LT ']
U,.. = dactual maximum velocity, |L'T ']

u’' = characteristic velocity of energy dissipating eddies, [L'T ]
x = longitudinal distance, [L.]

Greek letters:

« = phase shift between tidal wave height and tidal current,
{=1

# = numerical constant, [—]

€ = proportionality constant, [ -]

¢ = proportionality constant, [L'"]

n = water surface elevation ahove (or below) mean sea level,
1]

n, = wave amplitude at the ocean end of the channel, [L|

A = wave number, [L. ']

k, = frictionless wave number, [L. ']

A = Kolmogorov’s length scale, [1.]

u = friction damping modulus, |L ']

v = kinematic viscosity, [[.°T ']

a = tidal frequency, [T ']

¢ — dimensionless parameter, [- |

Journal of Coastal Research, Vol. 9, No. 4, 1993



