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ABSTRACT _

SCARLATOS, P.O., 1993. Tidal energy dissipation in well-mixed estuaries. Journal of Coastal Research,
9(4), 907-914. Fort Lauderdale (Florida), ISSN 0749·0208.

Long water waves are strongly distorted and lose substantial energy 8S they propagate through shallow
estuarine waters. The energy dissipation is mainly due to increased bottom frictional effects. Using the
linearized Telegrapher's equations, an analytical expression is obtained for tidal energy dissipation in
terms of estuarine geometric features and tidal harmonic parameters. For estimating the harmonic pa
rameters, the full St. Venant system of equations is numerically solved and a large amount of data is
generated for hypothetical one-dimensional, well-mixed estuaries, subject to semi-diurnal tidal action.
Relations are then developed expressing the tidal energy dissipation 8S a function of prevailing macroscopic
estuarine features. The effectiveness and applicability limitations of linearization are discussed. Simulation
results are verified with actual data, The average tidal energy dissipation was found to be proportional
to the third power of the tidal Reynolds number, This result is in agreement with experimental data and
theories pertaining to rate of energy dissipation, diffusion in homogeneous turbulent flow and dispersion
in shear flow.

ADDITIONAL INDEX WORDS: Friction, dispersion, harmonic analysis, hydrodynamics, waterways.

INTRODUCTION

Estuaries are very complicated natural systems
subject to a variety of physical effects such as
tides, winds, riverine flow, overland runoff,
groundwater seepage, direct precipitation, and
evaporation (SCARLATOS, 1988). In most cases,
however, astronomical tides are the predominant
driving force. Therefore, it is very important to
quantify the tidal oscillations before initiating any
engineering or environmental estuarine study. In
spite of the fact that tides can be accurately pre
dicted in the deep ocean (SILVESTER, 1974), their
prediction in shallow estuarine waters is very
complicated due to the nonlinear effects induced
by advection and bottom friction (SCARLATOS and
SINGH, 1987a). Theoretically, the propagation of
tides can be described by the St. Venant system
of partial differential equations. Due to the com
plexity of these equations (nonlinear PDE of the
hyperbolic type), direct solution of the full system
is feasible only by means of numerical techniques
such as the methods of characteristics (ABBOTT,
1966), finite differences (DRONKERS, 1964), or fi
nite elements (SCARLATOS, 1982). Closed-form so
lutions can be obtained only by using harmonic
analysis; i.e., linearizing the governing equations
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and decomposing the predominant tidal constit
uents into a series of periodic functions
(DRONKERS, 1964; PROUDMAN, 1957). One of the
most advantageous methods of harmonic analysis
is the one developed by Ippen and Harleman for
channels of infinite and/or finite length (lPPEN,
1966). Analytical solutions for the tidal wave mo
tion can be used to derive closed-form expressions
for the energy dissipation. For channels of finite
length, this can be accomplished by defining en
ergy dissipation as the difference between the en
ergy of the incident and reflected waves (IPPEN,
1966). Knowledge of the tidal energy dissipation
is useful for estimation of other important phys
ical parameters such as the relative diffusion D
and dispersion coefficient DL (IpPEN, 1966; SCAR~
LATOS and SINGH, 1985). Although the Ippen and
Harleman method has the advantages of simplic
ity, efficiency, and adequate accuracy, its main
drawback is the need for estimation of certain
harmonic parameters such as the dimensionless
parameter ~ and friction damping modulus J.L.

These quantities require actual field data for their
calibration and verification (IpPEN, 1966). SCAR
LATOS and SINGH (1987b) using computer simula
tion data presented a methodology for calibration
of the dimensionless parameter ~.

The purpose of this paper is to investigate the
behavior of tidal energy dissipation using the Ippen
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Figure 1. Schematic features of a tidal estuary.

A,t + (uA),. = q (1)

(uA),t + (u2A)" + gAH" = gA(So - Sf) + qu
(2)

ANALYSIS OF TIDAL EQUATIONS

Tidal wave propagation in one-dimensional es
tuaries can be accurately quantified by the St.
Venant system of equations written as

and Harleman harmonic analysis and computer
simulation results of the full St. Venant system
of equations. The energy dissipation is related to
certain macroscopic estuarine and tidal features
(e.g., water depth, wave amplitude, bottom fric
tion, current velocities, etc.). Energy dissipation
in well-mixed estuaries as related to diffusion and
dispersion processes is also discussed. The results
are compared with available experimental data
and existing theories.

(6)

(7)

(8)

(5)

Sf=Mu

17,< + hu = 0

where M = linearized friction factor defined by
Parsons (IpPEN, 1966) as

Similarly, Eq. (4) can be linearized by omitting
the nonlinear advective term and modifying the
energy gradient term as

M = [f/(31l')]u m / (gh) = [f/(31l')]u m/c2 (9)

where c = [g(h + 17)]112 :::: (gh)!? = phase velocity.
Combination of Eqs. (4), (6) and (7) yields the
Telegrapher's equation

where Urn = idealized maximum velocity that can
only be a spatial function; i.e., Urn = um(x).In terms
of the Darcy-Weisbach friction coefficient f, Eq.
(8) reads

where C = coefficient of friction, and {3 = numer
ical constant. For (3 = 0, the coefficient C equals
to the Chezy's coefficient of friction C,. The ab
solute value of the velocity in Eq. (5) is used to
maintain the directionality of the flow. The sys
tem of Eqs. (3) and (4) is nonlinear with respect
to the depended variables u(x, t) and 17(X, t). For
negligible bottom slope; i.e. So -e; 1 (h :::: con
stant) and small wave amplitude; i.e., h » 17 and
17/L -e; 1, where L = wave length, Eq. (3) is lin
earized as

where h = water depth below mean sea level
(MSL), and 17 = water surface elevation above (or
below) MSL. The energy gradient term can be
expressed as a quadratic velocity formula:

(3)

(4)

17,( + [u(h + 17)]" = 0

u, + uu, + g17" + gSf = 0

where A = wet-cross section area, u = mean ve
locity of the cross-section, q = lateral inflow, H
= water surface elevation measured from a ref
erence datum, So = bottom slope, Sf = energy
gradient, and g = acceleration due to gravity. The
subscripts x and t represent the independent vari
ables; i.e., longitudinal distance and time respec
tively. A comma in front of the subscripts denotes
partial differentiation with respect to the sub
script, e.g., A,( = aA/at. Equation (1) describes the
conservation of mass while Eq. (2) describes the
momentum balance. A schematic representation
of the estuarine system is given in Figure 1.

For prismatic estuaries without lateral inflow
and negligible side effects (i.e., unit width ap
proximation), Eqs. (1) and (2) can be reduced to
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or

(10)

(11)

that whenever IJ, ~ 0, sinh(21J,1e) ~ 0 and, therefore,
ED, = Ell ~ O. For small estuaries where 1.1L -e;

1, cos(2Kle) ~ O. In that case, Eq. (17) is reduced
to

Combination of Eqs. (19) and (20) yields the well
known Kolmogorov's length scale

where v = kinematic viscosity. Also, for these small
surviving eddies, the Reynolds number is of the
order of one, so that inertial forces are in balance
with viscous forces, i.e.,

Based on Eq. (21) which is valid only for fully
developed turbulence, BATCHELOR (1952) derived
the coefficient of relative diffusion D;;for a quasi
asymptotic state as

(22)

(21)

(20)

(19)

u/X "" V

E "" v(U//X)2

where ~ = proportionality constant of order one.
In case of solid particle suspensions, the charac
teristic length X is indicative of the particle dis
placement distance within the flow field. Exper
imental evidence of the validity of Eq. (22) was
provided by ORLOB (1961) for a two-dimensional
particle diffusion under homogeneous turbulence
conditions. MONIN and OZMIDOV (1985) confirmed
the 4/3-power law by performing oceanic exper
iments. Whenever Kolmogorov's length does not
change substantially, the relative diffusion coef-

ED = gCl102tanh(21J,1.)/(2hle) (18)

Knowledge of the energy dissipation rate is very
useful for understanding saline, thermal and solid
particle mixing processes in estuarine waters.

EDDY DIFFUSION AND LONGITUDINAL
DISPERSION

The flow field in estuarine waters is always tur
bulent. Under homogeneous turbulent condi
tions, energy is transferred from large eddies to
small eddies through vortex stretching and pair
ing (energy cascade) (LANDAHL and MOLLO
CHRISTENSEN, 1986). These small eddies are
controlled by viscosity and as suggested by Kol
mogorov, they are in a state of statistical equilib
rium (BATCHELOR, 1953). Assuming u' and X as
the characteristic velocity and length of these
small-scale eddies, the energy dissipation rate E
is approximated as

ED = gca2sinh(21J,1.)/(hl.) (16)

Eq. (15) can be rewritten as

ED = gCl102/sinh(2IJ,le)
x {[(COS(2Kl.) + cosh(2IJ,le)] (2hl.)} (17)

where 110 = wave amplitude at the ocean end of
the channel. From Eqs. (15) to (17), it is evident

M = (u/g)tan[2tan- 1(IJ,M]

= 2(U/g)IJ,K/(K2 - 1J,2) (14)

The total wave energy within the channel is
comprised of both kinetic and potential energy.
Assuming a channel of length L, the average en
ergy dissipation per unit mass Ell, between any
station x and the tidal boundary can be estimated
as the difference of the energy flux between the
incident and reflecting wave (IpPEN, 1966). Thus,

En, = gca2[sinh(2IJ,l.)

- sinh(2IJ,x)]/[h(1,. - x)] (15)

Based on Eq. (15), the energy dissipation per unit
mass for the entire channel Ell is obtained by
setting x = 0, i.e.,

Double subscript denotes a second partial deriv
ative with respect to that subscript, e.g., h.tt = aZh/
at2

• Assuming a sinusoidal disturbance at the ocean
end of the estuary and total reflection conditions
at the upstream end of the estuary, the solution
of Eq. (10) is given as

l1(X, t) = ale "'cos(o"t - KX)
+ e"'cos(ut + KX)] (12)

where a = tidal amplitude at the closed end, IJ, =

damping modulus, K = 21r1L = tidal wave number,
a = 21r(f = tidal frequency. Land T are, respec
tively, the tidal wave length and tidal period. Sub
stituting Eq. (12) into Eq. (6) and integrating with
respect to x, the tidal velocity u is defined as

u(x, t) = (ac!h)[KoI(K 2 + 1J,2) 1/2]

X [e-·'cos(ut - KX + a)

- e"'cos(ut + KX + a)] (13)

where Ko = (K2 - 1J,2) ,/2 = wave length corresponding
to frictionless bottom conditions, and a = phase
shift between tidal wave height and tidal current.
Based on the solutions given by Eqs. (12) and (13)
the linearized friction factor can be re-defined as
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Table 1. Data of study cases.

ficient is directly proportional to the one-third
power of the energy dissipation rate; i.e.,

where ~' = proportionality constant, In shallow,
well-mixed estuaries with regular configuration,
the assumption A "" constant seems to be a rea
sonable approximation since variability of the size
of the vertical eddies is restricted by the water
depth. For estuarine flows with a fully developed
turbulent boundary layer, the turbulent energy
dissipation E can be assumed to represent the
energy losses ED generated by bottom friction; i.e.,
E "" ED' In that case,

For one-dimensional parallel flows, the diffu
sion coefficient is replaced by the dispersion co
efficient DL • The dispersion coefficient incorpo
rates the mixing effects due to the vertical velocity
profile whenever an average along the depth ve
locity is used. Based on TAYLOR'S (1954) experi
ments in flow through pipes, and on the gener
alized analysis given by FISCHER et at. (1979), the
dispersion coefficient for tidal flow is given as

D L = 14.3(2g)t/2vRjC, = 7.15f'l2vR. (25)

where R. = tidal Reynold's number defined as

R. = 2(h + 1]) IU m 1/(1rv) (26)

Based on Eq. (5), the rate of energy dissipation
per unit mass of fluid within a tidal estuary can
be generally estimated as

ED = guS r = gu"/(C2H'+~) (27)

Combining Eqs. (25) to (27) and taking the time
averaged velocity over half a tidal cycle; i.e., U s v

= (2/1r)um , the dispersion coefficient reads

Dr, = 20.22gl/6[(h + 1])4I:l/C,l/"lEnl/:l (28)

As described in Eqs. (24) and (28), both the rel
ative diffusion and the dispersion coefficients are
proportional to the one-third power of the rate of
energy dissipation. These conclusions have been
verified experimentally (IPPEN, 1966).

9090 30 60

C
z

(m
l /2 Is)

6030
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Figure 2. Energy dissipation E" versus Chezy's coefficient of
friction Co'

METHODOLOGY AND STUDY CASES

The average energy dissipation per unit mass
in a tidal estuary can be estimated by means of
Eq. (18). Application of Eq. (18), however, re
quires tidal records at the estuarine mouth, geo
metric data along the estuary and the frictional
damping modulus u, The damping modulus J.l can
be obtained only through analysis of tidal data
from different stations within the estuary (IpPEN,
1966). For this study, a large amount of data was
generated by means of computer simulation using
a finite element model. The model used for sim
ulation is described in detail elsewhere (SCAR
LATOS, 1982; SCARLATOS and SINGH, 1987b). The
simulation results provided tidal wave heights 1](x,
t) and current velocities u(x, t) at a number of
stations. From this data, the damping modulus J.l

and the frictional wave number K were calibrated
according to the lppen-Harleman harmonic anal
ysis. The estuarine and tidal characteristics of the
cases studied were combinations of the quantities
given in Table 1. It should be noted, however,
that the estuarine length 1. never exceeded 20%
of the tidal wave length L.

A tidal period of 12 hours was used for all of
the simulations. The 12 hour period is close to
the period of the semi-diurnal tidal constituent
Ml (12.46 hours). Once the harmonic parameters
J.l and K were estimated, the average tidal energy
dissipation per unit mass En and the linearized
friction parameter M were obtained respectively
from Eqs. (18) and (14). Knowing the parameter
M, the idealized maximum velocity u., was de-

I~~
05 ~ ~

Mill

N~

~S!

uP 0.03
0.02 0 (',0075

1.= 75 km 'J areo '.= 90 km

(24)

(23)

45,60,75,90
10,20,30
30,45,60,75,90,105
0.025,0.050,0.075,0.100
12

Length of estuary, 1., in km
Depth of estuary, h, in meters
Chezy's coefficient, C" in m '/'/sec
Ratio ~,,/h

Tidal period, T, in hours

Journal of Coastal Research, Vol. 9, No, 4, 1993



Tidal Energy Dissipation 911

Table 2. Values of constants m" m, (E" = m,lO""" ").

I,. ~ 75 km, h ~ 20 m I,.~ 90 km, h ~ 20 m

rn j x 10'\ m:! x 10", m, x 10", m, x 10\

~,,/h in m'.1/sec ':l in sec/rn'" in m2/sec\ in sec/m!"
(I) (2) (3) (4) (5)

0.025 1.594 -12.126 1.988 -10.688
0.050 7.372 -10.375 7.179 ·6.761
0.075 13.669 -6.708 15.728 -5.176
0.100 21.679 -4.857 20.234 -2.521

fined, and based on the velocity Urn the tidal Reyn
olds number R, was estimated.

Eq. (25) indicates dependency of the dispersion
coefficient DL to the tidal Reynolds number R.
Thus, the behavior of R. was investigated with
respect to energy dissipation.

RESULTS AND DISCUSSION

Due to space limitations, only part of the sim
ulated data is presented in this paper. Indeed,
results are primarily given for two estuarine
lengths; i.e. 75 and 90 km for a mean depth of
20 m. However, the results presented in this paper
are similar to the results of the unreported sim
ulation cases. Any particular observation pertain
ing to the unreported cases is included, Tidal en
ergy dissipation as expressed by Eq, (18) depends
on linearized bottom frictional effects (JL). How
ever, since the damping modulus JL is used only
in harmonic analysis, it is interesting to see the
relation of ED versus the Chezy's coefficient C,. In
Figure 2, data plotted on a semi-log paper yields
the relation

(29)

where m, m, = dimensional coefficients. Coeffi
cient m, depends on the dimensionless ratio Tln/
H; i.e., m, = m, (TIn/H). On the other hand, changes

Table 3. Uniform, linearized and simulated maximum velocities.

Table 4. Ratio of urn/urn", for different wave heights and bot
tom friction.

I,. ~ 75 krn, h ~ 20 rn, T ~ 12 hr

1}(!I in
u",/um..

meters:
C" in m,n/ 0.50 1.00 1.50 2.00

sec: (0 (2) (3) (4)

:10 0,834 0.699 0.580 0.554
45 1.172 0.853 0.782 0.716
60 1.071 0.976 0.892 0.817
75 1.100 0.839 1.093 0.859
90 1.049 0.997 1.094 0.978

105 1.072 0.883 1.139 1.145

on coefficient m, (m, < 0) affect only slightly the
behavior of Eq. (29). Therefore, an average, con
stant value for m, can be used for a particular
estuary of constant length and depth. The values
of the coefficients m, and m, for the study cases
presented in Figure 2 are given in Table 2. The
negative slope of the E" versus C, curves is in
qualitative agreement with the energy dissipation
per unit mass under steady-state uniform flow
conditions defined as

(30)

where U = uniform velocity. Equation (30) is sim
ilar to Eq. (27) with the only difference based on
the interpretation of the velocity; i.e., U versus u
or Urn' The values of the uniform velocity U ob
tained from Eq. (30) and the linearized maximum
velocity Urn as obtained from Eqs. (8) and (14) are
presented in a number of cases in Table 3. In the
same table, the maximum velocity U rnax as com
puted by the numerical simulations is also pro
vided. By looking at the results, it is evident that
the corresponding uniform velocity U is always
smaller than either the linearized velocity Urn or
the actual maximum velocity U rnax' This is in

i, h ~" C, E" x 10' U urn umax

[krn] [m] lm] [m'N/sec] [m'/sec"] [m/sec] [rn/sec] [rn/sec]
(I) (2) (3) (4) (5) (6) (7) (8)

45 10 0.50 60 0.088 0.318 0.386 0.386
45 20 2.00 45 0.480 0.271 0.358 0.679
60 10 0.25 30 0.049 0.165 0.180 0.250
60 20 1.50 90 0.225 0.719 1.012 0.741
75 20 2.00 45 1.400 0.834 0.859 1.199
75 30 2.25 60 0.550 0.357 1.171 0.952
90 20 1.00 30 0.420 0.426 0.382 0.528
90 30 0.75 75 0.017 0.308 0.358 0.393
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Table 5. Values of constants n., n, (M ~ n,(ryJhJn,J.

Once the velocity Urn is determined, the tidal
Reynolds number R,. can be estimated by using
Eq. (26). In Figure 4, the energy dissipation per
unit mass Ell is plotted on a log-log paper against
the tidal Reynolds number. From this figure, it is
evident that

n, x 10', n, x 10',
Cz, in m l ':!/ in sec/rn n. in sec/rn n .

sec: (1) (2) (3) (4)

:1O 7.819 0.466 6.319 0.:364
4fi 6.921 0.577 5.166 0.:384
60 7.580 0.781 s.oss 0.445
7fl 7.149 0.900 4.:1f,2 0.466
90 7.500 1.000 4.206 0.510

105 9.958 1.192 :1.800 0.532

3·0

,.~
~~2.0 h e 20m

10

w~
E
'Vi

If)
05S'

x
:::;:

03 • C " 60z
0.2 (ml12/s) • 75

• 90
,105

0.1
0.Q2 005 010 0.02 0·05 0·10

'l\o/h

Figure 3. Linearized friction factor M versus dimensionless
wave amplitude ryJh.

I, ~ 75 km, h ~ 20 m I, ~ 90 km. h = 10 m

where s, Sz = constants. Equation (33) is in agree
ment with Eq. (29). Combination of Eqs, (25) and
(32) yields

(33)

(32)

where a, = proportionality constant. Eq. (34) ver
ifies Eq. (28) which was derived by analytical
means. Experimental verification of Eq. (34) was
documented by ORLOB (1961). Physical interpre
tation of Eqs, (34) and (24) implies that for a
homogeneous turbulent field, the scale of turbu
lent eddies are proportional to the estuarine depth.
Inaccuracies resulting from harmonic analysis ap
plications were observed in cases where the es
tuarine length exceeded one-fourth of the tidal
wave length. The reason for the inaccuracies was
due to excessive frictional damping. In these cases,
the wave amplitude at the closed end was not
maximum (SCARLATOS and SINGH, 1985, 1987b) so
the harmonic analysis was not applicable.

where r, = dimensional constant and r, = dimen
sionless exponent. The values of the exponent r,
for all of the simulated cases were 2.8 < r, < 3.2,
with an average value of 3.0. Similar results were
found in the experiment data reported by Ippen
and Harleman (IpP~~N, 1966). A straight line is
obtained by plotting constant r, against Chezy's
coefficient C, on a log-log paper (Figure 5). There
fore,

(31)

where n, = proportionality constant with the same
units as the M (s/m), and n, = dimensionless ex
ponent. The values of the constants n, and n, for
the cases presented in Figure 3, are listed in Table
5. It is generally evident from the data that n,
depends on bottom friction; i.e., n, = n,(C,). Con
stant n, does not seem to follow any recognizable
pattern.

agreement with experimental data reported by
Ippen and Harleman (lPPEN, 1966). Indeed, in
their test No. 28, U = 0.851 m/sec, while Urn =
1.834 m/sec. In Table 4, the values of u..Juma, are
given for an estuary of length I = 75 km and depth
h = 20 m. From this table, some trends can be
identified for the ratio um/uma'. For example, the
ratio generally increases with increasing Chezy's
number (decreasing roughness) and decreases with
increasing tidal amplitude. Generally, the range
of um/um., was found to be 0.3 < u..Ju mn, < 3.0.
Since Urn is being used to estimate the linearized
friction parameter M, it is clear that measured
maximum velocities uma' cannot be deliberately
used in place of Urn'

The computer simulations revealed that 0 <
,.,,/K < 0.637, and 0 < 2 tan '(,.,,/K) < 1.134 < 1f/2.
Therefore, from Eq. (14) it can be seen that the
linearized friction factor M follows monotonically
the behavior of ,.,,/K. Plots of M versus 1)o/h and C,
on a log-log scale for different study cases are
given in Figure 3. From Figure 3, the following
relation is obtained

Journal of Coastal Research, Vol. 9, No.4, 199:1
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CONCLUSIONS

A large number of estuaries under co-oscillating
tidal conditions were studied by means of the
Ippen and Harleman's harmonic analysis. The data
required for calibration of the harmonic param
eters are generated by computer simulation using
the full St. Venant system of equations. Emphasis
was placed on the energy dissipation as related
to various physical parameters.

The conclusions of the study are as follows:

(a) Energy dissipation is related exponentially to
Chezy's coefficient of friction (Eq. 29). Since
the exponent is a negative number, the result
is in qualitative agreement with energy dis
sipation under steady-state, uniform flow
conditions. The proportionality constant de
pends on the ratio l1,Jh (Table 2).

(b) The same amount of energy dissipation is pro
duced with much less velocity in a uniform
steady state than in tidal flow; i.e., U < Um"x
(Table 3).

(c) The idealized maximum velocity u., intro
duced by Parsons is different than the actual
maximum velocity Um"x' The range of varia
tion is 0.3 < um/un",x < 3.0.

(d) The linearized frictional factor M is exponen
tially related to the ratio 11../h (Eq. 31). The
exponent is proportional to bottom friction
(Table 5).

(e) Energy dissipation is exponentially propor-
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Notation

The following symbols are used in this paper:

A wet-cross section area, [1.' j
a - tidal amplitude at the closed end, [L]
a, --"- proportionality constant, [L' II
C coefficient of friction, [UI I' 'T I J

phase velocity, [L1" 'J
C, Chezv's coefficients of friction, [LI2T 'l
J1~ -'-- rate of energy dissipation, [L'T 'J
D" relative diffusion, [1./1" I j
D , dispersion coefficient, [l./T I]
Ell energy dissipation per unit mass, [L'1" \]
Ell! energy dissipation for uniform, steady-state How, [L~,T
E1h energy flux between incident and reflecting wave, [LiT

Darcy-Weisbach friction [ I
g acceleration due to gravity, [L1" '1
H water surface elevation measured from a reference da-

tum, [L]
h - water depth below mean sea level, [LJ
L tidal wave length, [L]
I.. estuarine length, [L]
M - linearized friction factor, IL 1'1'1
m, dimensional proportionality constant, [L'T 'J
m., dimensional exponent, [1. I '1"1
n , dimensional proportionality constant, IL ITj
He - dimensionless exponent, [ ]
q lateral inflow, [Iff' I]

R,. tidal Reynold's number, [ 1
r , dimensional proportionality constant, [L2T
r dimensionless exponent, [ ]
Sf energy gradient, [ -- J

So bottom slope, [ - I
SI dimensional proportionality constant, [1..-'1" \I
s. dimensionless exponent, [L I '1"]
t -r- time, [1"]
U uniform velocity, [LT 1]
U mean velocity of the cross-section, [LT 11
till' - time-averaged velocity over half tidal cycle, [L1" 1 J

U,,, idealized maximum velocity, [L1" I]
u 1, ,, ,, actual maximum velocity, [LT I]
u' characteristic velocity of energy dissipating eddies, [LT 11
x longitudinal distance, [1..]

Greek letters:
n phase shift between tidal wave height and tidal current,

{-1

tJ numerical constant, [- ]
proportionality constant, [ -I
proportionality constant, [Ll "~I

water surface elevation above (or below) mean sea level,

lLJ
1111 - wave amplitude at the ocean end of the channel, [L]

wave number, rt. I]

Ko frictionless wave number, [L I]

A Kolmogorov's length scale, [1..]
u friction damping modulus, [L II

kinematic viscosity, [I/T I]

(J tidal frequency, [T 1 J

¢ dimensionless parameter, r- ]
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