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ABSTRACT I
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Coastal Research, 8(4), 797-812. Fort Lauderdale (Florida), ISSN 0749-0208.

Both from an ecological and geomorphological stand point, studies on modern rocky shores are common
place in the scientific literature. Published studies on ancient rocky shores through geologic time are still
very rare by comparison. Review of the literature, however, shows the topic to be a fast growing discipline
of potentially broad interest. The 155 research articles which comprise this annotated bibliography
illustrate many different applications for data from ancient rocky shores. They include: paleogeographic
mapping, bench mark for associated paleontological and sedimentological zonations, calculation of coastal
uplift or subsidence rates, test for eustatic sea-level changes, comparative geomorphology of ancient rocky
coasts, and development of the paleobiology and evolutionary history of rocky-shore biotas.

One of the earliest thinkers about ancient rocky shores was Benoit de Maillet, whose observations were
published posthumously in 1748. During the late 18th, the 19th, and the early 20th centuries, work was
refocused on the concept of geological unconformities. Major advancements were made by Antoine La-
voisier, James Hutton, John Playfair, Henry De La Beche, Andrew Ramsay, and Amadeus Grabau.

The first journal articles devoted to analysis of specific geological sites did not appear until after the
turn of the 20th century. From 1905 to 1954, research papers were published sporadically at an average
rate of 0.3/year. From 1955 to 1979, the flow of research quickened, with an average rate of 2.2 papers/
year. The following five-year period 1980-1984 saw a doubling in rate to 4.6 papers/year. The rate doubled
again to 9.4 papers/year during 1985-1989. Thus, the three consecutive half decades from 1975 to 1989
witnessed exponential growth in terms of published research. Examples of rocky shores from all geological
periods in the Phanerozoic are represented by articles in the bibliography; the oldest known rocky shore

from the Precambrian is 3.3-3.5 billion years old.

ADDITIONAL INDEX WORDS: Unconformities, basal conglomerates, littoral zone, coastal terraces,

wave-cut platforms.

INTRODUCTION

The tremendous disparity between what is
known about modern as opposed to ancient rocky
shores may be encapsuled by the contents of two
currently popular textbooks written for two very
different audiences. With a long tradition begin-
ning in 1939, the latest edition of Between Pacific
Tides (RICKETTS et al., 1985, p. 15) continues to
advise young marine biologists that “From the
standpoint of the field observer, the rocky tide
flats of the protected outer coast are the most
important of all seashore regions.” Interpretation
of the past through the familiarity of the present
is a practice common among geologists. Young
geologists, however, find little mention of rocky
shores in the latest edition of Sedimentary En-
vironments of Facies (READING, 1986). For that
matter, no other contemporary textbook on sed-
imentology or stratigraphy will admit to the pres-
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ervation of rocky-shore environments in the geo-
logic record.

The pedagogic vacuum with respect to this top-
ic in geology was not always so airtight. In one of
the first great textbooks on stratigraphy, GRABAU
(1913, pp. 646-651) devoted sections under the
heading of “the littoral district and its deposits”
to examples of “rocky cliff facies” and associated
boulder beds. He later introduced the term “shan-
tung” for a monadnock-like product of erosion
drowned by sediments (GraBAU, 1940, p. 50). The
name was derived from Shantung Province in
China, where “rocky eminences” protrude from
the flood plain of the Yellow River near its con-
fluence with the sea. As part of his definition,
GRABAU (1940, p. 50) drew clear parallels to rocky
shores of Cambrian age: “Baraboo ridge of Wis-
consin is an example of a ‘shantung’ which has
now been partly re-exhumed, and Caradoc Moun-
tain [the Longmynd] of Shropshire appears to
represent another.”

Other terms have been devised for ancient rocky
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shores or their biological habitat. In his study of
Miocene rocky shores, Rabpwanski (1970, p. 373)
used the name “lithophocoenose” for an assem-
blage of traces left by littoral, rock-boring organ-
isms such as sponges, polychaets, bivalves, cirri-
peds, and echinoids. He also employed the name
“lithophotope” to designate this special habitat.
More recently, the word “paleorupicost” was
coined for ancient rocky shores (Jounson, 1988a).

Whether they are called shantungs, lithopho-
topes, or paleorupicosts, the geological record of
ancient rocky shores is one far more rich in ex-
amples and useful applications than generally
perceived by geologists, paleontologists, physical
geographers, and marine biologists. The purpose
of this contribution is two fold. The following short
paper is meant to outline the history of research
on ancient rocky shores spanning the better part
of three centuries, with emphasis on the related
concept of unconformities. The appended bibli-
ography with its annotations, is intended to il-
lustrate the many interesting applications ancient
rocky shores may be put to in solving problems
in historical geology. The first brief bibliographies
on this topic were given by JoHNson (1988a,b).
The present bibliography represents a significant
expansion by more than 200%.

THE IMPORTANCE OF
UNCONFORMITIES

The concept of the geological unconformity has
a long intellectual history, notably traced by
ToMKEIEFF (1962). The word owes its origin to
the observation that some adjoining rock layers
do not conform with one another, but show pat-
terns of “deviating bedding.” The classic angular
unconformity discovered by James Hutton in 1788
at Siccar Point in Scotland with its two contrary
sets of bedding, comes to mind immediately. The
concept grew, of course, to become much broader.
Other styles include sedimentary rocks in con-
junction with igneous or metamorphic rocks, none
of which necessarily exhibit signs of bedding. Some
unconformities are very limited in geographic
scale; others are vastly interregional (SCHLEE,
1984). What they all share in common is the di-
mension of a geological time gap: the ages of the
rocks brought into association with one another
are often substantially different.

All ancient rocky shores are represented in the
geologic record by unconformities, but not all un-
" conformities are indicative of ancient rocky shores.
This means only that some unconformities form

in littoral environments as the result of rocky-
shore degradation, but many others form in sub-
aerial, fresh water, or submarine environments.
While the broader concept of the unconformity
has to do with missing geological time, the im-
portant aspect of ecological time in the late pre-
burial development of unconformity surfaces is
easily lost sight of by geologists today. Nowhere
is this aspect of ecological time more striking than
with reference to rocky shores, a realization not
lost on the earliest workers who pondered uncon-
formities.

The Neptunist Tradition

A universal ocean with a secular drop in sea
level was employed to account for the aqueous
origin of virtually all rocks by a wide range of
observers in the 18th and early 19th centuries.
This neptunian tradition was given great impetus
by Benoit de Maillet (1656-1738), author of a
philosophical discourse called Telliamed (1748,
1968 translation). De Maillet had served as a
French consul in Egypt and his book is filled with
many references to places in the Sinai Peninsula,
North Africa, and Europe. One of the main theses
in the Telliamed is the cannibalization of older
mountains to form progressively newer moun-
tains, all in the context of coastal erosion. It was
supposed by De Maillet that the oldest primitive
rocks were exposed subaerially as sea level started
to fall. With exposure came coastal erosion around
the margins of the primary mountains. Aggra-
dation of shelf sediments from these mountains
underwent lithification. As sea level continued to
fall, these secondary rocks were, in turn, exposed
subaerially as mountains and submitted to coastal
erosion leading to another aggradational cycle.

Expressed diagrammatically (Figure 1), this
system of logic lends itself to an orderly succession
of strata with naturally unconformable bound-
aries. As reviewed by ToMKEIEFF (1962, p. 386-
387), the subsequent school of neptunists includ-
ed many 18th century figures, most notably Abra-
ham Werner in Silesia. In some cases, the de-
scriptive language used by the early neptunists
approximates the definition of an angular uncon-
formity. In fact, it was the early 19th century
neptunist Robert Jameson, a former student of
Werner’s at the Freiberg School of Mines and
subsequently professor of geology at Edinburgh
University, who coined the term “unconformity”
in 1808. This was Jameson’s best English equiv-
alent for the German term “abweichende Lage-
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Figure 1.
and tertiary mountains through coastal erosion (modified from Tomkeieff, 1962, p. 388, figure 2).
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Neptunist concept of unconformities due to a secular fall in sea level stimulating the recycling of primary, secondary,

rung,” which literally translated means “deviat-
ing bedding” (ToMKEIEFF (1962, pp. 402-405).
De Maillet was not only one of the founders of
the neptunist tradition but he also had an un-
common eye for ecological detail. He attributed
step-like “amphitheaters” preserved on the flanks
of mountains to the serial development rocky-
shore terraces carved by retreating seas. Most
intriguing of all, he clearly cited evidence for bi-
ological activity on the steep faces of such am-
phitheaters (DE MAILLET, 1968, p. 70) including:

Corals which the sea had left attached there after
having given birth to them and nourished them in
the same places where they were petrified; and
borings of sea-worms that live only in marine wa-
ter, which occurred in many rocks.

It is likely that De Maillet was the earliest to
observe an ancient rocky shoreline, to compre-
hend what he saw, and to record it. In his 1968
notes on the Telliamed, Albert Carozzi casts doubt
on the coastal origin of some ‘“amphitheaters”
identified geographically by De Maillet. The pa-
leontological references, however, are very cred-
itable. De Maillet gave no hint where the corals
and borings were observed but they might easily
have been seen by him near Cairo (see AIGNER,
1983, under Quaternary in the appended bibli-
ography).

Basal conglomerates are an important feature
common to many unconformities. In theory at
least, DE MAILLET (1968, p. 72) grasped the as-
sociation of some conglomerate beds in the rock
record with processes “performed by the sea on
its coasts where it could freely roll boulders and
pebbles.” It was another Frenchman better known
as a chemist, Antoine Lavoisier (1743-1794), who
contributed important refinements in this con-
text. LAvoISIER (1789, 1939 translation) used the
term “littoral” and he clearly described the sea-

ward fining of sediments off rocky shores. Littoral
beds incorporated into the rock record were given
to include “the coarsest materials, like the cob-
bles”; pelagic beds formed at “a rather great dis-
tance from the coast and at such a depth that the
movement of the sea is almost nil” were given to
include “the lightest materials, the most finely
divided like clay” (LAvOISIER, 1939, p. 128). La-
voisier’s original work included an idealized cross
section from a modern rocky shore in Normandy,
but his intention was to demonstrate how the sed-
imentological “order and uniformity” inherent in
such a profile might be expressed in the rock rec-
ord.

The Plutonist Tradition

In contrast to the neptunist tradition, many
field observers during the late 18th and early 19th
centuries saw a far more important role for ma-
terials of an igneous origin in the rock record.
James Hutton of Scotland was the champion of
this plutonist tradition and he remains best re-
membered today as the founding advocate of the
rock cycle. The notion of a secular drop in sea
level so central to the neptunist tradition, is ob-
viated by the rock cycle, with its recurrent pattern
of subaerial denudation, aqueous deposition, de-
formation, and uplift to renewed subaerial con-
ditions. All rock types, whether sedimentary, ig-
neous, or metamorphic have a role to play in this
cycle. Unconformities were of fundamental im-
portance to both the neptunist and the plutonist
traditions, but the latter relied on the tremendous
physical forces associated with the emplacement
of igneous rocks to affect uplift and subsequent
erosion.

As noted by ToMKEIEFF, (1962, p. 397), Hutton
set out to discover field evidence for an uncon-
formity in support of his Theory of the Earth
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(1795) after he had already presented his main
thesis on the rock cycle before the Royal Society
of Edinburgh in 1785. It was in 1787 that he found
his first unconformity on the Isle of Arran; later
the same year he found another unconformity on
the banks of the Tweed near Jedburgh; and in
1788 he discovered the spectacular unconformity
at Siccar Point. Only the Jedburgh unconformity
was illustrated in Hurton (1795, plate III), al-
though a drawing of the unconformity at Siccar
Point executed by James Hall in 1788 was prob-
ably intended for publication (CrAIG et al., 1978).

The Siccar Point locality is exposed in such a
way that nearly vertical beds of graywacke [Si-
lurian] may be observed virtually in three dimen-
sions penetrating a thin cover of slightly dipping
rocks belonging to the Old Red Sandstone [De-
vonian]. The truncated graywackes were not erod-
ed flat as at Jedburgh, but retain considerable
topographic relief. It was believed by Hutton that
the older more deformed rocks were under attack
by the sea during deposition of the younger sand-
stone. In describing the sandstone, he wrote
(HuTtToON, 1795, vol. I, pp. 459-460):

Here we found the most distinct marks of strata
of sand modified by moving water. It is no other
than that which we every day observe upon the
sands of our own shore, when the sea has ebbed
and left them in a waved figure, which cannot be
mistaken.

As we understand it today, the Old Red Sandstone
was essentially fluvial in nature. Thus, Siccar Point
does not represent an ancient rocky shore.
Following Hutton’s death, his friend John Play-
fair wrote both a more accessible account of Hut-
ton’s theories as well as a biographical sketch of
Hutton’s life. In the Illustrations of the Hutton-
ian Theory of the Earth, PLAYFAIR (1802, pp. 212-
219) said no more about Siccar Point but de-
scribed several new localities throughout the Brit-
ish Isles where angular unconformities could be
observed. At least two localities in Yorkshire in-
volve strata of flat limestone [Carboniferous]
overlying vertical graywacke [Silurian]. These
certainly represent a genuine marine onlap, but
no flavor of ecological detail was provided by Play-
fair. It is in his account of Hutton’s life and his
description of the discovery at Siccar Point that
PLAYFAIR (1805, p. 73) offered his eyewitness com-
mentary on how giddy he felt gazing across the
unconformity “so far into the abyss of time.” The

awe all geologists feel for unconformities as time
gaps takes its cue from this famous passage.

Professionalism and Quantification

Hutton and Playfair had no time scale with
which to gauge the length of time omitted by their
unconformities. They did not know that the un-
conformable rocks at Siccar Point were Silurian
and Devonian in age, because that terminology
had not yet been invented. Other than a privileged
few with university or mining academy posts, most
thinkers on problems of natural philosophy were
amateur. Development of the geological time scale
was something which transpired during the tran-
sition to a professional class of geologists. The
value of quantification in terms of geological map-
ping and other kinds of measurements was some-
thing newly demonstrated with the staffing of geo-
logical surveys under government sponsorship
toward the middle of the 19th century. The role
which might be played by a scholarly amateyr was
rapidly diminishing in importance by this period.

An odd piece of work which appeared during
this time of transition was Ancient Sea-Margins
as Memorials of Changes in the Relative Level
of Sea and Land, authored by CHaAMBERS (1848).
A successful publisher, Robert Chambers (1802—
1871), was the quintessential amateur interested
in natural science. He also fully appreciated the
value of systematic measurements. Much time and
private expense were devoted by him to surveying
and correlating terrace levels throughout many
parts of the British Isles. He was convinced that
terraces followed persistent elevations produced
by stages in falling sea level. In effect, Chambers
set out to quantify some of the neptunian con-
cepts more vaguely treated by De Maillet with his
step-like sets of “amphitheaters” a century be-
fore. A special feature of the book is a fold-out
map of the Lochaber region in Scotland tracing
the “shelves” or parallel roads around Glen Roy.
Chambers and others, including DArRwIN (1839),
believed these terraces were former coastal de-
posits influenced by marine flooding. Much to
Darwin’s later embarrassment, these features were
proven to be the deposits of glacial lakes, instead.
Although his focus was mainly on comparatively
young, unconsolidated shorelines, CHAMBERS
(1848, pp. 71-73) also described what he believed
were elevated rocky shores, sea arches, and sea
caves carved in the Old Red Sandstone at Cove-
sea.

The first memoir of the Geological Survey of
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FORMATION OF ROCKS IN SOUTII WALES

Figure 2. Reproduction of figures 43 and 44 from DE rLa BEcHE (1846), showing one of the earliest illustrations of borings at an
unconformity surface. The borings are of Jurassic age in Carboniferous limestone; the smaller figure shows the shell of a boring

bivalve.

Great Britain was published in 1846, under the
directorship of Henry T. De La Beche (1796-1855).
The director belonged to the new breed of pro-
fessional geologists and he initiated the memoirs
to further elucidate the progress of the survey’s
mapping projects. The lead report from the first
volume was authored by DE LA BecHE (1846) as
asummary of the geology in Wales along the Bris-
tol Channel and the Mendip Hills of nearby En-
gland. A Jurassic-Carboniferous unconformity in-
volving limestone on limestone is one of the most
prominent features in these regions and most of
the report is devoted to this subject. In some cases,
considerable topographic relief is expressed by
the truncated surface of inclined Carboniferous
strata. The gradational accumulation of a basal
Jurassic conglomerate on such a surface was de-
scribed as “beach-like” by De LA BeEcHE (1846,
pp. 246-247, fig. 26). Considerable attention was

paid to fossils associated with the surface of un-
conformity, such as encrusting oysters. Among
the earliest illustrations of an unconformity sur-
face riddled by organic borings are those intro-
duced by DE LA BECHE (1846, p. 290, Figures 43
and 44), and here reproduced as Figure 2.

The second report in the first volume of the
survey memoirs was authored by Andrew C. Ram-
say (1814-1891), who eventually became the 3rd
director of the British survey. In this landmark
paper, the novel concept of a “plain of marine
denudation” was introduced and quantified on
the basis of restored geological cross sections from
the survey’s mapping projects in southern Wales
and adjacent England. Ramsay (1846) calculated
that thousands of feet of strata were stripped away
in places, and argued that “the ordinary destruc-
tive action of the sea on coasts” was the major
agent of denudation. Although he was criticized
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Figure 3. Histogram showing the annual number of publications on ancient rocky shores from 1950-1991.

by Charles Darwin and Charles Lyell for mini-
mizing the effect of tectonic uplift and subaerial
denudation, he knew an ancient rocky shore when
he saw one. With typical aplomb, an entry in
Ramsay’s personal journal from 1846 reads: “Out
seeing the unconformable Caradocs on the Long-
mynd; splendid old coast; never more charmed”
(GEIKIE, 1895, p. 80).

The work of Amadeus William Grabau (1870-
1946) was mentioned at the beginning of this re-
view. Like Andrew Ramsay, he knew an ancient
rocky shore when he saw one. He, too, was familiar
with the Longmynd of Shropshire (GraBau, 1940,
p- 50) and many other ancient rocky shores. Much
of Grabau’s international career was devoted to
the study of facies relationships and unconfor-
mities. While a professor at Columbia University,
an important paper on patterns of “sedimentary
overlap” was written by GRaBaU (1906). Therein,
he showed the expected diachronistic pattern of
facies deposition resulting from marine regression
and transgression, with the separation in time of

such events by a widening hiatus. An unconfor-
mity-bound unit is the expression commonly used
today for this pattern. Association with ancient
rocky shores is not a necessary characteristic of
unconformity-bound units, but GraBau (1906)
described several examples drawn from the re-
lationship of Cambrian strata to basement rocks
in North America. A particularly good example
from eastern Newfoundland is a Cambrian rocky
shore on Precambrian gneiss, the progressive
burial of which is illustrated over considerable
topographic relief by means of a marker bed (Gra-
BAU, 1906, p. 572, Figure 2). Here was a “shan-
tung” according to his later definition (GraBAU,
1940).

During the tenure of De La Beche and Ramsay,
the dating of unconformities in the pursuit of re-
gional geology began to delimit the episodic in-
teraction of the rock cycle with respect to sea-
level change. Grabau’s greatest achievement
during the second half of his career as a professor
at Peking University in China was a massive dis-
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tillation of global data on unconformities leading
to the first comprehensive sea-level history for
Phanerozoic time. The final summary of this work
was presented in his 1940 book The Rhythm of
the Ages. Imperfect as it was, Grabau’s quanti-
fication of a 30-million-year cycle in eustatic sea-
level fluctuations represents a major intellectual
end point to De Maillet’s 1748 Telliamed and the
intervening body of thought on unconformities as
time gaps in the geological record.

BIBLIOGRAPHIC CONSTRAINTS

After the chance discovery in 1984 and subse-
quent study of an unusually well preserved Or-
dovician rocky shore on the coast of Manitoba’s
Hudson Bay (Jonnson et al., 1988), I was chal-
lenged by my students to find other examples in
the published literature. Thus began my interest
in the bibliography of ancient rocky shores. A
variety of criteria for the recognition of ancient
rocky shores may be used, involving physical fea-
tures such as wave-cut platforms and tidal notch-
es or biological evidence such as the preservation
of typical rough-water life forms (JoHNSON, 1988a).
Basal conglomerates with rounded and graded
clasts matching the same lithology or lithologies
underlying an unconformity surface with some
topographic relief are likely candidates for an an-
cient rocky-shore deposit, but not exclusively.
Other superficially similar deposits may include
scree-alluvial fan deposits, fluvial gorge deposits,
glaciogenic boulder beds, fault-scarp breccias, in-
traformational conglomerates, and fan-channel
conglomerates (JOHNSON, 1988a).

Aside from my own field work in Canada and
Mexico, it has been my good fortune to visit and
verify some of the other localities described as
ancient rocky shores in Australia, England, Swe-
den, Germany, Czechoslovakia, Poland, and Egypt.
The primary test for admission of a reference to
the bibliography, however, was an interpretation
of littoral conditions or some other key criteria
by the original author(s). This was not automatic,
as some references were rejected because other
authors were able to satisfactorily dispute the
original claim. Nonetheless, some of the refer-
ences included in the bibliography still are con-
troversial. Limestone ramps as unconformity sur-
faces, for example, are especially problematic.
Sometimes the same examples are interpreted as
due strictly to submarine conditions (Rosg, 1970)
or “littoral abrasion platforms” (LEwy, 1985).

Although the oldest reference cited is from the

Number of reports Geological Number of
with fossil data syslems locality reporls
li B8 Quartlernary 18 j
| 22 Neogene 27 j
l 10 Paleogene 14 l
‘ 22 Crelaceous 27 l
S Jurassic 9 ‘
0 Triassic 2 l
1 Permian 6 J
\ | Carboniferous 3 I
l 4 Devenian S L
l 1 Silurian 7 l
[ 12 Ordovician 14 |
I 4 Cambrian 16 —I
| 2 Precambrian 7 T
92 Totals 155

Figure 4. Histogram showing the variation in numbers of lo-
cality reports on ancient rocky shores with and without accom-
panying paleontological data, by geological system or period.

work of DE LA BECHE (1846), journal articles on
ancient rocky shores did not appear with much
regularity until after the turn of the 20th century.
Between 1905 and 1954, the rate of publication
was a sporadic 0.3 papers/year. From 1956 through
1991, publication has been continuous from year
to year and the rate of publication has greatly
increased (Figure 3). From 1955 to 1979, the av-
erage rate of publication was 2.2 papers/year. A
doubling in rate to 4.6 papers/year occurred dur-
ing the five year-period of 1980-1984. In the next
five-year period from 1985 to 1989, the rate dou-
bled again to 9.6 papers/year. Thus, recent years
have witnessed an exponential growth in research
activity on ancient rocky shores.

Out of the 155 articles in the bibliography, 59
are concerned with the Cenozoic, 38 with the Me-
sozoic, 51 with the Paleozoic, and 7 with the Pre-
cambrian. No geological period in the Phanero-
zoic is without examples of rocky shores, but the
Triassic and Carboniferous are the most poorly
represented (Figure 4). The best represented in-
tervals are the Neogene and the Cretaceous pe-
riods with 27 entries each. From the Precambrian,
the oldest known rocky shore dates between 3.3
and 3.5 billion years old. Over 60% of the refer-
ences include paleontological data (Figure 4).

Most of the references in the bibliography are
annotated to indicate a diversity of applications.
Practical applications are derived from the fact
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that an ancient rocky shore marks the most un-
ambiguous position of the land-sea boundary for
a given point in space and time. The various au-
thors represented have utilized ancient rocky
shores for paleogeographic mapping, as bench
marks for the evaluation of associated paleonto-
logical or sedimentological zonations related to
hydrology, for making calculations of coastal up-
lift or subsidence rates, and as a test for confor-
mity to eustatic sea-level changes. Their work also
reflects an interest in the paleobiology of rocky-
shore organisms and the community evolution of
rocky-shore biotas through time.

CONCLUSIONS

The history of thought on the nature and sig-
nificance of geological unconformities surveyed
herein, shows that ancient rocky shores figured
importantly in long-standing debates over the in-
teraction of changing sea levels and the tectonics
of the rock cycle. Issues written about or by De
Maillet, Lavoisier, Hutton, De La Beche, Ramsay,
Grabau, and others from 1748 to 1940, reflect a
growing sophistication in some of the applications
made of ancient rocky shores. As geologists and
paleontologists take better account of the ecolog-
ical time recorded by rocky-shore unconformities
as opposed to the geological time lost, we stand
to learn much more about the evolution of this
unique environment and its biota through time.

Various excuses have been offered for the sup-
posed poor showing of ancient rocky shore envi-
ronments in the rock and fossil record. They range
from the flat-out denial that sediments can ac-
cumulate in high-energy, erosive settings to the
suggestion that rocky-shore biotas did not appear
until a comparatively late time, to the proposal
that concentration of rocky shores in tectonically
active zones makes them vulnerable to eventual
distruction (JoHNSON, 1988a,b). The main object
of the accompanying bibliography is to indicate
that ancient rocky shores are really more over-
looked than rare and that much stands to be gained
through their careful, systematic study.
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