RESPONSE OF TOMATOES TO SEAWEED BASED NUTRIENT SPRAYS¹

A. A. CSIZINSZKY IFAS, University of Florida, Gulf Coast Research & Education Center, 5007-60th Street East, Bradenton, FL 34203

Additional index words. Lycopersicon esculentum, full bed mulch, early yield, fruit size.

Abstract. Staked tomatoes (Lycopersicon esculentum Mill.) cvs. Hayslip and Sunny, were treated with seaweed based nutrient sprays code named B10, BM86, and MZ63 (Goemar International Corporation). Foliar sprays were applied at different rates and frequencies in 1983 spring and fall and in 1984 spring. Best results were obtained when the products were applied at 34 fl oz/acre in 50 to 100 gal/acre H₂O, depending on plant size, and sprayed 4 times during the season: I week after transplanting, then 3 more times at 2-week intervals beginning at first bloom. In fall 1983, 2 applications of MZ63, followed by 2 applications of BM86 sprays, increased (P \leq 0.05) early yield of 5 x 6 fruit by 2270 lb./acre (99%), and combined 5 x 6 and 6 x 6 yield by 2722 lb./acre (62%) over control. BM86 and MZ63 treatments alone also increased combined 5 x 6 and 6 x 6 early yields. Spray effects were equally great on the early yields of both cultivars, but total yields of 'Sunny' were higher with seaweed sprays than yields of 'Hayslip.' In a commercial field, in 1983 fall, MZ63 and BM86 sequential sprays on 'Sunny' tomatoes increased ($P \le 0.01$) early yield of 5 x 6 fruit by 3870 lb./acre (38%), 6 x 6 yield by 3307 lb./acre (99%), and marketable yield by 12,380 lb./acre (74%) over control. In spring 1984 with 'Sunny', MZ63 sprays alone increased early and total yields. In the MZ63 treated plots for the season, 'Sunny' yielded 10,200 lb./acre (72%) more 5 x 6, 13,850 lb./acre (58%) more 6 x 6 and 13,150 lb./acre (44%) more marketable grade fruit than in control plots. With 'Hayslip,' MZ63 and BM86 sprays increased early yields, but total yields for the season were lower with seaweed sprays than with water control.

In fresh market tomatoes, increased fruit size and large early yield usually results in a greater return and profit for the grower. Unfortunately, there are only a few cultural and nutritional methods by which tomato fruit size and proportion of the early yield can be increased (5, 8). Soil amendments, seed treatments and foliar sprays were also evaluated to increase tomato yields and fruit size (1). In a previous experiment (6), kinetin spray applied 1 week after transplanting increased the number of flower clusters with fruit set and, at a high P rate, also increased 5 x 6 and 6 x 6 fruit yield and total marketable yield. Seaweed based products have been used in the U.S. and elsewhere to increase crop yields or to extend shelf life of fruits. For example, in South Carolina seaweed sprays increased potato yields by 37% and corn yields by 56% (2). Three applications of seaweed preparations (1 gal seaweed extract in 100 gal water) extended shelf life of peaches from sprayed trees (10). In cucumbers a seaweed solution (Kelpak 66), applied as a root dip or as a weekly foliar spray, increased overall dry mass and root growth (9). In all cases the responses were thought due to plant hormones, auxins, gibberellins and cytokinins, present in the seaweed extract (2, 9). There is no published work in Florida on the effect of seaweed based sprays on staked, fresh market tomatoes. Studies were initiated therefore to investigate the effect of seaweed sprays on tomato yields.

Materials and Methods

Experiments were conducted in 1983 spring and fall and in 1984 spring at the Gulf Coast Research and Education Center-Bradenton, and at 2 commercial farms (Farm A and Farm B) in Hillsborough County in 1983 spring and 1983 fall. At all 3 locations soil was EauGallie (Aeric haploquod) fine sand. Seaweed preparations designated B10, BM86, and MZ63 (Table 1) were obtained from Goemar International Corp., Atlanta, GA. *Experiments at GCREC-Bradenton-1983 spring.* Ex-

perimental design was a split-plot, arranged in a randomized complete block with 4 replications. Main plots, 40 ft long, were spray treatments and sub-plots, 20 ft long, were 2 tomato cultivars-'Sunny' and 'Hayslip'. Plots were established on 30-inch wide and 9-inch high beds, formed on 4.5 ft centers with irrigation furrows 40.5 ft apart (7 beds between irrigation furrows). Nutrients applied (in lb. per acre) were: 325 N, 70.8 P, 540 K, 22.3 Mg, 0.97 B, 0.97 Cu, 5.84 F, 2.43 Mn, 0.066 Mo and 2.27 Zn. Nutrients were derived from KNO₃, 18-0-20.75-1.21 (N-P-K-Mg) isobutylidene diurea (IBDU) and superphosphate (0-8.74-0) which also con-tained 80 lb./ton micronutrients (F503 oxide). Ten percent of the N and K fertilizers and all of the superphosphate with the micronutrients were broadcast full width of the bed, then incorporated 3-4 inches deep. Ninety percent of the N and K fertilizers were banded in 2 narrow, 11/2 to 2inch deep furrows on each half of the bed, 12 inches from the center. Soil was fumigated with 66% methyl bromide and 33% chloropicrin at 350 lb./acre. The beds were covered with a black polyethylene mulch. Five-week-old containerized tomato seedlings (Todd Planter flat No. 100A) were received from a commercial source and were set at 30-inch

¹Florida Agricultural Experiment Stations Journal Series No. 6005.

Table 1. Acidity and mineral concentration of seaweed based nutrient sprays.z

		Seaweed				Minerals	i			
Product	$\mathbf{p}\mathbf{H}$	paste	N	Mg	S	В	Cu	Mn	Мо	Zn
						oz/gal			· · · ·	
B10 BM86 MZ63	7.2 6.2	40 21.4	<u>у</u> 5.34	3.86	3.20	2.14 2.64	_	_	0.013	-
MZ63	5.9	40	5.34	3.86	5.98	<u> </u>	1.04	2.10	_	3.15

20btained from Goemar International Corp., Atlanta, GA. 5Not determined.

Proc. Fla. State Hort. Soc. 97: 1984.

spacing in the row. Insecticides and fungicides were applied once per week. Seaweed based BM86 spray was applied 6 times during the season as follows: on the day of transplanting (March 9), then 5 more times in 14-day intervals. Rate of application was 34 fl oz per acre in 53 to 88 gal water, depending on plant size. The spray was applied by a hand sprayer with a fan nozzle at 45 lb./sq inch pressure. Control plots were sprayed with tap water. Fruits were picked on June 13 and 21, separated into marketable and cull, and then were graded into 4 sizes (5 x 6, 6 x 6, 6 x 7, and 7 x 7).

Farm A-1983 spring. 'Sunny' tomato seedlings were set at 28-inch in-row spacing in a 5-acre block on February 15. Beds, 36-inches wide and 11-inches high, were formed on 6-ft centers. Soil was not fumigated since the land had not been cropped previously. Irrigation was by the seepage system. Fertilizer sources and N and K rates were the same as at GCREC-Bradenton. Phosphorous was applied at 80.8 lb./acre P at the farm and 25% of the N and K was applied in the bed mix and 75% was banded. BM86 and MZ63 were applied as follows: BM86 on February 22, March 9, April 4, and April 26; MZ63 on March 15, May 10 and May 27. The MZ63 was applied at 13 fl oz and the BM86 was applied at 68 fl oz/100 gal water. Sprays were applied by a commercial boom type sprayer at 200 lb./sq inch pressure. The seaweed concentrate was mixed in with pesticides and applied during the regular pesticide spray program. Fruits were picked on May 20, June 2 and June 30 from 4 randomly selected 24 ft long plots (10 plants per plot). Control plots were selected from an adjacent 5-acre block. Fruits were graded as described above.

GCREC-Bradenton, 1983 fall and 1984 spring. Experimental design, cultivars and fertilizer rates were as described for GCREC-Bradenton for 1983 spring. Spray treatments were: water control, 'B10,' BM86, MZ63, MZ63 + 'B10,' and MZ63 + BM86. Sprays, 34 fl oz seaweed solutions in 53-88 gal water per acre, depending on plant size, were applied 4 times during the season: 1 week after transplanting (August 29, 1983 and February 24, 1984), then 3 more times at 2-week intervals beginning at first bloom. In the combination sprays, the MZ63 was applied in the first 2 treatments, then B10 or BM86 sprays were applied in the third and fourth treatments. Fruit was picked 4 times at weekly intervals, beginning on November 9 in 1983 and 3 times at weekly intervals, beginning on May 8 in 1984.

Farm B-1983 fall. 'Sunny' tomato seedlings were set at 36-inch in-row spacing in a 40-acre block on August 20.

Plant bed arrangement, fertilizer rates and sources and irrigation was as described for Farm A. Seaweed spray combination MZ63 + BM86 was applied at 34 fl oz/acre in 53-100 gal H_2O with a commercial boom type sprayer on August 27 (MZ63), September 10 (MZ63), October 1 (BM 86) and October 13 (BM86). Fruits were picked from six 18-ft long plots on November 5 and 25, and December 12. Control plots were from an adjacent 40-acre nontreated block. Fruits were graded as described above.

Results and Discussion

GCREC-Bradenton-1983 spring. BM86 sprays, averaged over 2 cultivars and 4 replications, increased $(P \le 0.05)$ 5 x 6 yield by 3700 lb./acre, combined 5 x 6 and 6 x 6 yield by 4300 lb./acre and marketable yield by 4200 lb./acre over the control in the first pick (Table 2). The effect of BM86 treatment was greater on 'Hayslip' than on 'Sunny,' which had a 16% yield increase compared to control. In the second pick, yields were not significantly different with or without BM86 sprays. Yields in the total harvest (picks 1 and 2) were also not different with BM86 or with water sprays. Thus, BM86 sprays increased yields and fruit size only in the first pick. The effect of BM86 sprays was due to a large number of fruits harvested (Table 3) and to a slightly larger and heavier fruit size.

Farm A-1983 spring. MZ63 and BM86 sprays reduced ($P \le 0.05$) the amount of cull fruits in the first and second picks and in the total harvest (Table 4). Although marketable fruit yields with the seaweed treatments exceeded marketable yields in control plots in each of the 3 picks, yield differences were significant only in the third pick.

GCREC-Bradenton-1983 fall. Averaged over 2 cultivars and 4 replications in the first pick, MZ63 and BM86 sequential treatment, increased ($P \le 0.05$) 5 x 6 yield compared to control (Fig. 1). Tomato yields in plots treated with B10, BM86 or MZ63 had lower but statistically similar yields compared to the MZ63 and BM86 treatment. MZ63 and B10 sequential sprays did not increase 5 x 6 yields over control. The yield increase of 5 x 6 size fruit with MZ63 and BM86 sprays over control in the first pick was 99% or 2270 lb. The yield with the MZ63 and BM86 sprays in the first pick for 5 x 6 size fruit was greater than the combined yields in the first and second pick of 5 x 6 size fruit in the control plots (Fig. 2). However, in the second, third, and fourth picks and for the season, yield of 5 x 6 size fruit was not different with any of the seaweed

Table 2. Effect of BM86 spray on tomato yield (lb./acre), GCREC-Bradenton, spring 1983.

				Fruit yiel	d (lb./acre) ^z			
		Gra	de		Total	· · · · · · · · · · · · · · · · · · ·	Total marketable +	Grade
Treatment	5x6	6x6	6x7	7x7	marketable	Cull	cull	5x6 + 6x6
	lst pick							
BM86	22,139	5,780	482	98	28,499	11,489	39,988	27,919
Control	18,402	5,165	660	71	24,298	8,884	33,182	23,567
F _{0.05} y	*	NS	NS	NS	*	NS	NS	*
	2nd pick							
BM86	7,939	12,613	3,711	1,151	25,414	21,908	47,322	20,522
Control	6,663	14,736	5,629	1,900	28,928	21,693	50,621	21,399
F _{0.05} у	NS	NS	NS	NS	NS	NS	NS	NS
	Total harvest							
BM86	30,078	18,393	4,193	1,249	53,913	33,397	87,310	48,471
CONTROL	25,065	19,901	6,289	1,971	53,226	30,577	83,803	44,966
F _{0.05} y	NS	NS	NS	NS	NS	NS	NS	NS

²Average over 2 cultivars and 4 replications.

vF value is significant (*) or non-significant (NS) at the 5% level.

Table 3. Effect of BM86 s	spray on toma	to fruit number.	. GCREC-Bradenton.	Spring 1983.
---------------------------	---------------	------------------	--------------------	--------------

				Fruit yield (r	io./acre x 1000) ^z			Grade
		Gra	ade		' Total		Cull +	Grade
Treatment	5x6	6x6	6x7	7x7	marketable	Cull	marketable	5x6 + 6x6
	lst pick							
BM86	42.00	16.19	2.13	0.63	60.95	24.63	85.58	58.19
Control	35.19	14.13	2.56	0.44	52.32	19.81	72.13	49.32
F value ^y	*	NS	NS	NS	NS	NS	NS	NS
	2nd pick							
BM86	15.88	34.94	14.63	6.50	71.95	85.19	157.14	50.82
Control	15.00	42.25	21.81	10.38	89.44	83.25	172.69	57.25
F value ^y	NS	NS	NS	NS	NS	109.81	NS	NS
	Total harvest							
BM86	57.88	51.13	16.76	7.13	132.90	109.81	242.72	
Control	50.19	56.38	24.37	10.82	141.76	103.06	245.19	109.01
F value ^y	NS	NS	NS	NS	NS	NS	NS	NS

²Average of 2 cultivars and 4 replications.

yF value is significant at the 5% (*) level or non significant (NS).

Table 4. Effect of MZ63 and BM86 sprays on 'Sunny' tomato yields, Farm A, spring 1983.

				Fruit yiel	d (lb./acre) ^z								
		Gra	de		Total		Total marketable	table Grade ull 5x6 + 6x0 39 16,739 39 14,593 NS 122 15,581 14,856					
Treatment	5x6	6x6	6x7	7x7	marketable	Cull	+ cull	5x6 + 6x 16,739 14,593 NS 15,581					
lst	pick												
MZ63 and BM86	12,008	4,731	1,891	316	18,945	7,493	26,439	16,739					
Control	10,673	3,920	1,335	216	16,144	24,895	41,039						
F _{0.05} у	NS	NS	NS	NS	NS	*	*	NS					
2n	d pick												
MZ63 and BM86	9,330	6,251	3,118	617	19,370	18,752	38,122	15,581					
Control	8,983	5,873	2,832	432	18,120	41,325	59,445	14,856					
F _{0.05} у	NS	ŃS	NS	NS	NS	*	NS	NS					
ş	Brd pick												
MZ63 and BM86 –	2.817	3,619	3,388	1,412	11,236	26,354	37,590	6,436					
Control	756	1,520	2,099	1,250	5,625	29,109	34,734	2,276					
F _{0.05} y		*	NS	NS	*	NS	NS	*					
Тс	otal harvest												
MZ63 and BM86	24.155	14,601	8,397	2,399	49,552	52,599	102,151	38,756					
Control	20,412	11,313	6,266	1,898	39,889	95,329	135,218	31,725					
F _{0.05} у	NS	NS	**	NS	NS	*	NS	NS					

zAverage of 4 replications.

vF value is significant (*) or non-significant (NS) at the 5% level.

sprays from control. Yield of combined 5 x 6 and 6 x 6 fruits in the first pick (Fig. 2) was also highest (P ≤ 0.05) with MZ63 + BM86 treatment, followed by BM86 and MZ63 sprays. Plots treated with B10 and MZ63 + B10 had similar yields to control. Again, yield differences for 5 x 6 and 6 x 6 fruits were significant in the first pick only. Marketable yields with seaweed treatments were not different from control yields in any of the 4 picks (Fig. 3). When yields were tabulated separately for the 2 cultivars, data indicated a different response by 'Hayslip' and 'Sunny' to the spray treatments (Tables 5 & 6). 'Hayslip' 5 x 6 size yields in the first pick were increased by 3 of the seaweed based sprays, MZ63 + BM86 and MZ63 (Table 5). Yields of 5 x 6 and 6 x 6 and marketable fruits in the first pick were increased by all of the 5 seaweed sprays. For the total harvest, only MZ63 + BM86 spray increased 5 x 6 fruit yields. All other treatments had no effect or reduced yields for 'Hayslip'. In contrast, 'Sunny' yields in the first pick were increased by all 5 spray treatments (Table 6). Yield increase was greatest (95%) for the 5 x 6 size fruit with the MZ63 + BM86 spray. For the season's total, MZ63 + BM86

sprays increased 5 x 6, 5 x 6 + 6 x 6 and marketable yields and 'B10' spray increased 5 x 6 yields. None of the 5 seaweed sprays caused a reduction in marketable yields in 'Sunny' compared to control.

Farm B-1983 fall. MZ63 + BM86 sprays in the first pick increased (P \leq 0.01) 'Sunny' yields for all marketable grades. For example, combined 5 x 6 and 6 x 6 yield was 8680 lb./acre (58%) and marketable yield was 12,380 lb./ acre (74%) higher in the seaweed treated land than in the control land (Table 7). Cull fruit yields in the seaweed treated and control lands were not different. In the second and third pick, yields in the control plots were higher than in the seaweed spray treated plots. The higher yields of 'Sunny' with the seaweed sprays in the first pick were due to a larger number of fruit and not to a larger weight per fruit (Table 8). Thus, MZ63 + BM86 sprays in the fall 1983 season had the same effect on 'Sunny' tomato yields in both small and large scale experiments, viz: increasing early yield, with the greatest increase in the volume of 5 x 6 and 6 x 6 grades.

GCREČ-Bradenton-spring 1984. Tomato yields aver-

Proc. Fla. State Hort. Soc. 97: 1984.

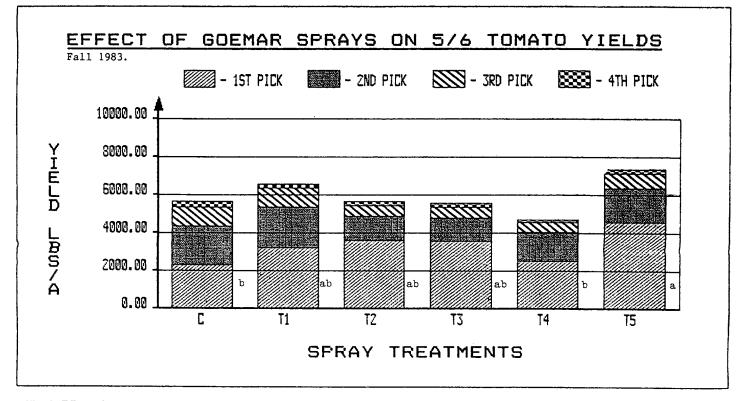


Fig. 1. Effect of seaweed-based sprays (Goermar International, Inc.) on 5x6 tomato yields. C = control; $T_1 = B10$; $T_2 = BM86$; $T_3 = MZ63$; $T_4 = MZ63 + B10$; $T_5 = MZ63 + BM86$. Average of 2 cultivars and 4 replications. Mean separation between columns for the 1st pick by Duncan's multiple range test at the 5% level.

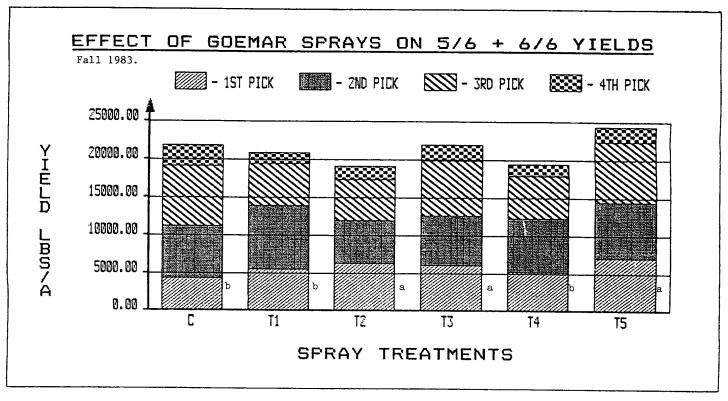


Fig. 2. Effect of seaweed-based sprays (Goemar International, Inc.) on 5x6 + 6x6 tomato yields. C = control; $T_1 = B10$; $T_2 = BM86$; $T_3 = MZ63$; $T_4 = MZ63 + B10$, $T_5 = MZ63 + BM86$. Average of 2 cultivars and 4 replications. Mean separation between columns for the 1st pick by Duncan's multiple range test, at the 5% level.

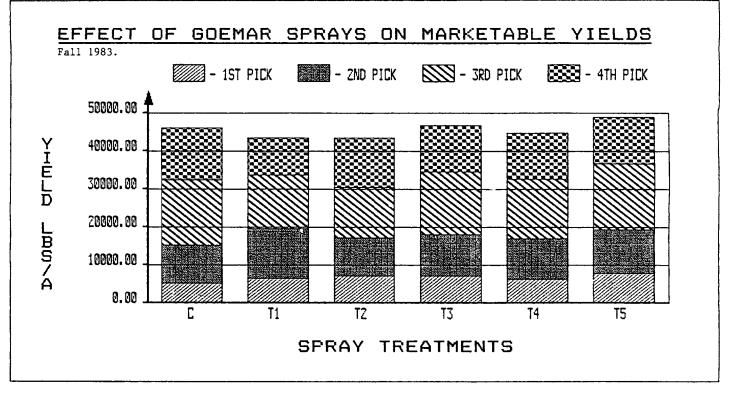


Fig. 3. Effect of seaweed-based sprays (Goemar International, Inc.) on marketable tomato yields. C = control; $T_1 = B10$; $T_2 = BM86$; $T_3 = MZ63$; $T_4 = MZ63 + B10$; $T_5 = MZ63 + BM86$. Average of 2 cultivars and 4 replications.

		Spray treatment									
Fruit size and grade	Control	B10	BM86	MZ63	MZ63 and B10	MZ63 and BM86					
First pick:						· · · · · · · · · · · · · · · · · · ·					
5x6	2255 (100)	2189 (97)	3680 (163)	3605 (160)	2074 (92)	4571 (203)					
5x6 and 6x6	3273 (100)	3955 (121)	5311 (162)	5635 (172)	3955 (121)	6672					
Marketable	3716 (100)	4277 (115)	(162) 6178 (166)	6531 (176)	(121) 4478 (121)	(204) 7217 (194)					
Total harvest:											
516	6200 (100)	5295 (85)	6195 (100)	5805 (94)	4413 (71)	7160 (116)					
5x6 and 6x6	22403´ (100)	19620´ (86)	18960´ (85)	21953 (98)	17648 (79)	23290 (104)					
Marketable	49614 (100)	40233´ (81)	40243 (81)	43438 (88)	39594 (80)	45341 (91)					

Table 5. Effect of seaweed based nutrient sprays on 'Hayslip' tomato yields (lb./acre)z.y, GCREC-Bradenton, fall 1983.

^zAverage of 4 replications.

vYield difference (%) compared to control in brackets (control = 100%).

aged over the 2 cultivars and 4 replications, were not different with seaweed sprays from control. MZ63 sprays increased 5 x 6 yields by 2500 lb./acre (16%) and combined 5 x 6 and 6 x 6 yields by 3610 lb./acre (13%) compared to control. B10 spray treatments reduced tomato yields. The effect of seaweed sprays on the 'Hayslip' and 'Sunny' tomatoes in spring 1984 were similar to that of fall 1983 at the GCREC-Bradenton trials: in the first pick, MZ63 + BM86 sprays increased 5 x 6, 5 x 6 and 6 x 6 and marketable yields of 'Hayslip' over control by 22%, 29% and 24%, respectively for the 3 grades. For the season's total, however, seaweed sprays had no effect on 'Hayslip' yields. 'Sunny' again had a greater response to seaweed sprays than 'Hayslip.' All sprays except the B10 spray increased 'Sunny' yields over control (Table 9). Yield increase in this season was especially great

with the MZ63 spray; 10,200 lb./acre (72%) for 5 x 6, 13,850 lb./acre (58%) for 6 x 6 and 13,150 lb./acre (44%)more marketable fruit over control. The higher early yields and especially the higher yields in the 5 x 6 and 6 x 6 grades with seaweed sprays in the experiments reported here, may be due to hormonal actions in the seaweed sprays or to an unknown biochemical promoting increased endogenous hormonal activity in the plant as suggested by Nelson and Van Staden (9). Auxins, gibberellins and cytokinins are known to increase fruit size by increasing cell size, cell numbers or both (3, 4). All 3 plant hormones are present in seaweeds and affected potato, corn, pepper, banana and orange yields (2). The added mineral nutrients in the seaweed sprays (Table 1) in the experiments reported here, may not have had an important role in the increase in

Proc. Fla. State Hort. Soc. 97: 1984.

Table 6. Effect of seaweed based nutrient sprays on 'Sunny' to	mato yields (lb./acre) ^{z,y} ,	GCREC-Bradenton, fall 1983.
--	---	-----------------------------

			Spray tr	eatment									
Fruit size and grade	Control	B10	BM86	MZ63	MZ63 and B10	MZ63 and BM86							
First pick	· · · · · · · · · · · · · · · · · · ·												
5x6	2335	4241	3528	3526	2921	4549							
	(100)	(182)	(151)	(151)	(125)	(195)							
5x6 and 6x6	5451	7068	7253	6480	6438	7494							
	(100)	(140)	(133)	(119)	(118)	(137)							
Marketable	6499	8369	8392	7781	7893	8575							
	(100)	(129)	((129)	(120)	(121)	(132)							
Total harvest:													
5x6	4483	7240	4680	4725	4283	6960							
	(100)	(161)	(104)	(105)	(96)	(155)							
5x6 and 6x6	20046	21158	18658	21098	20118	24253							
	(100)	(106)	(93)	(105)	(100)	(121)							
Marketable	4Ì579́	44628	44441	48171	47559	52168							
	(100)	(107)	(107)	(116)	(114)	(126)							

²Average of 4 replications. yYield difference (%) compared to control in brackets (control = 100%).

Table 7. Effect of MZ63 and BM86 sprays on 'Sunny' tomato yields, Farm B, fall 1983.

				Fruit yiel	d (lb./acre) ^z			
		Gra	ide		Total		Marketable +	Grade
Treatment	5x6	6x6	6x7	7x7	marketable	Cull	Cull	5x6 + 6x6
lst	pick							
MZ63 and BM86 Control F value ^y	13,888 10,021 **	9,679 4,862 **	4,906 1,599 **	548 157 **	29,021 16,639 **	2,606 2,747 NS	31,527 19,386 **	23,567 14,883 **
2n	d pick							
MZ63 and BM86 Control F value ^y	7,182 10,984 *	7,504 8,712 NS	6,424 5,921 NS	1,772 826 **	22,882 26,443 NS	2,429 1,321 **	25,311 27,764 NS	14,686 19,696 *
3re	d pick							
MZ63 and BM86 Control F value ^y	455 1,208 **	2,529 3,254 *	4,866 5,063 NS	2,892 2,397 NS	10,742 11,922 NS	2,538 1,591 NS	13,280 13,513 NS	2,984 4,462 **
Te	otal harvest							
MZ63 and BM86 Control F value ^y	21,525 22,213 NS	19,712 16,828 NS	16,196 12,583 **	5,212 3,380 *	62,645 55,004 *	7,573 5,659 NS	70,218 60,663 *	41,237 39,041 NS

^zAverage of 6 replications. $_{yF}$ value is significant at the 1% (**) and 5% (*) level of probability or non-significant (NS).

Table 8. Number of fruit per acre of 'Sunny' tomatoes treated with MZ63 and BM86 sprays. Farm B. Fall 1983.

				Fruit yields (no./acre x 1000) ^z			
		Gra	ade		Total		Marketable +	Grade
Treatment	5x5	6x6	6x7	7x7	marketable	Cull	Cull	5x6 + 6x6
lst	pick							
MZ63 and BM86 Control F value ^y	42.74 29.20 *	40.90 20.25 **	26.70 8.23 **	3.79 0.97 **	113.32 58.65 **	11.46 8.23 NS	124.78 66.88 **	82.83 49.45 **
2ne	l pick							
MZ63 and BM86 Control F value ^y	22.83 33.80 *	31.62 36.06 NS	35.17 31.30 NS	10.00 5.56 **	99.62 106.72 NS	15.89 7.10 *	115.51 113.82 NS	54.45 69.86 NS
3rc	l pick							
MZ63 and BM86 Control F value ^y	1.53 4.03 **	11.46 13.63 NS	26.78 27.75 NS	19.93 16.62 NS	59.70 62.03 NS	20.49 13.47 NS	80.19 75.50 NS	12.99 17.66 NS
Т	otal harvest							
MZ63 and BM86 Control F value ^y	67.10 67.03 NS	83.17 69.94 NS	88.65 67.28 *	33.72 23.15 *	272.64 227.10 NS	47.84 28.80 *	320.48 256.20 *	150.27 136.97 NS

²Average of 6 replications. vF value is significant at 1% (**) and 5% (*) level or non-significant (NS).

Table 9. Effect of seaweed based nutrient sprays on 'Sunny' tomato yields (lb./acrc)z,y GCREC-Bradenton, spring 1984.

			Spray tr	MZ63 MZ63 and B10 MZ63 and BM86									
Fruit size and grade	Control	B10	BM86	MZ63	MZ63 and B10	MZ63 and BM8							
First pick:													
5x6	1508	1210	2056	2456	1731	1756							
	(100)	(80)	(136)	(163)	(115)	(116)							
5x6 and 6x6	1819	1623	2596	3084	2233	2153							
	(100)	(89)	(143)	(170)	(123)	(118)							
Marketable	1847	1656	2646	3189	2261	2178							
	(100)	(90)	(143)	(173)	(122)	(118)							
Total harvest:													
5x6	14209	11477	21262	24438	19200	13418							
	(100)	(81)	(150)	(172)	(135)	(94)							
5x6 and 6x6	23762	19051	33560	37613	34085	26741							
	(100)	(80)	(141)	(158)	(143)	(112)							
Marketable	29688	24079	40410	42842	39882	32262							
	'(100)	(81)	(136)	(144)	(134)	(109)							

²Average of 4 replications.

vYield difference (%) compared to control in bracket (control = 100%).

early yield and fruit size. In previous studies at this center (7), minerals supplied by the BM86 spray alone, did not increase yield or fruit size of fall and spring tomatoes. Further studies will be needed to evaluate the effect of seaweed concentrations and timing of application with plant growth stages on tomato yields.

Literature Cited

- 1. Bryan, H. H. 1976. Response of tomatoes to seed and seedling applications of humates and alpha-keto acids. Proc. Fla. State Hort. Soc. 89:87-90.
- 2. Chapman, V. Chapman, V. J. and D. J. Chapman. 1980. Seaweeds and their uses. 3rd ed. Chapman and Hall, Ltd. London. 334 p.
 Coombe, B. G. 1976. The development of fleshy fruits. Annu.
- Rev. Plant Physiol. 27:507-528.
- 4. Crane, J. C. 1964. Growth substances in fruit setting and develop-

ment. Annu. Rev. Plant Physiol. 15:303-326.

- 5. Csizinszky, A. A. 1980. Effect of fertilizers and within-row spacing on tomato fruit size and yield. Bradenton Agr. Res. Educ. Center Res. Rpt. GC1980-10.
- Csizinszky, A. A. 1983. Investigation of fruit set in tomatoes under high temperature conditions. Tomato Research Report for 1982-83, Inst. Food Agr. Sci., Univ. Florida. 7. Csizinszky, A. A. 1984. Response of tomatoes to seaweed based
- Long, D. G., and D. J. Cantliffe. 1975. Response of tomatoes to method of seeding and transplanting. Proc. Fla. State Hort. Soc. 88:211-213
- Nelson, W. R. and J. Van Staden. 1984. The effect of seaweed con-centrate on growth of nutrient-stressed greenhouse cucumbers. HortScience 19:81-82.
- 10. Skelton, B. J. and T. L. Senn. 1966. Effect of seaweed on quality and shelf-life of Harvest Gold and Jerseyland peaches. Res. Ser. No. 86., Hort. Dept., The South Carolina Agr. Expt. Sta., Clemson Univ., Clemson, SC.

Proc. Fla. State Hort. Soc. 97: 157-159. 1984.

SEVERITY OF BACTERIAL SPOT (XANTHOMONAS CAMPESTRIS PV. VESICATORIA (Doidge)Dye) ON LEAVES AND FRUIT OF FLORIDA GROWN TOMATO CULTIVARS¹

J. W. SCOTT AND J. B. JONES² IFAS, University of Florida, 5007-60th Street East, Bradenton, FL 3403

Additional index words. Lycopersicon esculentum, disease resistance.

Abstract. Florida grown tomato (Lycopersicon esculentum Mill.) cultivars, 'Sunny', 'Duke', 'FTE-12', 'Hayslip', 'Flora-Dade', 'Walter', and 'Independence', new IFAS cultivar releases 'Horizon' and 'Suncoast'; and heat-tolerant breeding line 7106 were compared to 'Campbell 28' ('C-28') for bacterial spot (Xanthomonas campestris pv. vesicatoria Doidge) Dye) (XCV) tolerance in the summer of 1983. Four blocks with 5 plant plots of each cultivar were inoculated by spraying a suspension of XCV containing 10⁸ colony forming units (c.f.u.)/ml. Leaves were rated for disease incidence twice during the season, and the percentage fruit spot was determined afterwards. The Florida grown cultivars had significantly more foliar disease than 'C-28' for the combination rating derived from the 2 rating periods. All Florida grown cultivars had similar foliage infection for the first rating, but 'Flora-Dade' had greater disease incidence than the other cultivars for the second rating. For the combination rating, all Florida grown cultivars had similar disease ratings except for 'Flora-Dade' which had more disease than all cultivars except 'Suncoast', 'Duke', and 'Independence'. 'Flora-Dade' had significantly greater fruit spot (33.0%) than all other cultivars except Hayslip (23.8%) and Suncoast (8.9%). There were no significant differences in fruit spot between any other cultivars. There were significant correlations between fruit and foliar infection, but r² values were less than 0.35.

Bacterial spot incited by Xanthomonas campestris pv. vesicatoria (Doidge) Dye (XCV) causes significant losses to Florida tomato growers every year (6, 8). None of the cultivars presently grown in Florida have appreciable tolerance to the disease, and control measures (1, 5) are often inadequate in preventing crop losses. Growers often feel

¹Florida Agriculture Experiment Station Journal Series No. 6002. ²The authors gratefully acknowledge the technical assistance of Tommy Cline.