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Abstract. Fourier transform infrared spectroscopy (FT-IR) is
compared to various instrumental and physical/chemical
methods for differentiating commercial orange juice products.
Previous statistical models were generated using the data
from an electronic nose (e-nose), a head space gas chromato-
graph (GC), a mass spectrometer (MS) based chemical sensor,
and various physical/chemical measurements. The separation
using data from the FT-IR was similar to that obtained from the
instrumental methods (e-nose, GC, MS) and chemical/physical
measurements. FT-IR is inexpensive technology and common
in most labs. An advantage to using an FT-IR would be the like-
lihood of quality labs currently owning an instrument, or if not,
the relatively low cost would not be prohibitive. Seven not-
from-concentrate and 3 from-concentrate orange juice prod-
ucts were analyzed with excellent separation using the data
from standard procedures. This compares favorably with the
other methods examined in previous years.

The electronic nose is an important QA/QC tool used in
many industries. Typically these instruments utilize advanced
multivariate statistics coupled with a non-specific chemical
sensor array in order to differentiate samples (Goodner etal.,
2000). However, any type of sensor that responds to chemi-
cals can be used as a replacement for the electronic nose. For
example, a flame ionization detector (FID) for a gas chro-
matograph (GC) can be used for a chemical sensor. As each
compound elutes from the GG, the FID produces a response.
The individual peaks of the chromatogram become the ‘sen-
sors’ with the advantage that the peaks are likely single com-
pounds and thus the model can be related to specific
chemicals. This method is different from a traditional elec-
tronic nose since there is chemical separation of the individ-
ual constituents. There are currently no commercially
available GC-FID electronic nose instruments.

In the case of a mass spectrometer (MS) based electronic
nose, each mass to charge (m/z) is used as a ‘sensor’ (Goodner
et al., 2002). There is no chemical separation of the sample
prior to analysis, so the mass spectra are representative of the
entire product. This lack of chemical separation is similar to
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the typical electronic nose method of introducing the sample
to a non-specific sensor array, which does not give individual
chemical separation. Some of the advantages of the MS are ap-
parent: sensitivity, selectivity, number of sensors, speed, and
some basic information on mass range can be determined.

Any type of measurement can be used as a sensor, not just
instrumental data. Traditional citrus processing utilizes many
standard tests, some of which are decades old, but could be
used as “sensors.” Citrus processors have a tremendous
amount of data available to them from the many analyses they
have performed over the years. The most common tests are
for °Brix (soluble solids), titratable acidity, °Brix/acid ratio,
pH, color, pulp content, Scott oil, and vitamin C (Goodner,
2004). Using these standard tests, a multivariate model can be
built to differentiate orange juices.

An instrument found in many laboratories is the Fourier
transform infrared (FT-IR) spectrophotometer. Infrared en-
ergy is absorbed by chemical bonds via vibrational modes
such as bending, stretching, and twisting. The wavelengths of
responses are indicative of certain types of chemical bonds
(Silverstein et al., 1991). Similar to MS, each wave number is
used as one of very large number of potential sensors. FT-IR
and NIR (near infrared) have previously been used with mul-
tivariate statistics for some citrus products such as oils (Steuer
et al., 2001), sugars and acids (Li et al., 1996), and adultera-
tion issues (Kemsley et al., 1994).

Electronic nose instruments have been applied to citrus
problems in the recent past (Bazemore et al., 1997; Good-
ner and Rouseff, 2001; Goodner et al., 2000, 2001a; Shaw et
al., 2000). This report is a continuation of research report-
ed previously describing the various abilities of electronic
nose types to differentiate orange juice samples. This cur-
rent multivariate model, based on FT-IR spectra of orange
juice is compared to a traditional sensor-based electronic
nose, a GC-based electronic nose, a MS-based electronic
nose/chemical sensor, and to standard citrus processing
analyses.

Materials and Methods

An Alpha Mos Fox 4000 e-nose (18 sensors) was used for
all metal oxide sensor data collection. The specifics for the
sample information, data collection, and analysis have previ-
ously been reported (Goodner et al., 2000).

The HS-GC (headspace gas chromatograph) system con-
sisted of a Chrompak purge and trap headspace analyzer con-
nected to an HP 5890 GC with an FID detector. The specifics
for the sample information, data collection, and analysis have
previously been reported (Goodner et al., 2001a).

The MS-based chemsensor used was a Gerstel ChemSen-
sor 4440A that includes a headspace sampling unit (7694, Ag-
ilent Technologies, Palo Alto, Calif.) with a mass selective
detector (5973, Agilent Technologies, Palo Alto, Calif.) for
using each m/z as a sensor. The juice samples used with the
chemsensor were not the same as with the electronic nose
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and HS-GC. The specifics of the sample information, data col-
lection, and analysis have previously been reported (Goodner
etal., 2002).

°Brix and optical density were measured using an AR200
digital refractometer (Reichert, Depew, N.Y.). Titratable acid-
ity (pH 8.2 endpoint) and pH were measured using a 614
Impulsomat, 605 pH-meter, and a 665 Dosimat (Metrohm,
Herisau, Switzerland). Color was measured using a CR-300
Choma Meter (Minolta, Tokyo, Japan) (Anonymous, 1981).
Vitamin C, Scott oil (Scott, 1966), and suspended pulp were
analyzed using standard methods (Anonymous, 1981). The
specifics of the sample information, data collection, and anal-
ysis have previously been reported (Goodner et al., 2004).

Ten orange juice samples were obtained from a local gro-
cer. Seven were ‘notfrom-concentrate’ and three were a
‘from-concentrate’ juice. Six samples were in gable top car-
tons and four in plastic containers (either polyethylene
terephthalate [PET] or polyethylene). A Spectrum One FT-
IR (Perkin-Elmer, Wellesley, Mass.) with the horizontal atten-
uated total reflectance (HATR) option using a 45° ZeSE
trough plate was used to collect data. Spectra were acquired
from 3000-900 cm™ with a 0.25 cm™ resolution with each wave-
number being a “sensor.” Ten replications per juice (same
juices used for the physical data experiments) were sampled.
Data were analyzed with Unscrambler version 9 (Camo,
Woodbridge, N.J.) and Statistica version 7. Discriminant func-
tion analysis in Statistica was performed using the first
10 principal components of PCA (Principal components
analysis) transformed data.

Results and Discussion

Briefly, two types of statistical analyses were used for these
projects—principal components analysis (PCA) and discrimi-
nant function analysis (DFA). These two analyses are similar,
but with distinct differences. A PCA is a transformation of
many variables into a linear combination of variables that
maximizes the variance of the data into each of the principal
components. This transformation is performed without re-
gard to the classification of the samples. A DFA performs a
similar transformation, but instead of maximizing the vari-
ance in each new variable, maximizes the distance between
centers of defined classes.

The metal oxide based electronic nose provided adequate
separation of the components as can be seen in Figure 1. This
graph was produced by using a discriminant function analysis
(DFA) with 15 variables (each coming from a single MOS sen-
sory), which gave a data point to variable ratio of 3:1. There
were three samples completely isolated from the others as the
90% confidence ellipses show with the FCOJ group being
most differentiated. This is the best result obtained by Good-
ner et al. (2000) for the electronic nose.

Figure 2 is a graph of the DFA of the data from the HS-GC
using a 3:1 data point to variable ratio (13 variables each rep-
resenting a single chromatographic peak). One can see that
there are four distinct groups: two that are composed of sin-
gle samples and two that are composed of multiple samples.
The ellipses drawn are for the 90% confidence interval. Once
again, the FCOJ sample is well separated from the other sam-
ples and NFC 5 is well separated from NFC 2 and 4. The sam-
ples that have significant overlap have no obvious similarities
(i.e., they are not multiple brands from the same producer,
butitis possible that some are the same product under differ-
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Fig. 1. Discriminant function analysis (DFA) of the electronic nose show-
ing the best results of differentiating 5 not from concentrate and 1 from con-
centrate orange juices (with replicates).

ent labels). The groupings are different than those produced
by the metal oxide electronic nose and have more overlap
(Goodner et al., 2001a).

The MS-based electronic nose performed well. Figure 3
shows the results of a DFA of the data with a 3:1 data point to
variable ratio (14 variables representing 14 specific m/z). One
can see that all the groups are totally separated from each oth-
er with the 90% confidence ellipses drawn. The author has
previously shown that generally a 3:1 ratio of data points to
variables is not generally enough to ensure adequate model-
ing (Goodner et al., 2001b). It is statistically better to have a
higher data point to variable ratio, generally 6:1 or even high-
er. Given this more stringent requirement, the author re-ana-
lyzed only the chemical sensor data to produce an analysis
with a data point to variable ratio of 10:1 (4 variables). The re-
sults are shown in Figure 4. There is still quite a good separa-
tion with four of the products completely differentiated and
some overlap of the remaining three (Goodner et al., 2002).
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Fig. 2. Discriminant function analysis (DFA) of the HSGC showing the
best results of differentiating 6 not from concentrate and 1 from concentrate
orange juices (with replicates).
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Fig. 3. Discriminant function analysis (DFA) of the MS-based electronic
nose with 3:1 data point to variable ratio, the same criteria as Figs. 1 and 2.
Results are of differentiating 6 not from concentrate and 1 from concentrate
orange juices (with replicates).

Using routine physical analysis data for multivariate analy-
sis worked very well. Figure 5 shows the results of a DFA for a
data set with a 10:1 data point to variable ratio: 10 variables—col-
or (HL, Ha, Hb), °Brix, titratable acidity, ratio, Scott oil, vita-
min C, pulp, pH. The data are very well separated with only
slight overlap of the 95% ellipses in two cases. In the first over-
lap, the two samples are both reconstituted orange juice (Re-
con 1 and 2). In the second overlap, the two samples are juice
from the same company, packaged in different containers: pa-
perboard gable-top carton versus PET bottle. The separation
seen in Figure 5 is equivalent or better than the other methods.

A DFA of the samples showing separation based on physi-
cal analyses on container and processing technique is shown
in Figure 6. The notfrom-concentrate samples are both clear-
ly separated from each other (different containers) and from
the reconstituted (recon) juice products indicating that there
is a difference due to container and to processing. The recon-
stituted (recon) orange juice shows no separation based on
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Fig. 4. Discriminant function analysis (DFA) of the MS-based electronic
nose with 10:1 data point to variable ratio. Results of differentiating 6 not
from concentrate and 1 from concentrate orange juices (with replicates).
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Fig. 5. Discriminant function analysis (DFA) of the physical data with 10:1
data point to variable ratio of ten juices. Results of differentiating 7 not from
concentrate and 3 from concentrate orange juices (with replicates).

container indicating that there is little difference due to pack-
aging for reconstituted orange juice.

FTIR analysis for the separation of juices by multivariate
analysis was shown to work adequately, but does not provide
the same levels of separation as the previously discussed data
sets. Figure 7 show the results of a DFA for a data set with a
10:1 data point to variable ratio. The variables used for the
DFA were the 10 most weighted principal components, which
in this study consisted of linear combinations of multiple sen-
sors (wavenumbers). Such transformation of the data by PCA
precludes any possibility to identify specific wavenumbers
linked to specific classes of compounds responsible for the
differentiation of the groups of juices. Juices used to obtain
the data presented in Figure 7 are the same as those in Figure
5, but the separation shown in Figure 7 is not as pronounced
as that obtained by using the more routine data analyses (as
illustrated in Fig. 5). In addition to the poorer separations,
PCA analysis of the FTIR data (Fig. 7) presents numerous ad-
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Fig. 6. Discriminant function analysis (DFA) of the physical data with 10:1
data point to variable ratio differentiating container type and processing
method.
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Fig. 7. Discriminant function analysis (DFA) of the FTIR data with 10:1
data point to variable ratio of ten juices. Results of differentiating 7 not from
concentrate and 3 from concentrate orange juices (with replicates).

ditional problems associated with software and analysis times
for the inordinately large datasets (in this study, 840,000 data

points) involved in these studies.
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Fig. 8. Discriminant function analysis (DFA) of the FTIR data with 10:1
data point to variable ratio differentiating container type and processing

method.
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Figure 8 is a graph of the results from FTIR using the same
classifications as those in Figure 6, which were based on phys-
ical analyses. However, it is clear that Figure 6 is much better.
Figure 8 shows little separation of the samples and would not
be useful in a general sense. While the FTIR performs ade-
quately for this type of analysis, it is clear from Figures 7 and
8 that there are better choices (i.e., MS-based electronic nose
(Fig. 3) and physical/chemical properties (Figs. 5 and 6))
than the FTIR analysis.
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