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One of the most prominent characteristics of huanglongbing (HLB or citrus greening)-affected citrus trees is the 
abundant starch accumulation in photosynthetic cells and all other remaining parenchyma cells of aerial parts. Under 
natural conditions, citrus leaves store very low levels of starch, and detectable amounts are only seen as a result of 
zinc deficiency or accidental girdling of branches. Therefore, leaf starch concentrations over a threshold level should 
indicate the presence of HLB. In this report, we detail both frequentist and Bayesian statistical approaches to predict 
HLB using starch levels in citrus leaves. Real-time PCR detection of the presumptive causing agent Candidatus Li-
beribacter asiaticus was used as a proxy for HLB status, but we also present a competing analysis that does not use 
PCR as a gold standard. Starch content was found to reliably predict the PCR results (the proxy for HLB presence) 
during the “warm season” (June through November), but not in the “cool season” (December through May). During 
the cool season, starch levels for HLB positive trees tend to be lower, and 43% of samples were incorrectly classified 
using linear discriminant analysis (LDA). In contrast, during the warm season, only 8% were misclassified. Further, 
assuming PCR possibly has error, the total probability of misclassification for HLB status could be controlled using 
an “uncertain” classification. Analysis of the biotic conditions surrounding HLB in terms of bacteria life cycle and the 
plant development provides insights into these patterns.

Citrus huanglongbing (syn. HLB or citrus greening) is a 
highly destructive, fast-spreading disease of citrus worldwide. 
Its presumed pathological agent, Candidatus Liberibacter spp., 
is a fastidious gram-negative, obligate parasite, phloem-limited 
α-proteobacterium (Garnier et al., 1987; Jagoueix et al., 1994). 
There are several species identified worldwide (Kim et al., 2009), 
but only Candidatus Liberibacter asiaticus (CLas) is found in 
Florida (Albrecht and Bowman, 2009). CLas is vectored by the 
phloem feeding psyllid Diaphorina citri (Halbert and Manjunath, 
2004) and transmitted into the phloem stream of citrus leaves 
during the feeding process.

There are no specific symptoms for HLB-affected trees. Al-
though some symptoms such as yellow shoots, leaf blotchy mottle, 
and lopsided fruits with color inversion and aborted seeds are quite 
typical, they are not always present in the same tree. Furthermore, 
these symptoms can be distorted or masked by other diseases, or 
induced by conditions other than HLB such as zinc deficiency 
(Bové, 2006). A notable characteristic of HLB-affected citrus 
trees is the massive accumulation of starch in photosynthetic cells 

and other parenchymatous tissues of nonreproductive aerial parts 
(Etxeberria et al., 2009; Folimonova and Achor, 2010; Schneider, 
1968). Under natural conditions (Goldschmidt and Koch, 1996) 
or in the presence of other diseases (Gonzalez et al., 2011), citrus 
leaves store very low levels of starch, and detectable amounts are 
only seen as a result of zinc deficiency or accidental girdling of 
branches (Gonzalez et al., 2011).

The elevated levels of leaf starch resulting from CLas infec-
tion has been utilized as a general indication of HLB-association 
with citrus trees (Etxeberria et al., 2007). In fact, due to its 
simplicity, perceived reliability, rapidity, and cost efficiency, 
iodine-based starch tests have been used as visual field tests for 
HLB presence in many other locations (Onuki et al., 2002; Taba 
et al., 2006; Takushi et al., 2007). These tests are based on the 
ability of iodine to bind starch, resulting in a blue/purple-colored 
solution (McGrane et al., 1998), and could be used as the foun-
dation for the development of a quantitative, statistically-based 
system aimed at HLB detection. Therefore, starch concentrations 
over a threshold level could indicate the presence of HLB. The 
suitability of a starch-based test is contingent on being able to 
accurately classify HLB positive and negative trees as measured 
by agreement with PCR analysis, the industry standard test (Li 
et al., 2008; Teixeira et al., 2005). Based on this assumption, we 
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aimed at finding a threshold level of starch content in citrus leaves 
that would indicate HLB association.

Materials and Methods

Plant material. Leaf samples were collected randomly 
throughout the state by two different personnel groups. HLB-
symptomatic leaves from 714 sweet orange trees were gathered 
by commercial scouts and processed at the Florida Extension 
Huanglongbing Diagnostic Laboratory at the University of 
Florida’s Southwest Florida Research and Education Center 
(SWFREC) in Immokalee, FL. These samples, consisting of three 
to five leaves, were specifically selected for having evident HLB-
related symptoms. A second group of leaf samples was collected 
randomly from 479 seemingly healthy trees throughout the state. 
Care was taken to collect leaves devoid of symptoms of any kind 
or having physical or insect damage. In both cases, time of year 
and citrus growing region were recorded.

Starch analysis. From each leaf, a 27.3-mm2 leaf disc was 
obtained using a paper-hole puncher. Each disc was placed in a 
2-mL capped tube with four metal beads (2.36-mm diameter) 
(Mobio Laboratories, Carlsbad, CA) and 0.5 mL H2O. Homog-
enization was carried out in two 40-s cycles for a total of 80 s 
using a Precellys 24 Tissue Homogenizer (Bertin Technologies, 
France). The homogenate volume was brought up to 1 mL with 
water, boiled for 10 min, and allowed to cool before addition of 
25 µL of 2% iodine. The resulting colored solution was allowed 
to stabilize for 20 min and OD determined at 595 in a BioRad 
micro-plate reader Model 680. Starch content was estimated from 
a standard curve using rice starch (S-7260; Sigma, St. Louis, MO).

PCR analysis. Total genomic DNA was extracted from 100 
mg of petiole tissue using the Promega Wizard® 96 DNA Plant 
isolation kit (Promega, Madison, WI). Tissues were lyophilized 
prior to bead beating using a Mini-bead beater (Bio Spec Products 
Inc., Bartlesville, OK) to a fine powder. Samples were processed 
as per manufacturer’s instruction, and DNA was eluted in 50 µL 
AE Buffer and stored at –20 °C.

Primers and Taqman probes were obtained based on Li et al. 
(2006) for CLas (HLBas/HLBr and HLBp) and for an internal 
control, cytochrome oxidase, COX gene (COXf/COXr and 
COXp (Li et al., 2006). The internal probe COX-p was labeled 
with 6carboxy-4’,5’-dichloro-2’,7’-dimethoxyfluorescein (JOE) 
reporter dye at the 5’-terminal nucleotide and with BHQ-2 at 
the 3’-terminal nucleotide. Controls were as follows: DNA 
from HLB positive citrus trees located in the SWFREC grove, 
and DNA from known HLB negative citrus trees grown under 
screen-house conditions and tested annually as negative for the 
HLB pathogen (SWFREC).

Real-time PCR reactions were performed using an ABI 7500 

Fast Real-Time PCR System (Applied Biosystems, Foster City, 
CA) using TaqMan® Fast Advance PCR Master Mix (Applied 
Biosystems) in a 20-µL reaction. The standard amplification 
protocol was initial denaturation at 95 °C followed by 40 cycles 
of reactions (95 °C for 3 s, 60 °C for 30 s). Data were analyzed 
using Applied Biosystems 7500 system SDS software version 
1.2. For the purpose of analysis, Ct-values greater than 36 were 
considered negative and samples with Ct-values less than or equal 
to 32 were considered positive for HLB. Any sample with a Ctvalue 
between 32 and 36 was put in the category of “resample” for the 
purposes of this study based upon the recommendations to growers 
using the Florida Extension HLB Diagnostic Lab at SWFREC. 
The recommendation to growers with samples generating these 
values is to resample the tree for a second analysis since growers 
were basing tree removal upon PCR positive results. The second 
analysis or “opinion” was recommended since tissue having these 
values would be asymptomatic and contain 300–30 bacteria per 
reaction (data not published).

Data processing. The data used in this study are comprised of 
two datasets: 1) the samples brought to SWFREC diagnostic lab 
for testing by commercial scouting organizations (Immokalee), 
and 2) samples collected from seemingly healthy trees (controls). 
The former dataset consists of leaf samples that were assumed 
to be positive because they were collected from trees exhibiting 
HLB symptoms, and the latter dataset consists of leaves that are 
assumed to be negative because they were collected from appar-
ently healthy trees. Because the datasets consist of samples that 
were collected independently of each other, the combination of 
the two datasets (the full data used in the study) does not itself 
constitute a random sample from the population of all citrus trees. 
Although estimates of incidence and prevalence of HLB from 
these data are not possible, various classification techniques are 
available to predict PCR/HLB status of a tree. The number of 
observations in the controls and Immokalee datasets, by month, 
is given in Table 1.

For each tree, between three and eight leaves were analyzed 
for starch content. However, PCR analyses were performed by 
combining all leaves for each tree to obtain a single PCR result 
for individual trees. Consequently, only the maximum starch value 
observed for each tree is used in the analysis, since even one HLB 
positive leaf would make the PCR result positive.

Because there appeared to be a temporal effect on starch 
content, we defined a new variable: season. Season takes two 
values, “warm season” (the months June–November, 6–11) and 
“cool season” (the months December–May, 12–5). Starch values 
tended to be higher in the warm season months than the cool 
season months. Tables 2 and 3 show the number of observations 
after the creation of the season variable.

Statistical analysis. As established from the histogram in 

Table 1. Number of observations from the controls and Immokalee datasets by month (1 = January; 12 = December).

Month	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12
Controls	 29	 80	 20	 99	 25	 59	 42	 97	 0	 0	 0	 0
Immokalee	 187	 50	 58	 4	 9	 0	 0	 0	 0	 56	 235	 56

   

Table 2. The number of observations from the controls and Immokalee 
datasets by season.

		  Warm season	 Cool season
Controls	 198	 253
Immokalee	 291	 364

   

Table 3. The number of observations that are PCR negative and PCR 
positive by season.

		  Warm season	 Cool season
PCR negative	 175	 251
PCR positive	 314	 366
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Figure 1, the distribution of starch is not normal. The Box-Cox 
transformation suggests that natural log was the appropriate trans-
formation. A linear model was also fit which gave more evidence 
for the appropriateness of the natural log transformation. Figure 
2 shows the histogram of log-transformed starch values which 
appears to be normally distributed. Hereafter, all references to 
starch refer to the logtransformed starch variable.

To achieve our goal of using leaf starch content as a predic-
tor of HLB status, we used three analytic techniques: linear 
discriminant analysis (LDA), threshold optimization classifica-
tion (TOC), and receiver operating characteristic (ROC) curves. 
TOC and ROC curves were performed under four conditions: 
with (1) and without (2) PCR as a gold standard for HLB, and 
from a frequentist (3) and Bayesian (4) perspective. The LDA 
was performed only with PCR as a gold standard for HLB and 
from the frequentist perspective.

Linear discrimination analysis. LDA is a method for clas-
sification that seeks to separate observations into two or more 
classes by minimizing the total probability of misclassification 
(TPM). The TPM is the total proportion of observations misclas-
sified. Because we have two observed classes (PCR positive, PCR 
negative), LDA will only classify observations as being positive 
or negative. To identify an uncertainty region between the positive 
and negative regions, a different approach is needed.

Threshold optimization classification. We propose a new 

method called TOC that will identify an uncertainty region if the 
TPM is greater than a specified threshold while controlling for 
TPM. TOC seeks to identify two cutoffs (between the uncertainty 
and negative regions and between the positive and uncertainty 
regions, d1 and d2, respectively). This is equivalent to minimizing 
d1 – d2 subject to TPM = g, where g is the chosen threshold for 
the misclassification rate. In this work, we have

TPM = p ∫R2  
f1 (x)dx + (1 – p) ∫R1  

f2 (x)dx

(where f is a normal density function) because of the normality 
described above. This equation relies on five unknowns: µ1, µ2, 
σ1, σ2, and p (the means of negative and positive samples, the 
standard deviations of negative and positive samples, and the 
proportion of negative samples, respectively), but these can be 
estimated.

Receiver operating characteristic curves. While TPM re-
lies on an estimate of p, ROC curves do not. This is beneficial for 
our study because the data come from two independent samples, 
Controls and Immokalee, and not a single random sample that 
would allow us to estimate the prevalence of HLB. Furthermore, 
ROC curves can be easily compared using the area under the 
curve (AUC). AUC typically is between 0.5 and 1.0, with values 
closer to 1.0 considered desirable. While the use of ROC curves 
is traditionally associated with analyses involving a gold standard, 

Fig. 1. Histograms of (untransformed) starch values for the PCR × season groups.

22 
 

 

Fig. 1. Histograms of (untransformed) starch values for the PCR by Season groups. 
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2004). In the Bayesian case with PCR as a gold standard, we use 
the following (non-informative) priors for the means and preci-
sion parameters: µ1~N (mean = 0; variance = 100), τ1~inverse 
Gamma (shape = 0.001, rate = 100), µ2~N (mean = 0; variance 
= 100), and τ2~ inverse Gamma (shape = 0.001, rate = 100), and 
calculate p from the proportion of PCR negative observations. 
In the Bayesian case without PCR as a gold standard, we use the 
priors as before but with a Beta (shape1 = 2, shape2 = 2) prior for 
the proportion. We present analyses for the frequentist case with 
PCR as a gold standard and the Bayesian case without PCR as a 
gold standard, as they are the most different from each other; the 
other analyses reach the same overall conclusion.

Results

Frequentist approach with PCR as a gold standard for 
HLB. The MLEs of the parameters for the warm season and cool 
season data are given in Table 4. The LDA was performed for 
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Fig. 2. Histograms of (log-transformed) Starch for the PCR by Season groups. 

  

Fig. 2. Histograms of (log-transformed) starch for the PCR × season groups.

Table 4. Maximum likelihood estimates of the mean and variance parameters μ1, σ1
2, μ2, and σ2

2, the proportion of negative leaves p, and 95% lower 
(LCL) and upper (UCL) confidence limits for μ1 and μ2 for the warm season and cool season data with PCR as a gold standard.

		  μ1	 σ1
2	 p	 LCL (μ1)	 UCL (μ1)	 μ2	 σ2

2	 LCL (μ2)	 UCL (μ2)
Warm season	 1.70	 0.26	 0.36	 1.62	 1.78	 2.94	 0.70	 2.85	 3.03
Cool season	 2.18	 0.28	 0.41	 2.12	 2.25	 2.71	 0.50	 2.63	 2.78

    

a growing body of research employs ROC curves in the absence 
of a gold standard (Beiden et al., 2000; Choi et al., 2006).

Estimation of parameters. In the methods described above, 
we need to estimate at most five parameters: µ1, µ2, σ1, σ2, and 
p. We estimate these parameters from both a frequentist and a 
Bayesian perspective, and with and without PCR as a gold stan-
dard for HLB. Using PCR as a gold standard is an appropriate 
assumption because it is presently used as a de facto gold standard 
for HLB. Viewing PCR as not being a gold standard may be more 
appropriate based on the current scientific understanding of the 
disease. All analyses are performed separately for the different 
values of season (warm season and cool season).

In the frequentist case with PCR as a gold standard, we use 
the maximum likelihood estimates (MLEs) µ1, µ2, σ1, σ2, and 
calculate p from the proportion of PCR negative observations. 
In the frequentist case without PCR as a gold standard, we view 
the problem as a mixture of normal distributions and estimate 
all five parameters using an EM algorithm (Robert and Casella, 

ˆ
ˆ

ˆ ˆ ˆ

ˆ
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each season: warm season and cool season. Leave-one-out cross-
validation estimates of classification probabilities are employed 
using the lda() function in the MASS package (Venables and 
Ripley, 2010) and are given in Table 5. Specifically, individual 
leaves are predicted to be either HLB positive or negative based 
on LDA classification performed on a training data set consisting 
of all other leaves not being classified. This process is repeated 
for all leaves in order to obtain the leave-one-out cross-validation 
estimates of classification probabilities. According to results dis-

Table 5. Leave-one-out cross-validation estimates of the classification 
probabilities for the warm season and cool season data with PCR as 
a gold standard.

	 Warm season	 Cool season

		  True neg	 True pos	 True neg	 True pos
Pred neg	 0.27	 0.10	 0.20	 0.13
Pred pos	 0.09	 0.54	 0.21	 0.47

    

Fig. 3. LDA binary classification of the leaves for warm season and cool season data using PCR as a gold standard. Observations above the line are classified as 
positive: “true positives” are PCR positive and are represented by a red “x” and “false positives” are PCR negative and are represented by a blue “+.” Observations 
below the line are classified as negative: “true negatives” are PCR negative and are represented by a green “❍” and “false negatives” are PCR positive and are 
represented by a purple “∆.”

24 
 

 

Fig. 3. LDA binary classification of the leaves for Warm Season and Cool Season data using 

PCR as a gold standard. Observations above the line are classified as Positive: ‘True positives’ 

are PCR Positive and are represented by a red ‘x’ and ‘False positives’ are PCR Negative and are 

represented by a blue ‘+’. Observations below the line are classified as Negative: ‘True 

negatives’ are PCR Negative and are represented by a green ‘○’ and ‘False negatives’ are PCR 

Positive and are represented by a purple ‘△’. 

  

played in Table 5, for the warm season data, the TPM estimate is 
0.09 + 0.10 = 0.19, the sensitivity estimate is 0.54/(0.10 + 0.54) 
= 0.84, and the specificity estimate is 0.27/(0.27 + 0.09) = 0.75. 
Based on the sensitivity and specificity estimates for the warm 
season data, note that the LDA classifier better predicts positive 
leaves than negative leaves. For the cool season data, the TPM 
estimate is 0.21 + 0.13 = 0.34, the sensitivity estimate is 0.47/
(0.13 + 0.47) = 0.78, and the specificity estimate is 0.20/(0.20 + 
0.21) = 0.49. Similar to the warm season data, the LDA classifier 
performs better when predicting HLB positive leaves than HLB 
negative leaves for the cool season data. Note the substantial 
decrease in sensitivity and specificity for the cool season data. 
Figure 3 shows the LDA binary classification of the leaves for the 
warm season and cool season data using PCR as a gold standard. 
The ROC curves for the warm season and cool season data are 
shown in Figure 4, based on the estimates given in Table 4. In 
this case, the AUC estimate is 0.9 for warm season and 0.72 for 
cool season.

25 
 

 

Fig. 4 . Frequentist ROC curves for the Warm Season and Cool Season data with PCR as a gold 

standard. The AUC estimates are 0.9 for Warm Season and 0.72 for Cool Season.

   

Fig. 4 . Frequentist ROC curves for the warm season and cool season data with PCR as a gold standard. The AUC estimates are 0.9 for warm season and 0.72 for 
cool season.
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The LDA classifier is not able to reliably differentiate between 
HLB positive and negative leaves based on starch content. This 
motivates us to use the TOC method for classification in order 
to control TPM below the nominal level of γ = 0.05. Classifica-
tion probability estimates of the TOC method for the negative, 
uncertain, and positive groups for the warm season and cool 
season data are given in Table 6. Note that, as expected, the 

Table 6. Classification probability estimates of the frequentist TOC 
method for the negative, uncertain, and positive groups for the warm 
season and cool season data with PCR as a gold standard. The TPM 
estimate for the warm season data is 0.04 + 0.01 = 0.05 and for the 
cool season data is 0.04 + 0.02 = 0.06.

	 Warm season	 Cool season

		  Negative	 Positive	 Negative	 Positive
Negative	 0.13	 0.04	 0.04	 0.04
Uncertain	 0.21	 0.15	 0.34	 0.35
Positive	 0.01	 0.45	 0.02	 0.20

   

Fig. 5. Frequentist TPM curves for warm season and cool season with PCR as a gold standard. 

Fig. 6. Classified leaves using frequentist TOC for warm season and cool season data using PCR as a gold standard. Observations above the top line are classified as 
positive: “true positives” are PCR positive and are represented by a red “x” and “false positives” are PCR negative and are represented by a blue “+.” Observations 
below the bottom line are classified as negative: “true negatives” are PCR negative and are represented by a green “❍” and “false negatives” are PCR positive and 
are represented by a purple “Δ.” Observations between the lines are classified as “uncertain” and represented by a black “◊.”
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Fig. 5. Frequentist TPM curves for Warm Season and Cool Season with PCR as a gold standard.  

  

TOC method controls the TPM. Specifically, the TPM estimate 
for warm season is 0.04 + 0.01 = 0.05 and the TPM estimate for 
cool season is 0.04 + 0.02 = 0.06. Figure 5 shows the estimated 
TPM curves displaying the uncertainty regions, and Figure 6 
shows the classified leaves based on TOC for the warm season 
and cool season data.

Bayesian approach without PCR as a gold standard for 
HLB. Posterior estimates of the parameters were obtained using 
Markov Chain Monte Carlo (MCMC) techniques. The MCMC 
simulation is run in JAGS (Plummer, 2003). We also use the R-
packages rjags (Plummer, 2013), R2jags (Su and Yajima, 2012), 
and coda (Plummer et al., 2013) to call the JAGS software from 
R environment and to process the data from the MCMC samples 
in R. After removing the first 10,000 (burn-in) samples, we used 
10,000 draws from the JAGS MCMC sampler to approximate the 
Bayes estimates. Posterior estimates are given in Table 7; note that 
these estimates differ appreciably from those given in Table 4.

Table 8 gives the Bayes estimates of LDA classification prob-
abilities using the estimates given in Table 7. For the warm season 
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Fig. 6.  Classified leaves using frequentist TOC for Warm Season and Cool Season data using 

PCR as a gold standard. Observations above the top line are classified as Positive: ‘True 

positives’ are PCR Positive and are represented by a red ‘x’ and ‘False positives’ are PCR 

Negative and are represented by a blue ‘+’. Observations below the bottom line are classified as 

Negative: ‘True negatives’ are PCR Negative and are represented by a green ‘○’ and ‘False 

negatives’ are PCR Positive and are represented by a purple ‘△’. Observations between the lines 

are classified as ‘Uncertain’ and represented by a black ‘◇’. 
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Table 7. (MCMC) Bayes estimates of the mean, variance, and mixing probability parameters μ1, σ1
2, μ2, σ2

2, and p, and 95% lower (LCL) and upper 
(UCL) credible limits for μ1 and μ2 for the warm season and cool season data without PCR as a gold standard.

		  μ1	 σ1
2	 p	 LCL (μ1)	 UCL (μ1)	 μ2	 σ2

2	 LCL (μ2)	 UCL (μ2)
Warm season	 1.97	 0.44	 0.66	 1.78	 2.18	 3.52	 0.22	 3.29	 3.72
Cool season	 2.07	 0.02	 0.15	 2.01	 2.14	 2.54	 0.56	 2.46	 2.62

   

Table 8. (MCMC) Bayes estimates of LDA classification probabilities for 
the warm season and cool season data without PCR as a gold standard.

	 Warm season	 Cool season

		  True neg	 True pos	 True neg	 True pos
Pred neg	 0.59	 0.08	 0.00	 0.00
Pred pos	 0.07	 0.26	 0.15	 0.84

   

Table 9. (MCMC) Bayes estimates of TOC classification probabilities for 
the warm season and cool season data without PCR as a gold standard.

	 Warm season	 Cool season

		  HLB neg	 HLB pos	 HLB neg	 HLB pos
Negative	 0.59	 0.03	 0.00	 0.01
Uncertain	 0.04	 0.05	 0.15	 0.28
Positive	 0.02	 0.27	 0.04	 0.52

   

Fig. 7. Bayesian ROC curves for the warm season and cool season data without PCR as a gold standard. The Bayes estimates of AUC are 0.97 for  warm season 
and 0.73 for cool season.

data, the Bayes estimate of TPM is 0.07 + 0.08 = 0.15, the Bayes 
estimate of sensitivity is 0.26/(0.08 + 0.26) = 0.76, and the Bayes 
estimate of specificity is 0.59/(0.59 + 0.05) = 0.92. For the cool 
season data, the Bayes estimate of TPM is 0.15 + 0.00 = 0.15, the 
Bayes estimate of sensitivity is 0.84/(0.84 + 0.00) = 1.00, and the 
Bayes estimate of specificity is 0.00/(0.00 + 0.16) = 0.00. Table 9 
shows the Bayes estimate of the TOC classification probabilities 
for the warm season and cool season data without PCR as a gold 
standard using the estimates given in Table 7. By design, the TPM 
for warm season and cool season is 0.05. Bayesian ROC curves 
for the warm season and cool season data are given in Figure 7. 
The Bayes estimates of AUCs are 0.97 for warm season and 0.73 
for cool season. Figure 8 shows the TPM curves displaying the 
uncertainty region determined by the TOC method.

Discussion

The approaches presented in this communication suggest that 
starch has predictive ability for HLB, but that the predictive abil-
ity is higher in the warm season months (June–November) than 
in the cool season months (December–May). This is evidenced 
by the differences in the ROC curves (Figs. 4 and 7) and the size 
differences in the uncertainty regions determined by the TOC 
method (Figs. 7 and 8). Tables 4 and 7 show that the means for 
the negative and positive groups are more separated in the warm 
season than in the cool season. Moreover, TOC was able to control 
the TPM for both the warm season and cool season data through 
the establishment of an uncertainty region.

A detailed analysis of the biotic conditions surrounding HLB 
in terms of bacteria life cycle and the plant development reveals 
a rational explanation for two types of misclassifications when 
PCR is a gold standard: 1) false negatives (low starch but PCR 
positive) and 2) false positives (high starch but PCR negative). 
Given the widespread presence of HLB and the prolonged la-
tency period between infection and symptomatology (Gottwald, 
2010), it is evident that a great number of seemingly healthy 
(asymptomatic) leaves are already infected with CLas. Although 
these leaves may in fact give a positive signal in the PCR test, 
starch levels still remain below the threshold levels, thus lead-
ing to false negative results in a starch-based test with PCR as 
a gold standard.

Central to the second type of misclassification (false positive, 
i.e., high starch but PCR negative) is the bacteria’s life cycle and 
the anatomical changes occurring in the leaf as a consequence of 
CLas infection. As noted by Schneider (1968), Etxeberria et al. 
(2009), and Folimonova and Achor (2010), visible symptoms of 
starch accumulation (indicating high starch content) only arise 
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Fig. 7. Bayesian ROC curves for the Warm Season and Cool Season data without PCR as a gold 

standard. The Bayes estimates of AUC are 0.97 for Warm Season and 0.73 for Cool Season. 
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after phloem plugging. During the process of phloem plugging 
and eventual collapse, CLas concentration declines, resulting in 
diminished DNA fingerprinting and lack of PCR detection (Fo-
limonova and Achor, 2010). At some point, this situation would 
result in CLas infected leaves with high levels of starch but no 
PCR positive signal. Furthermore, plugging of phloem tissue also 
results in the accumulation of starch in leaves acropetally from 
the initial CLas infected leaf resulting in symptomatic leaves 
without DNA signal above the initial infection. This would be 
identified as a false positive in a starch-based test with PCR as 
a gold standard.

Limitations. The data collection scheme that was followed 
does not support the creation of universal starch threshold levels 
for the classification of citrus trees as negative, uncertain, or 
positive. Further research into the biological relationship between 
starch, HLB, and time is needed before such cutoff points could 
be established and grounded in the literature. Our results are 
based on three variables: starch, PCR status, and season. Had 
other variables (e.g., symptomatology) or longitudinal data been 
available, a more comprehensive understanding of the relation-
ships between starch and HLB for the purpose of diagnosis may 
have been possible.
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