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Disease Alert Systems (DAS) in the Agroclimate decision-support system provide site-specific information to aid citrus, 
blueberry, and strawberry growers to decide when a fungicide application would be required. All of these DAS use 
disease models based on temperature and leaf wetness (LW) duration data to predict when weather conditions are 
favorable for disease development and control measures are needed. Daily environmental data are obtained from the 
weather stations of the Florida Agricultural Weather Network (FAWN). Previous research has shown that the electri-
cal resistance-based Campbell 237-L leaf wetness (LW) sensors provide reliable data. However, they require painting 
and in-situ calibration, which is not easily done by growers. Conversely, Decagon LW dielectric sensors come ready to 
use by the manufacturer, with pre-established thresholds for wet and dry conditions. However, their performance in 
the field is uncertain. We compared the LW estimations provided by Campbell 237-L and Decagon dielectric sensors 
installed in the same station in Plant City, Florida. We performed comparisons of every sensor combination using 
15-minute observations and maximum daily LW duration. The sensors of the same manufacturer had high (> 0.90) 
Pearson’s correlation coefficient (Pc), low (< 1.0) mean absolute error (MAE), and high k agreement indices (> 0.9), 
which indicate a strong correlation. However, when comparing Campbell and Decagon sensors, the precision was 
lower as indicated by Pc of approximately 0.8, MAE around 2.0 hours, and k-indices around 0.8. Nevertheless, the 
estimations MAE were within the acceptable range for DAS applicability. Decagon dielectric sensors could be used in 
the FAWN weather stations to provide reliable LW estimations.  

Disease Alert Systems (DAS) intended for plant disease man-
agement routinely use leaf wetness (LW) as input for disease risk 
calculations. LW can be estimated by sensors specifically built 
for that purpose or by mathematical models that use commonly 
observed weather variables, most often relative humidity. There is 
a wide array of different LW sensors available in the market and 
no standardized way to measure LW in the field (Rowlandson et 
al. 2015). Two types of LW sensors are used in weather stations 
in the Florida Automated Weather Network (FAWN) that provide 
information to DAS—the Decagon LW dielectric sensor (Decagon 
Devices Inc., Pullman, WA) and the electrical resistance-based 
Campbell 237-L sensors (Campbell Scientific, Logan, UT). Each 
sensor has benefits and drawbacks in comparison to the other. For 
instance, the Decagon LW dielectric sensors have the advantage 
of being calibrated and painted by the manufacturer. The electrical 
resistance-based Campbell 237-L sensors provide reliable LW 
estimations (Sentelhas et al. 2004a) and have been functional for 

more than ten years after installation (Peres, personal observa-
tion). The drawback of Decagon dielectric sensors was their low 
durability. In previous trials, it was observed that older models 
were functional for approximately one to two years in Florida 
fields (Peres and Fraisse, personal observation). However, it is 
our understanding that Decagon has since made improvements 
to its sensors. The Campbell 237-L leaf wetness sensors have 
the disadvantage of not being painted by the manufacturer and 
requiring an in-situ calibration that cannot be easily performed 
by growers. Painting provides more precise wetness estimations 
by responding better to the onset and offset of wetness, and thus, 
it is recommended when integrating LW sensors into a DAS 
(Gillespie and Kidd 1978; Sentelhas et al. 2004b; Sentelhas et 
al. 2008). Calibration of these sensors can be performed in the 
field or the laboratory. Briefly, laboratory calibration is done 
by applying droplets of water to the sensor and registering the 
electric resistance values provided by the sensor (Sentelhas et 
al. 2004a). Field calibration requires on-site observations of dew 
onset and offset so a resistance threshold that distinguishes wet 
and dry is established (Rao et al. 1998). The establishment of 
resistance thresholds is essential for the use of Campbell 237-L 
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sensors since we have observed a significant variation in the 
values below which a sensor considers a resistance observation 
as wet (Montone 2013). Given the advantages and disadvantages 
of each sensor and the importance of LW for DAS, the objective 
of this study was to compare the LW estimations of the recently 
improved Decagon dielectric sensors to those of Campbell 237-L 
sensors over three years in Florida. 

Materials and Methods

Weather stations and data acquisition. All the sensors 
were located in the same weather station installed in Plant City, 
Fla. This weather station is maintained by FAWN, and data were 
retrieved from its database. The weather station was equipped 
with four LW sensors, two Decagon dielectric, and two Camp-
bell 237-L sensors. The sensors were placed approximately 10 
cm from each other at 30 cm over turfgrass and installed at a 
45º angle. The two sets of Campbell and Decagon sensors were 
positioned adjacent to each other and installed on a PVC pipe 
bar centered at the base of the automated weather station. One 
set of sensors was placed equidistantly to the left and the other 
one to the right of the weather station. Leaf wetness (LW) data 
were acquired every 15 min. from 26 July 2017 to 29 Jan. 2020. 
A total of 88,096 observations for each of the four sensors was 
recorded for the analysis. 

The comparison between sensors was performed based on a 
methodology adapted from Montone et al. (2016) and Kim et 
al. (2004). Comparisons were performed in pairs for every pos-
sible combination: Campbell sensor 1 vs. Campbell sensor 2; 
Decagon sensor 1 vs. Decagon sensor 2; Decagon sensor 1 vs. 
Campbell sensor 1; Decagon sensor 2 vs. Campbell sensor 1; 
Decagon sensor 1 vs. Campbell sensor 2; and Decagon sensor 2 
vs. Campbell sensor 2.

Linear regression analysis, determination of Pearson’s 
correlation coefficients, mean square error (MSE), and mean 
absolute error (MAE). Pairwise linear regression analyses were 
performed for every combination of sensors. When comparing 
different sensors, data from Campbell 237-L sensors were con-
sidered the standard and plotted on the x-axis of the regression. 
Maximum daily LW duration data for each sensor were considered 
for this analysis, which totaled 931 data points (days) for each 
sensor. The slope, intercept, coefficient of determination (R2), and 
statistical significance level (P-value) were calculated for each 
combination of sensors. Pearson’s correlation coefficients were 
also calculated for data obtained for each of the combinations 
of sensors described previously. The significance level for the 
correlation was also calculated. Daily LW duration values were 
also used to calculate the mean square error (MSE) and mean 
absolute error (MAE) of the relationship as done previously in a 
similar study (Montone et al. 2016). The errors were calculated 
in the unit of hours and hours2 for MAE and MSE, respectively.   

Contingency table and k agreement indices calculations. 
Every observation acquired at 15-min intervals was used for this 
step of the comparison. The data obtained by the Campbell 237-
L sensors were considered the standard for this analysis when 
they were compared to Decagon dielectric sensors, as Campbell 
237-L sensors were calibrated based on visual observations in 
a site-specific manner and were known to provide good LW 
estimations from previous research (Montone et al. 2016). Six 
four-cell contingency tables were designed, one for every pairwise 
comparison of the combinations previously described. The tables 

had true positives for wetness (W), true negative for wetness (i.e., 
dry – D), false positive (i.e., false wet – FW), and false negative 
(i.e., false dry – FD). The number of W, D, FD, and FW events 
was calculated in the unit of hours, as done for MAE. After the 
tables were designed, a k agreement index (Dietterich 2000) was 
calculated for each comparison of sensors. The equations below 
(Eq. 1, Eq. 2, and Eq. 3) describe how the k agreement index and 
its components were calculated. 

[Eq. 1]

[Eq. 2]

 

[Eq. 3]

In which: 
θ1	 =	 fraction of correct estimations,
W	 =	 true positives for wetness, 
D	 =	 true negative for wetness, i.e., dry events,
FW	=	 positive (i.e., false wet—FW), 
FD	 =	 false negative (i.e., false—FD),
θ2	 =	 estimate of the probability that the LW estimations  
		    agree by chance, based on the contingency table 
		    counts,
k	 =	 k agreement index.

Results

The agreement between sensors of the same manufacturer 
(Campbell 1 vs. Campbell 2 and Decagon 1 vs. Decagon 2) 
was very good (Fig 1A and B, Table 1). The coefficient of 
determination (R2) was 0.96 and 0.83 for the comparisons 
between Campbell and Decagon sensors, respectively (Fig 
1-A, 1-B, Table 1). When comparing Decagon and Campbell 
sensors, however, the agreement was not as good (Fig. 1, Table 
1).  The R2 of the relationships between Campbell and Decagon 
sensors ranged from 0.60–0.64 (Fig. 1C–F, Table 1). When 
comparing the regression line between the data points obtained 
from Campbell and Decagon sensors, an overestimation of LW 
duration by Decagon sensors in relation to the Campbell ones 
was revealed, especially at maximum daily LW duration lower 
than 20h (Fig. 1C–F). At approximately 30 h of LW duration, a 
slight shift towards underestimation was observed (Fig. 1C–F). 
Pearson’s correlation coefficients for the sensor comparisons 
from the same manufacturer were high, both above 0.9 (Table 
1). When comparing sensors from different manufacturers, the 
correlation coefficients were all approximately 0.8 (Table 1). 
Similarly, MAE estimations were low when comparing sensors 
from the same manufacturer, all below 1 h (Table 1). However, 
MAE increased to about 2.2 h when compared the different sen-
sors (Table 1). The same pattern was observed for k agreement 
indices. Comparisons between Campbell sensors and Decagon 
sensors had very high k agreement indices of 0.96 and 0.92, 
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Fig. 1.  Linear regression (gray dashed line) analysis between maximum daily leaf wetness duration (in hours) estimated by Campbell 237-L sensor 1 and Campbell 
237-L sensor 2 (A),  Decagon dielectric sensor 1 and Decagon dielectric sensor 2 (B),  Campbell 237-L sensor 1 and Decagon dielectric sensor 1 (C), Campbell 
237-L sensor 2 and Decagon dielectric sensor 1 (D), Campbell 237-L sensor 1 and Decagon dielectric sensor 2 (E), and Campbell 237-L sensor 2 and Decagon 
dielectric sensor 2 (F).  The continuous black line represents the perfect agreement line (i.e., a R2 of 1.0).

Table 1. Pearson’s correlation coefficient (Pc), coefficient of determination of the linear regression (R2), intercept and slope of the linear regres-
sion, and their respective estimation significance levels (P value) related to the comparison between Campbell 237-L and Decagon dielectric 
leaf wetness sensors. Mean square error (MSE), mean absolute error (MAE), and k agreement index of leaf wetness data acquired at 15-minute 
intervals by different sensors, specified in the comparison column.

	 Correlation	 Linear regression	 k agreement
Comparison	 Pc	 P value	 R²	 Intercept	 P value	 Slope	 P value	 MSEz	 MAEz	 indexy

Campbell 1 vs. Campbell 2	 0.98	 < 0.0001	 0.96	 0.28	 < 0.0001	 0.96	 < 0.0001	 0.91	 0.42	 0.96
Decagon 1 vs. Decagon 2	 0.92	 < 0.0001	 0.84	 1.29	 < 0.0001	 0.89	 < 0.0001	 4.19	 0.96	 0.92
Campbell 1 vs. Decagon 1	 0.80	 < 0.0001	 0.62	 3.19	 < 0.0001	 0.85	 < 0.0001	 13.46	 2.20	 0.81
Campbell 1 vs. Decagon 2	 0.80	 < 0.0001	 0.64	 3.34	 < 0.0001	 0.84	 < 0.0001	 12.53	 2.12	 0.80
Campbell 2 vs. Decagon 1	 0.77	 < 0.0001	 0.60	 3.27	 < 0.0001	 0.85	 < 0.0001	 14.54	 2.35	 0.80
Campbell 2 vs. Decagon 2	 0.79	 < 0.0001	 0.62	 3.41	 < 0.0001	 0.84	 < 0.0001	 13.52	 2.26	 0.80
zCalculated based on the difference between daily maximum wetness duration estimated by each combination of sensors
yCalculated according to the methodology developed by Dietterich (2000).
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respectively (Table 1). The k agreement indices of comparisons 
made between Campbell and Decagon sensors were all ap-
proximately 0.8 (Table 1).  Our results do not indicate any loss 
in precision for the two types of sensors over the course of the 
three years of data analyzed in this study.

Discussion

While the Campbell 237-L sensors are the gold standard, the 
Decagon sensors can be viable options for weather stations used 
for plant disease risk calculation based on our results. These sen-
sors provide LWD estimation within the acceptable MAE margin 
for application in DAS of approximately 2 h (Sentelhas et al. 
2008) compared to in-situ calibrated Campbell 237-L sensors. 
The convenience of being painted and calibrated with a pre-
established LW threshold makes the Decagon dielectric sensors 
suitable options to be installed in FAWN or grower-owned weather 
stations. The comparisons of the four sensors yielded very similar 
regression equations and results. The analysis of three-years of 
data was important to verify the durability of the sensors, i.e., 
to confirm if the measurements would lose accuracy over time. 
Growers and researchers should keep monitoring the data from 
weather stations to identify erroneous data in DAS, especially 
during critical periods for plant disease management in Florida. 

In Florida, the Agroclimate decision-support system contains 
three DAS, intended for strawberry, citrus, and blueberry grow-
ers (Fraisse et al. 2016; Gama et al. 2021; Pavan et al. 2011; 
Perondi et al. 2020). They all rely on LW data to calculate and 
provide daily disease risk assessments to growers. LW sensors 
must be reliable when feeding information to the DAS once 
the implementation of disease management practices must be 
deployed as promptly as possible to maximize efficacy. It is also 
desirable for sensors to be durable to provide results for more 
than one season. Our results could be used by growers, extension 
specialists, and stakeholders when deciding which LW sensor to 
install in weather stations used for DAS application in Florida. 
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