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Biological phenomena are influenced by numerous factors and interactions. As such, their observation as affected 
by different treatments often takes on a distribution of responses, the perceived form of which depends on aspects of 
experimental design. If sampling sizes or replicates are too few, then misleading conclusions may ensue, since relatively 
limited data present only a slice of the full range of responses that, under varying conditions, an individual treatment 
might contribute toward. An analysis involving simulated subsampling of actual huanglongbing data was conducted 
to illustrate the effect of varying sample sizes and replicates on results. At one end of the spectrum, increased sample 
sizes (while maintaining only one replicate) increased the rate of significantly different (α = 0.05) estimates of disease  
incidence under one treatment as compared to the control (complete sampling: 150 trees per treatment, three replicates) 
to ~33%. Conversely, with a fixed per treatment sample size of 10 trees, estimates of disease incidence were respec-
tively up to 75%, 40%, or 25% different from complete sampling estimates when one, two, or three replicates were  
utilized. Thus, too few replicates or too few samples per replicate can lead an investigator to infer apparent differ-
ences among treatments when larger sample sizes and/or more replicates would demonstrate a lack of statistical 
difference. Though the analyzed data were based on the effects of various control strategies on development of huan-
glongbing disease incidence, results are analogously applicable toward alternative investigations, such as evaluation of  
resistant lines.
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As most citrus growers know too well, huanglongbing is a 
serious problem. In order to increase certainty of effectiveness 
of disease management tools such as durable resistance, it is 
important for their experiments to be conducted in a manner 
that yields robust results. The purpose of this study was to assist 
citrus growers and scientists in addressing issues of experimental 
design with particular reference toward evaluating citrus lines 
for huanglongbing resistance. While experimental designs can 
be limited by physical, logistical, or monetary constraints, oc-
casionally samples sizes and number of replicates are determined 
by selecting “round” numbers (e.g., 10 samples or 2 replicates). 
While these practices can be commonplace and can under certain 
situations (i.e., those with minimal variation) yield representa-
tive results, allowing statistical theory to inform experimental 
design is more scientifically sound, less subjective to chance, 
ensures a given experiment performs with the desired level of 
efficiency, and avoids the possibility of drawing unsound, sta-
tistically invalid conclusions.

Materials and Methods

This study utilized simulation to illustrate the effect of varying 
sample sizes and number of replicates on experimental conclu-
sions. The data that were analyzed were actual huanglongbing 
disease incidence data collected from a commercial citrus or-

chard in Collier County, FL. The original experiment compared 
five treatments for management of huanglongbing utilizing a 
randomized complete-block design. Treatments were replicated 
in space three times, with each replicate containing 150 trees. 
Descriptions of actual treatments are omitted from the current 
paper to avoid unnecessary distraction.

Simulation was performed by randomly sampling without 
replacement 2 to 146 tree samples per treatment for scenarios 
involving 1, 2, or 3 replicates. Each sampling scenario was 
conducted with 1000 iterations. Linear models (for simulated 
experiments with one replicate) and linear mixed models (for 
simulated experiments with more than one replicate) (Littell 
et al., 2007) were fit to resulting data to determine presence of 
significant treatment differences, and comparisons of estimated 
treatment effects (BLUPs) were made to estimates from the 
complete dataset by comparing 95% confidence intervals. Power 
analyses were conducted as previously described (Stroup, 2011) 
utilizing variance terms estimated from the complete dataset  
(Table 1) and allowed examination of scenarios including more 
samples or replicates than originally present in the utilized da-
taset. All analyses were conducted in SAS (SAS 9.4, Cary, NC).

Results and Discussion

Analysis of the complete dataset determined the treatments 
were not significantly different (P = 0.4783) (Table 1). The 
effect of varying sample sizes and replicates on concluding 
significant treatment differences can be seen in Fig. 1. With one 
replicate, increased sample sizes increased chances of conclud-
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ing significant differences (α = 0.05). This is because greater 
sample sizes increased precision of the estimated mean of each 
treatment-replicate (Fig. 2), which consequently made it easier 
to detect differences between individual treatment-replicates. 
With two replicates, increased sample sizes up to 42 samples per 
replicate increased chances of concluding significant differences, 
with further increases in sample size resulting in greater frequen-
cies of concluding no significant differences. In the presence of 
three replicates, increased sample sizes clearly corresponded to 
an increased proportion of times concluding no significant dif-
ferences, with 100% of simulated experiments concluding no 
significant differences after ≥ 42 samples. These points confer 
how too few samples or replicates can produce spurious results, 
as well as how the effect of increased sample size stabilized with 
increasing number of replicates (at least three).

Figure 2 illustrates how increased sample sizes in experiments 
with one replicate can actually increase the chance of obtaining 
incorrect (significantly different) treatment estimates as com-
pared to the mean from the complete dataset, with up to ~33% 
of simulated experiments having produced significantly different 
estimates of Treatment 1 when sample sizes approached 146. 
This demonstrates how means of some replicates are closer to 
the collective mean of all replicates than that of other replicates. 
The unknown difference of individual treatment-replicates’ means 
compared to the true mean before an experiment is conducted is 
a primary motivating factor for replicating treatments multiple 
times. Along those lines, when a fixed per-treatment sample size 
of 10 trees was examined, estimates of disease incidence were 
respectively up to 75%, 40%, or 25% different from complete 
sampling estimates when one, two or three replicates were uti-
lized, based on 95% confidence interval differences.

How then do we determine how many samples or replicates 
are adequate? The old saying commonly attributed to Francis 
Bacon, “knowledge is power”, here is quite fitting. In the ex-
perimental sense, power refers to the ability of a study to detect 
meaningful effects that exist (more formally, the probability of 
avoiding a Type II error, which is the chance of failing to reject 
the null hypothesis when the null hypothesis is in fact incorrect) 
(SAS Institute Inc., 2011), and it depends on sample size, number 
of replicates, experimental design, replicate variation, and the 
magnitude of difference to be detected (Fig. 3). While the power 
of a given study depends on several factors, it can fortunately be 
estimated before an experiment is conducted, provided estimates 
of experimental variance (e.g., of replicates) are available (Stroup, 

Table 1. Analysis of complete dataset of treatments evaluated for managing huanglongbing.
Effectz	 Test statistic valuey	 P	 Estimatex (SE)
Treatment	 0.94	 0.4783	 …
Treatment x replicate	 –	 –	 0.01962 (0.008523)
Replicate	 –	 –	 0.02221 (0.02161)
Residual	 –	 –	 0.1848   (0.005563)
Treatment 1	 5.65	 0.0002	 0.6769   (0.1198)
Treatment 2	 4.57	 0.0010	 0.5477   (0.1198)
Treatment 3	 5.27	 0.0004	 0.6313   (0.1198)
Treatment 4	 6.25	 < 0.0001	 0.7491   (0.1198)
Treatment 5	 4.78	 0.0007	 0.5732   (0.1198)
zEffects are a fixed effect (Treatment), covariance parameters (Treatment x replicate, Replicate, and Residual), and individual treatments (Treat-
ments 1–5).
yTest statistics are F values (Treatment) or t values (Treatments 1–5).
xEstimated variance (covariance parameters) or huanglongbing disease incidence (all others).

Fig. 1. Effect of sample size on proportion of times experiments concluded 
significant treatment differences with one (A), two (B), or three (C) replicates. 
Each point represents results from 1000 iterations. Red reference lines indicate 
the commonly chosen alpha of 0.05 (Type I error rate: the chance of an 
experiment if repeated many times concluding significant differences when 
no true significant differences exist).
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Table 2. Samples required to detect selected differences with experi-
mental power of ≥ 80%.

Difference of	
Number of replicates

mean from 0.65	 2	 3	 4
disease incidence	 Samples per replicate (total per experiment)
0.15	 368 (736)	 106 (318)	 64 (256)
0.20	 122 (244)	 50 (150)	 33 (132)
0.25	 66 (132)	 30 (90)	 21 (84)
 

Fig. 2. Effect of sample size on variability of estimated means of huanglongbing 
(HLB) disease incidence from experiments with one (A), two (B), or three 
(C) treatment replicates. Plots represent distributions of possible estimates 
from individual (A) or combinations of (B, C) replicates of Treatment 1 as an 
example. Each sample size contains results from 1000 iterations. Red dots are 
significantly different from the mean estimated from the complete dataset based 
on 95% confidence intervals, whereas blue dots are not significantly different. 
Solid reference lines indicate the mean of Treatment 1 estimated from the 
complete dataset, with the dashed reference lines indicating its standard error.

Fig. 3. Relationship of sample size, number of replicates, and power of an 
experiment to detect treatment differences ranging from 0.05–0.25. Results 
were calculated using variance terms estimated from the complete dataset and 
represent experiments with two (A), three (B), or four (C) replicates.

2011). In order to obtain a power of at least 80% in the examined 
dataset, ≥ 30 samples would be needed in each of three replicates 
to detect a difference of 0.25, and ≥ 50 samples would be needed 
to detect a difference of 0.20. As is shown in Table 2, increasing 
the number of replicates can actually decrease the total number 
of samples required for a given experiment to perform with a 
specific level of power. Compared to basing sample size and 
number of replicates for an experiment off of “round” numbers, 
it is better to let intentional experimental design by way of power 
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analysis inform sample size and number of replicates. This al-
lows for the most efficient use of resources and results in more 
effective studies whose conclusions are increasingly robust. In 
the context of examining lines for huanglongbing resistance, 
this translates into lines classified as being resistant having been 
evaluated with appropriate rigor, which in turn provides more 
sustainable management tools for growers.

Literature Cited

Littell, R.C., G.A. Milliken, W.W. Stroup, R.D. Wolfinger, and O. 
Schabenberger. 2007. SAS system for mixed models, 2nd ed. SAS 
Inst. Inc., Cary, NC.

SAS Institute Inc. 2011. SAS/STAT 9.3 user’s guide. SAS Inst. Inc., 
Cary, NC.

Stroup, W.W. 2011. Living with generalized linear mixed models. 
SAS Global Forum 2011. Paper #349. 18 p. <http://support.sas.com/
resources/papers/proceedings11/349-2011.pdf>


