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The height of a rocket is modeled with respect to time by tak-
ing into account its thrust, the rate at which its mass changes,
and assuming that it flies straight up. Several simplifying as-
sumptions are made, namely; thrust, force due to gravity and
the change in mass with respect to time are all constant, and
that drag is negligible.

Nomenclature

Limit aperiodic groups and G-sets

1 Introduction
Rockets are complicated dynamic systems that can be

difficult (if not overwhelming) to understand. However, with
much of modern life relying on these rockets mainly because
of the satellites they put into orbit, this understanding is criti-
cal. Perhaps the best way to start building this understanding
of rockets is by looking back at their history.

Although accounts of simple, firework-like rockets can
be traced back with some controversy to the Chinese c. 1250
A.D., modern rockets, as we know them, first started to
be developed by Robert Goddard in 1912. He developed
many concepts including: staging which is burning the fuel
in smaller combustion chambers, (instead of having just one
large tube of solid fuel). The use of the de Laval nozzle [1] to
allow the propellant accelerate out at supersonic speeds. He
also toyed with gyroscopic guidance systems and regenera-
tive cooling (the process of wrapping the fuel lines around
the nozzle to keep it cool while firing). After Goddard, all of
these concepts were developed and expanded upon through-
out WWII and the cold war. With the race to the moon, com-
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puters were integrated and advanced crafts capable of main-
taining livable conditions were developed. [2] Once all these
concepts were combined, the pieces of the modern rocket
were in place.

However, this brief history only gives an overview of
the names and technologies that go into a rocket, providing
a rough understanding of what is involved. Digging a little
deeper into the physics behind any one part can help expand
it a little more.

Starting with the “Ideal Rocket Equation” [3]

∆v = Isp ∗g0 ∗ ln
(

m f

mi

)
,

where Isp is the Specific impulse, g0 is acceleration due to
gravity and m f and mi stand for the initial and final masses
of the rocket, also known as the Tsiolkovsky rocket equation,
yields the change in velocity (∆v) of a rocket. When trying
to determine how far a rocket can go its ∆v value is like the
gas tank in a car: if it has a small value then it cannot go very
far.

Now when in the vacuum of space most of the variables
remain constant, but when one considers a rocket ascending
through the atmosphere one can begin to realize just how dy-
namically difficult the problem is. Looking at just one of the
variables in this equation and figuring out how it relates to at-
mospheric pressure can help one get a sense of how involved
this really is.

Isp (or specific impulse) when multiplied with g0 yields
effective exhaust velocity ve, an indicator of how powerful a
rocket is. The equation for specific impulse is [1]:



Isp =
F

ṁ∗g0
,

where the force F , and ṁ is the mass flow rate. F (force) has
its own equation [1]

F = ṁ∗ ve +Ae(p1−P2),

where ve is effective exhaust velocity, Ae is the area of the
opening at the tail end of the rocket bell, p1 is the static pres-
sure at that opening and P2 is the atmospheric pressure.

The above equation finally gets to P2 (atmospheric pres-
sure) which can be modeled as [1]

P2 = p0 ∗ e
(

h
h0

)
,

It is a relatively simple exponential function, where p0 is
pressure at sea level, h0 is the height of sea level and the
whole thing is dependent on the instantaneous height h.

This is just the tip of the iceberg. The above deconstruc-
tion only followed one path: picking one variable out of each
equation to trace back to its solution. As each variable was
picked it left behind others whose origins would be similarly
complicated. Furthermore, many convoluting factors such as
drag and thermal effects were left out. Otherwise the analy-
sis would be hopelessly sophisticated and of little illustrative
use. This is why in the title we used the phrase ”Ambiguous
Rockets.” What we are detailing is essentially the simplest,
most generic mathematics behind any possible rocket.

1.1 Problem Statement
Originally, rocket-engine efficiency was to be modeled

with respect to atmospheric pressure. The vision was to plot
efficiency over the course of a typical accent profile. How-
ever this would have been beyond the scope of this project.
Therefore the model shifted to rocket height, going straight
up, in terms of time: the equation was derived by taking into
account thrust, the mass lost by expelling fuel and the oppos-
ing force of gravity.

2 Methods & Materials
Fig.1 A basic diagram of the model.

Newton’s 2nd Law: Force = mass * acceleration

∑F = m ·a

FT hrust −Fgravity = m ·a

Initial conditions: Since the rocket begins at rest at
height 0, the initial conditions are as follows:

1.h(0) = 0
2.h′(0) = 0
3.h′′(0)≥ 0

Assumptions: In order to make the project more com-
prehensible several simplifying assumptions are made:

1. FT hrust =−k
dm
dt

[1], where k is a constant. The ”−”
(negative sign) indicates that the force moves opposite
to the movement of the gases.

2. dm
dt is a constant c where c is negative.

3. Fgravity =−m ·g, where g is constant close to earth.
4. The rocket moves in a straight vertical path making the

position equal to the rockets height at any point in time.
Therefore a = h′′

Combining these assumptions results in:

−k
dm
dt
−m(t)g = m(t) ·h′′(t)

− k
m(t)

c−g = h′′(t)

The function m(t) represents the mass of the rocket as a func-
tion of time and can be written as m(t) =mo−c ·t. Therefore
the equation becomes:

h′′(t) = − k
mo + ct

· c−g

Note how the second term of the function m(t) is now
positive since c > 0.
Now there is an important restriction to be made before
moving on. At t = 0, h′′ becomes:

h′′(t) =− kc
mo
−g≥ 0 (1)

This is because at t = 0 the acceleration provided by the
thrust needs to be greater than or equal to the acceleration



due to gravity otherwise the rocket would accelerate down-
ward as if the ground were not there to stop it.

Solving the second degree equation:

−
∫

h′′(t)dt =
∫ ( k

mo + ct
· c+g

)
dt

−h′(t) =
∫ ( k

mo + ct
· c+g

)
dt

Solve for h′(t):

−h′(t) =
∫ ( k

mo + ct
c+g

)
dt

=
∫ ( k

mo + ct
c

)
dt +

∫
g dt

Set u = mo− ct, du =−c dt, du
−c = dt. Then:

−h′(t) =

[∫ (kc
u

)
du
−c

]
+gt

=

[
k
∫ (1

u

)
du

]
+gt

= k · lnu+gt +a

= k · lnmo− ct +gt +a

Solving for the constant a′′ using initial conditions at t =
0 yields a second restriction (2):

−h′(0) = k · ln(mo− (c ·0))+(g ·0)+a

0 = k · ln(mo)+a

a = −k · ln(mo) (2)

Similarly, we solve for h(t) to get:

−h′(t) = −k ln(mo + ct)+gt +a

−
∫

h′(t)dt =
∫
(−k ln(mo + ct)+gt +a)dt

−h(t) =
∫
−k ln(mo + ct)dt +

∫
gt dt +

∫
a dt

Set u = mo− c · t, du =−c dt, du
−c = dt

−h(t) =
∫
−k lnu

du
−c

+
∫

gt dt +
∫

a dt

−h(t) =

[
k
c

∫
lnu du

]
+

g
2

t2 +at (3)

Next, we apply the integration by parts method to eval-
uate the integral:

∫
(u)′(lnu)du = (u)(lnu)−

∫
(u)(lnu)′du∫

1 · lnu du = (u)(lnu )−
∫

(u)(
1
u
)du∫

lnu du = (u)(lnu)−u

Plug in (3):

−h(t) =
k
c
[(u)(lnu)−u]+

g
2

t2 +at +b

=
k
c
[(mo + ct)(ln(mo)+ ct)− (mo + ct)]+

g
2

t2 +at +b

Next, we find the constant b′′ using the initial condition.
This will result in the third restriction (4):

−h(0) =
k
c
[(mo− (c ·0)(ln(mo)− (c ·0))

− (mo− (c ·0)]+ g
2
(0)2 +(a ·0)+b

0 =
k
c
[mo(ln(mo))−mo]+b

b =
k
c

mo[1− (ln(mo))] (4)

Therefore:

−h(t) =
k
c
[(mo + ct)(ln(mo)+ ct)− (mo + ct)]

+
g
2

t2− (k · ln(mo))t +
k
c

mo[1− (ln(mo))],



Simplifying yields the solution:

h(t) =−k
c

mo · ln(mo + ct)− kt · ln(mo + ct)

+ kt− g
2

t2 + kt · ln(mo)+
k
c

ln(mo)

The range of time over which the rockets height can be
modeled is limited by mass. That is, once the rocket runs out
of mass to expel thrust is no longer constant. Therefore:

t ≤−mo

c
(5)

3 Results
The solution can be modeled by plotting it in Matlab c©.

The values are chosen so that all four restrictions are satis-
fied. These specific values were chosen arbitrarily and fit the
required assumptions and conditions laid out above.

k = 60
c =−5

mo = 25
g = 9.81

Note that all values are unit-less. This is for demonstration
purposes, but any set of variables with agreeing units could
be used. Plotting the function with these variables generates
the following model of rocket height with respect to time.
Here, it can be seen what would be expected of a rocket: it

Fig. 2 Rocket Height over an ideal accent.

lifts off slowly, but as it burns fuel the pull of gravity de-
creases and the thrust accelerates the rocket upward faster
and faster. If the first restriction (1) is invalidated and the
thrust was insufficient to counteract gravity (k = 30), the re-
sult is:

Fig. 3 Rocket Height with weak thrust.

The force of gravity is initially stronger than that of
thrust and the rocket actually starts falling below its initial
height as if there were no ground to stop it. After about 3.3
units of time the rocket has become light enough to ascend
under its own power.

Furthermore, observe how the model behaves after the
rocket runs out of mass to expel. Returning the value of
thrust back to where k = 60 and extending the time-frame
to t = 10 yields the following graph:

Fig. 4 Rocket Height after all fuel is expelled.

It is important to note that because the model was de-



veloped under the conditions of constant thrust and a con-
stant rate of mass loss, it is no longer accurate once t > mo

c
(5). However, the model still shows the general behavior that
would be expected of the situation. When the it runs out of
fuel at t = 5, the inflection of the graph changes. Thrust is no
longer being supplied, so gravity is free to pull it back down.
The rocket coasts up to just bellow 300 units of height before
gravity cancels out its momentum, and it falls from the sky.

4 Conclusions
The solution proved capable of modeling rocket height

over time. Given that all variables meet the four restrictions,
the model will show the rocket flying upward with increas-
ing acceleration. Likewise, the first restriction was justified
by choosing variables that invalidate it: the plot showed the
expected behavior of initially falling. Remarkably, the solu-
tion could even predict the general behavior of the rocket af-
ter it had run out of fuel, though perhaps not accurately. This
model could be used as a basic check to see if a rocket will fly
before any resources are put in to actually building one. Ul-
timately it succeeded in demonstrating rocketry’s most basic
principle: thrust.
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Appendix A: Matlab Code
%Variables
k=60;
c=-5;
m=25;
g=9.81;
t = linspace(0,5,100);

%The solution
h = (-(k/c)*m*(log(m+c*t)))-(k*t.*(log(m+c*t)))+
(k*t)-((g/2)*(t.ˆ2))+
(k*t.*(log(m)))+((k/c).*m.*(log(m)))

%Graphing the solution

plot(t,h)
xlabel(’time’) % x-axis label
ylabel(’height’) % y-axis label
title(’Rocket Height’)


