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Introduction
Content Based Inlage Retrieval (CBIR) intends to objectively and

efficiently retrieve interested iIllages or ilnage segnlcnts (pixel
blocks) fronl a large-volu111e iITIagc database based on the content
sinlilarity between a query icon (or sanlple ilnagc) and database inl­
ages (or inlage scgInents). CBIR was originated froll1 C0111plltcr vi­
sion and database COlTIlTIUnity (Flickner et al., 1995~ Pentland et aJ.,
1996; SlTIith and Chang, 1996) and has been gradually accepted by
GIScientists for geographic inlage database applications (Ma and
Manjunath, 1996; Bruns and Egenhofer, 1996; Sheikholeslanli et aJ.,
1999; Agouris et aI., 1999; Stefanidis et aI., 2002; Bian, 2003; Sian
and Xic, 2004).

To geograpl1ers, inlage retrieval is a reversal to inlage classifIcation
in regard to operational process since ilnage retrieval starts with a
content description and then identifies locations that contain the con­
tent. lInage classification, on the other hand, begins with a stu(iy area
and then identifies contents within tIle area. One key cOlnponent in
CSIR is to represent the sCl11antic content of an ilnage segnlellt, often
through a 111uneric index vector (called feature vector), with each ele­
ment being a l11easurClnent of a visual property, such as color, tex­
ture, sllapc and so on. To represent the inlportant spatial structure ill­
fornlation within geographic images, approaches based on variogranl
has recently been adopted for (~BIR (Huang et aI., 1999~ Aksoy and
Haralick, 2000; Bian and Xie, 2004). W11ile the cOllcept of variogranl
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Figure 1. Illustrate how to detenllinc whether two sample points (0,
A) are location pairs separated by a lag d along a direction e, defined
by a distance tolerance (td), a direction tolerance (a), and a band­
width (h).
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is not new, some important aspects require further study to ensure
these approaches be properly applied in CBIR. This paper examines
several issues in this regard.

Variogram
Variogram is a key concept underlying a set of spatial interpolation

approaches called Kriging in geostatistics (Issaks and Srivastava,
1989). Like many spatial interpolation methods, the objective of
Kriging is to interpolate a continuous surface from a limited number
of sample points. In an image, the pixel centers are nonnally regarded
as the nominal sample point locations. It is from these sample points
that empirical variograms are constmcted and used for subsequent
inference.
A variogram (or more fonnally, semi-variogram) is a plot of semi­
variance vs. lag distances, where the spatial continuity or the associa­
tion between semi-vari;mces and the lag distances is explicitly pre­
sented. The association may show directional difference, representing
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spatia] continuity anisotropy, and the anisotropy can be characterized
by the differences of variogranls along ditlercnt directions. In gcosta­
tistics, a senli-variance y(h) is COll1111on]y calculated as the average of
the sqllared difference of values of a variabJe at paired locations sepa­
rated by a lag distance 11, and along a specific direction (J (Eq. (1 )).

y(h) =2~ I (v, -v,·,,,Y
(I )

where, Vs and ~,Ts+h are the values of a variable at two locations
separated by a lag distance 11: N is the nU111ber of such location pairs.
To constnlct a useful variogralll, a sufficient nUl11ber of sall1plc loca­
tion pairs for each lag distance arc required, since too few pairs ll1ay
give a variogranl too erratic to serve as a useful description (Issaks
and Srivastava, 1989). Howcver~ in ll1any cases, sanlplc location pairs
may not be separated exactly by a distance used for a lag and along a
direction needed in the variogranl plot. Therefore~ a tolerance for dis­
tance (/d) and a tolerance fClT direction (a) arc often used to dctennine
whether two (set of) sal11ple locations could be paired for a Jag (Fig.
1). For cxal11ple~ aJthough OA is not exactly separated by a lag dis-
tance d, along a direction (), 0/1 is still considered as a location pair
separated by a lag distance d, because A falls within the area defined
by distance and directional tolerances. Obviously, the arcas (lefined
by tolerances for t\\lO neighborlng directions ll1ay overlap, causing
SOlne location pairs to be llsed for 1110re thal1 one direction, w·hich wi II
possibJy blur sOlne directional differences (Deutsch and Journel,
1997). Therefore the overlap should be carefully reduced. Further, a
bandwidth b ll1ay be applied as well to further decrease the blurring
effects (Fig. 1).

In Kriging, after the enlpirical variograll1s have been calculated
frOtTI salnple locations, they are llsually fitted with tllcoreticall11odels,
Inost cOl11monly spherical, exponential or Gaussian. 1-'11cse theoretical
tllodels are later used to derive the weights of san1plc locations for
interpolating values at un-sanlpled locations. Ho\vcver, application of
variogralus in CBIR is sOlnehow different.
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Variograms applied in CBIR
Variogranls have been used to capture textual infor111ation for

CBlR (Huang ct aL, 1999; Aksoy and Haralick, 2000; Xie, 2004) and
for rC1110te sensed inlage classification (C'urran, 1988; Miranda et ai.,
1992; Lark, 1996; St-Onge and Cavayas, 1995; Wallace et ai., 2000,
Carr, 2002; Jensen, 2004). An intuitive approach for adopting
variogranls in these contexts is to lIse the key paralneters of the theo­
retic variogranl 1110dcls, such as nllggct, range and sill, as the textllre
and structllfe descriptors. Although 111is approach was applied in inl­
age classification (St-Onge and Cavayas, 1995; Wallace ct aI., 2000),
it is considered not applicable in CBIR at present, because a CBIR
requires a highly autoll1ated process, while it is still not reliable to
autolllaticaJly fit elllpirical senlivariogranls with theoretical tnodels
(Atkinson and Lewis 2000).

A lTIOrC feasible approach in CBIR up to 110W is to bypass tIle curve
fitting bottleneck and constnlct feature vectors with elC111ents being a
set of senli-varianccs, calculated frOlll a set of selected lags alld direc­
tions. For exalllpJc, Aksoy and Haralick (2000) C0111pute tl1e gray
level variallces for 5 different distances and 4 directions, and an inl­
age is represented Wit11 a vector of 20 variances (their research is not
strictly variogranl-bascd, but closely related). Huang et a1. (1999) use
color correlogranl to capture the spatial correlation of color pairs over
certain distances. AlgorithnlS for effectively dealing with rotated or
flipped spatial anisotropy phenOJ11ena, Wllich are C01111TIOn rather than
accidental in geographic llnages, are proposed by Xie (2004). How­
ever a couple of issues should be· paid 1110re attention in llsing this
approacll as discussed below.
The lletermintltion (~f1ocation jJ(llrS

First, \vhen calculating selnivariances, it is essential to detenl1ine
appropriate location pairs, which are separated by a lag distance and
along a direction in an ill1age segtnent. If a feature vector needs tc
characterize the spatial continuity anisotropy COll11110nly existing in
geograpl1ic iU1ages, the senlivarainces should be calculated along suf­
ficient nUlllber of directions. Further, geographic images J11ay captllre
sinlilar geographic entities at different orientations or tl1e entities 111ay

he rotated/tlipped relative to cael1 other in different ill1ages (Fig. 2).
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Figure 2. Illustration of the common situation that similar geographic
objects in images are oriented differently.

In order to reach a rotation/t1ip invariant comparison (Xie, 2004), it is
essential that the same set of lag distances be used for different dircc­

. tions.
As a common sense, pixels arc arranged in a regular spatial grid in

an image, and it is not a challenge for appropriate pair location deter­
mination if only horizontal and vertical directions, (i.e. 0 0 and 90°)
are considered. If we assume the pixel size is fixed and denote it as
one unit, for either horizontal or vertical direction, a set of lag dis­
Itances can be easi Iy selected at the integer number of such units, k. (k
·ranges from I unit to one thirds or a half of the segment size). By se­
lecting lags in such a way, it is guaranteed that a sufficient number of
location pairs will be available. Moreover, no tolerances are neces­
sary since the lags cover the exact distances between pixel centers,
~nd the exact samples locations and values arc used.
! Unfortunately, we need more than these two directions in many
cascs, and issues may arise when dealing with diagonal (45° and
U5°) and other directions such as 22.5° and so on. Along diagonal

~irections, the distance between two pixel centers is J2k units. It
means that a common set of lag distances along diagonal directions
and horizontal/vertical directions are not readily available given the
existing sample locations. A tolerance on lag distance may have to be
used when detcnnining location pairs if we want to usc the same set
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of lags (k units) as those readily avai lable along 110rizontal /vertical
directions. A directional tolerance is not necessary because a lag tol­
erance is enough for producing sufficient pairs. 1n fact, this can also
avoid blurring directional differences due to unnecessary directional
tolerances. To ensure each sanlplc locatIon (a pixel center) have a
111caningful corresponding location for any lag distance (k units), the

1 ,-
-,,'2

lag tolerance should be 2 Ul1its, which is the largest distance froIll
an un-sanlpled location to a sanlple location (pixel center). In cases
\vhen two candidate salllpic locations are within the tolerance range,
it is preferable to pick the one cJoser to the Jocation with exact lag
distance.

For other directions other than diagonal, horizontal, and verti­
caJ, both a directional tolerance and lag distance tolerance are needed
since very rarely can we find sufficient location pairs if only a lag
distance tolerance is llsed. Many software packages arc available for
calculating variogranls by setting directional/lag distance tolerances,
such as VARIOWIN (Pannatier, ]996), GSLIB (Deutsch, and
Journcl~ '997), and the Gcostatistical Analyst Extension in ArcGlS
by ESRI. However, an ul1ans\vercd yet inlportant question is what
tolerances are reasonable for extracting variognl1s along arbitrary di­
rections in inlages. In geostatistics, the principle for setting direc­
tional tolerance is to usc as s111all an angular tolerance as possible to
litnit the blurring anisotropy effect tl1at results frOlll c0111bining pairs
froll1 different directions (lssaks and Srivastava, ]989). As illustrated
ill Fig. 3, for any direction, an angular tolerance of 22.5° should be
sufficient since a sanlple Jocation (pixel center) can definitely be
found within the area defined by such a directional tolerance for any
lag distance. To ll1ininl1zc blurring filrther, a bandwidth (b) ShOltld be

~- ~/2

set at 2 units, because this is half tIle ll1axinlUlTI distance between

two neighboring pixels ( -J2 units) and at least one salnple location
can be found for any lags (k units). For the simi lar reason, the lag

distance tolerance can also be set at
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Figure 3. An illustration of the distance tolerance (td), directional
tolerance (a), and bandwidth to be used for detennining location pairs
along directions other than horizontal, vertical and diagonal. Spccifi-

Id.choc";~ L~ ..~.- -(!l)!in(225 0
)

a-")") 5° ~. SU1(a) - I

cally, - --', - U111tS, units. L
denotes when the bandwidth starts to playa role.

" b,
.......'M

In the above discussions, we implicitly measure lags using Euclid­
ean distance metric. This is necessary since variograms characterize
spatial continuity, which states that things nearer in space tend to be
more similar than those farther away from each other, and the con­
cept of "near" or "far" should be measured with Euclidean distance in
most cases. However, in some related applications (Huang et aI.,
1999; Aksoy and Haralick, 2000), a distance metric (Eq. (2» has of­
ten been misused due to its implementation simplicity.
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Figure 4. An image segment with isotropic spatial pattern (a), and the
directional variograms (b) along two directions, 0° and 45°, using the
d~max~rl-I~i,icl-C,l] . .

.. ·1 as the dIstance I11ctnc for lags.

(b)

(2)

where, (1',,('/) and (1'::. c.,) arc the rows and columns of two pixels.
Apparently in any non-horizontal and non-vertical directions, the

)
_._--_._-

(I; - 11 )' + (c, - c, )'
distance between the two pixel centers are units in

" -:: ._ -: i I
/rt-I~) +«-,-(',) >maxh-IJlc,-c,l,

Euclidean distance, and . As a result
of using this distance metric (Eq. (2), some semi-variances (or vari­
ances) in non-horizontal and non-vertical directions will be mistak­
enly associated with a shorter lag, as will inevitably distort the acntal
spatial continuity prcsent in the image object.

Such distortions arc illustrated in the two directional variograms in
Fig. 4. These two variograms are computcd based on the image seg­
mcnt in Fig. 4a, one along 0° direction and the other 45° (Fig. 4b).
Although there exist no directional differences in spatial continuity in
the original image object, the variogram curve along the 0° direction
is completely ditTerent than that along the 45° direction when the lag
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Figure 5. A series of inlagc scgnlents containing disc objects of var­
ied sizes. The size of a pixel is 1 unit of distance and the dianlctcrs of
the internal discs are 8, )6, 24, 32, 40, 48, 56 units for a1 to gl and a2
to g2, respectively. 1) l~he size of aJI square segnlents is 64 by 64
units. 2) The diallleter of alJ circle segl11cnts is 64 units.
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is tneasured using the tnetric in Eg. (2). (~onscquently, Euclidean dis­
tance should always be adoptcd to ll1Castlre lag distances to avoid di­
rectional distortion.
The inl0ge segnlenl shajJe

In CBIR, an lInage is often stlbdivided into s111a11 inlage subsets,
also referred to as ilnage segtllents. The calculation of sC111i-variances
is conducted for each il11age scgtnent. A square shape is often chosen
for convenience. However, thc appropriateness of using the square
shape 11as not been carefully exan1incd or explicitly justified. In this
section, \ve investigate thc benefits and drawbacks of two different
segment shapes, squares and circles.

To compare the different effects exerted by square and circle
shaped inlage seglnents on the resulting variograllls, two expcrinlents
are conducted based on hypothetical ill1age segnlents. l~hc first ex­
perinlent involves the use of a series of discs of varied sizes centered
in sqllare (Fig. 5a ]-gl) and circle (Fig. 5a2-g2) iIl1agc segnlcl1ts. The
use of discs is based on the consideration that a disc bears no direc­
tional differences in spatial continuity and exhibits spatial isotropy. In
theory, the variogranls derived fronl an iIllage segl11cnt containing a
disc S110111d be the saIne or at least sufficiently close in all directions.
An ideal inlage segnlent shape should be the one that faithfully char-
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acterizes the spatial isotropy of a disc object.
The size of each square inlage segnlcnt in Fig. 5al-gl is 64 by 64

llnits of distance (in Euclidian distance 111etric) and the diallleter of
each circle segnlcnt in Fig. 5a2-g2 is 64 units. l~he diall1eters for the
center discs are 8, 16, 24, 32, 40, 48, 56 units as shown in Fig. 5al to
5g1 and 5al to 5g2 respectively. In all the ilnage seglnents, the DN
value is 127 for the white pixels and 0 for the dark pixels.

For each of the ilnage scgnlcnts in Fig. 5, we calculate variogranls
along 8 directions, including 0°,22.5°,45°,67.5°,90°,112.5°,135°,
and 157.5°, and at lags fronl 1 to 64 units. Tl1e resulted variogralns
frolll using the square segnlcnts and circle seglnents are shown in Fig.
6a] to 6g h and 6a1 to 6g2, respectively.

As shown in Fig. 6, no Inattcr what 1111agc seglnent shape is
adopted, variogranls obtained froln discs of varied sizes delnonstrate
sinlilar overalJ patterns along the sanlC direction, although the ranges
and si lis change with the size of the discs. However, the variogralTIS
along (litfcrent directions beC0111C significantly dissinlilar when tIle
square scgnlent (Fig. 6al-g\) is applied, no l11atter what size disc is
contained. The variogranl curves along diagonal directions (i.c. 45°
and 135°) exhibit the largest deviations fronl those along horizontal
and vcttical directions (i.e. 0° and 90°), wIlcrcas tIle variogranl curves
along 22.5°, 67.5°, 112.5°, and 157.5° fall in between. In c0111parison,
the circle segulents produce aJnlost identical variogranls for aU direc­
tions for each segl11cnt, though subtle discrepancies do exist (Fig. 6a2­
g2).

The second cxperinlent assesses how the shape of an inlage
scgnlent affects the directional variogranls for ilnagc scgnlents con­
taining an anisotropic object, a rectangJe in this case. Unlike a disc, a
rectangle exhibits directionaJ differences in spatial continuity (i.e.
spatiaJ anisotropy). In order to assess the sensitivity of a variogralTI to
the various rotated versions of an object, the sanlC rectangle is ori­
ented at two different angles (i.e. 00 and 45°), cll1bedded \vithin both
the square and circle inlagc scgnlcnts. A segl11cnt shape is regarded as
1110rC appropriate if the variogranls derived frolll the sanlC object with
different orientations are still sufficiently close with regard to t1le ob­
j eet directions.
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Figure 6. The empirical variograms along 8 directions (0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°, and the angle is measured
counter-clockwise starting from due east), and at lags from I to 64
units of distance using both square segments (al-gl), and circle seg­
ments (a2-g2).
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Figure 7. The same rectangle object within square image segments
~SO, SR) and circle image segments (CO, CR). The rectangle objects
in SO and CO are of original orientation (i.e. 0° rotation), while those
in SR and CR are rotated at 45° counter clockwise.

..
This experiment analyzes a set of 4 image segments, each contain­

ing the same 48 by 24 unit rectangle (Fig. 7). Again, the ON value for
the white pixels is 127 and that for the dark pixels is O. Two of the 4
segments are square-shaped with a dimension of 64 x 64 units (Fig.
7-S0 and SR) and the other two are circle-shaped with a diameter of
64 units (Fig. 7-CO and CR). The rectangle objects in Fig 7-S0 and
CO are of original orientation (i.e. 0° rotation), while those in Fig 7­
SR and CR are rotated at 45° counter clockwise.

The resulted variograms for the image segmcnts in Fig. 7-S0 and
SR arc shown in Fig. 8a, and those for the image segments in Fig. 7­
CO and CR are displayed in Fig. 8b. For the image segments in Fig.
7-S0 and CO, five directional variograms at 0°,22.5°,45°,67.5° and
90° of angles are produced. For those in Fig. 7-SR and CR, five cor­
responding directional variograms at 45°,67.5°,90°, 112.5° and 135°
of angles are created, because the rectangle objects in these later two
image segments are rotated 45°. When the square segments are used,
the variograms for the two different object orientations (i.e. Fig 7-S0
and SR) along the corresponding directions (e.g. 0° in SO and 45° in
SR) are significantly different from each other (Fig. 8a). Conversely,
variogram curves for the corresponding directions are almost identi­
cal when the circle segments are used (Fig. 8b).

A preliminary conclusion can be made based on above discussions.
To describe spatial continuity, circle segments are able to tmthfully
characterize both isotropic and anisotropic continuity infonnation of
objects in the image segments, as illustrated in the two experiments.
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Fi~urc 8. The directional variograms for the image segments in Fig­
ure 7. (a) Variograms for Fig. 7-S0 and SR, where x-SO and x-SR
denotes XO directional variogram for the image segmcnts containing
original and rotated objects respectively. (b) Variogmms for Fig. 7­
CO and CR, where x-CO and x-CR stands for XO dircctional
variogram for the image segments containing original and rotated ob­
jects respectively.
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Figure 9. Four image segments with the same spatial stmcture, i.e.
each containing a disc object of the same size (32 units in diameter).
The ON values for all the dark pixels in the disc are O. The ON values
for the shaded pixels outside the disc vary from 15, 31, 63, and 127
for segments (a) to (d), respectively.

(a) (b) (e) (d)

On the contrary, square segments may dist011 the spatial continuity of
both isotropic and anisotropic image objects, due to the anisotropic
nature of the square shape in itself. Other non-circle segments may
also lead to similar distortions for the same reason. Therefore circle
segments are believed by the authors to be more appropriate for de­
riving variograms from a remotely sensed image.
The relative semivariogram

All the variograms we have examined so far are absolute
variograms, in which the actual semi-variances of the DN values are
used to construct variogram curves. The absolute semivariances may
depend on the mean of data values for that lag. In geostatistics, rela­
tive variograms are used to take account of the changing mean and to
scale semivariances so that a clearer description of the spatial conti­
nuity can be produced (Isaaks and Srivastava, 1989). In this section,
we evaluate whether rclative variograms are a better alternative when
spatial stmcture is of primary concem instead of ON value variances
in CBlR.

To this end, we create a set of 4 circle image segments (64 units in
diameter) with similar spatial stmctures, all containing an disc at the
segment center with a diameter of 32 units (Fig. 9). Within each im­
age segment, the ON value for the dark pixels of the internal discs is
0, but the ON value for the shaded pixels (ranging from dark gray to
white) outside the internal disc varies from 15,31,63, to 127 as
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(3)
where all the variables, inc luding v.~ and J<\.! h, calTy tIle sanle

Ineaning as in Eq. (] ).
For cOlnparison purposes, we also calcuJate the absolute

variogranls for the 4 lI11age segnlcnts in 8 directions, llsing Eg. (I).
The resll1ted absolute and relative directional variogranls are dis­
played in Fig. lOa and lOb respectively. The curves of the absolute
variogranls are dranlatical.Jy different for the 4 inlagc segnlcnts (Fig.
lOa) \\rith the semi-variance at the saBle lag incrcasi ng \vith the in-
creasing DN vaJues of the shaded pixels outside the internal disc (i.e.
15, 31, 63 and 127 respectively). In conlparison~ alJ tlle relative
variogralTIS are rC111arkably sinlilar to each other as shown in the Fig.
]Ob, independent of the DN value variation.

To qllantitatively dOCll111ent the differences between the set of ab­
solute variogralTIS and between the set of relative variogranls, we fur­
ther calculate the 111ean and the standard deviation of all the absolute
and the relative sClui-variances over each lag. The ratio (~/o) of the
standard deviation to the lTIean is then derived ill order to sho\\,o the
l11agnitude of overall deviation frolTI the 111Can sel111-variance at each
lag. Fig. ] 1a displays the ratio values derived fro111 both the absol ute
and relative senli-variances in the sal11C plot. Fig. II b presents only

shown in Fig. 9a-d respectively.
There are several types of relative variogranls: local relative

variogralTIS, general relative variogranls~ and pairwise relative
variogranls. Both general and pariwisc relative variogralus can pro­
vide adequate display of spatial continuity (Isaaks and Sri vastava,
1989). Detailed c0111parison of tl1e two are beyond the scope of this
paper and only pairwise relative variogra1l1S are used to present the
concepts here.

The pairwise relative variogranl adjusts the variogranl calculation
by a squared ll1ean, and the adjustnlent is done separately for each
pair of sanlples, as shown in Eq. (3).

v· V )2y(h)=_l_L ('s- sth ,

2N (V,-~VS+hr
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Figure 10. The absolute variograms (a) and relative val;ograms (b)
for the image segments in Figure 9, where A-x, B-x, C-x, and D-x
represent the directional variograms in XO direction for image seg­
ments in Fig. 9a-d respectively.
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Figure 11. The ratio (%) of standard deviation to mean of the semi­
variances of 4 image segments in Figure 9 along 8 directions and at
each lag; (a) comparison of the ratios bctwcen the absolute and rela­
tive variograms; (b) the ratios of the relative variogram in detail.
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the ratios derived fronl the relative senli-variances but in greater de­
tail.

The ratios derived fronl the absolute selni-variances are extrel11ely
high, around 1200/0 for all lags (Fig. J la). Conversely, tIle ratios de­
rived froll1 the relative senli-variances arc less than 20/0 for lTIOst lags,
about a quarter of the lags with a ratio between 2% and 6% (Fig.lib).
Only a few Jags have ratios larger tllan 6°~, all of which are at ex­
trenlcly short lag distances. The large deviation of ratios at the short
lags can be possibly attribllted to l1llgget effects. Nevertheless, the
relative variogranls for the four il11agc scgl11cnts are very close, wit­
nessing the ability of relative variogralTIS to characterize equivalent
spatial structure regardless of underlying DN value variation.

Conclusions
A series of expcrinlents are condllctcd to il1vestigate several inlpor­

tant isslles concerning the appropriate use of variogralll-based feature
vectors for CBIR. [t is argued that except horizontal and vertical di­
rections, lag tolerance and/or directional tolerance are needed to pro­
duce sCl11ivariances at the sanle set of lag distances as those readily
availabJe along horizontal and vertical directions. For diagonal direc­
tions, only a lag tolerance is needed. For other directions~ a direc­
tional tolerance and a bandwidtl1 should bc also set. It is also elnpha­
sized t11at Euclidean distance should always be adopted to avoid add­
ing false anisotropy inforlllation not inherent in inlagc objects. The
cxpcrinlcnts also suggest that, altllough a square segn1ent is often the
convenient and COll1111on choice, a circle segll1cnt is Blore appropriate
for characterizing the directional spatial continuity of an object con­
tained \vithin an inlage segnlcnt. 1n addition, relative variograllls are
1110rc appropriate to represent spatial stnlcture than absolute
variogranls. In conclusion, although variogranls based feature vector
can be valuable for characterizing texture and structure infonl1ation, a
proper usc of variogranls guided by the findings in this paper 111ay

better unJeash the power of this tcchnique and aid our understanding
and interpretation of the results obtained.
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