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Introduction

Content Based Image Retrieval (CBIR) intends to objectively and
efficiently retrieve interested images or image segments (pixel
blocks) from a large-volume image database bascd on thc content
similarity between a query icon (or sample image) and databasc im-
ages (or image segments). CBIR was originated from computer vi-
sion and database community (Flickner ct al., 1995; Pentland et al.,
1996; Smith and Chang, 1996) and has bcen gradually accepted by
GlScientists for geographic image database applications (Ma and
Manjunath, 1996; Bruns and Egenhofer, 1996; Sheikholeslami et al.,
1999; Agouris et al., 1999; Stefanidis et al., 2002; Bian, 2003; Bian
and Xie, 2004).

To geographers, image retrieval is a reversal to image classification
in regard to opcrational process since image retrieval starts with a
content description and then identifies locations that contain the con-
tent. Image classification, on the other hand, begins with a study arca
and then identifies contents within the area. Onc key component in
CBIR is to represent the semantic content of an image segment, often
through a numeric index vector (called feature vector), with cach ele-
ment being a measurcment of a visual property, such as color, tex-
ture, shape and so on. To represent the important spatial structure in-
formation within geographic images, approaches based on variogram
has recently been adopted for CBIR (Huang et al., 1999; Aksoy and
Haralick, 2000; Bian and Xie, 2004). While the concept of variogram
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Figure 1. [llustratc how to determinc whether two sample points (O,
A) arc location pairs separated by a lag  along a direction 8, defined
by a distance tolerance (1), a direction tolerance (a), and a band-
width ().

»
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1s not new, some important aspects require further study to ensure
these approaches be properly applicd in CBIR. This paper examines
several issues in this regard.

Variogram

Variogram is a key concept underlying a sct of spatial interpolation
approaches called Kriging in geostatistics (Issaks and Srivastava,
[989). Like many spatial intcrpolation methods, the objective of
Kriging is to interpolate a continuous surface from a limited number
of sample points. In an image, the pixel centers are normally regarded
as thc nominal sample point locations. It is from these sample points
that empirical variograms are constructed and used for subsequent
inference.
A variogram (or more formally, semi-variogram) is a plot of semi-
variance vs. lag distances, where the spatial continuity or the associa-
tion between semi-variances and the lag distances is explicitly pre-
sented. The association may show directional difference, representing
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spatial continuity anisotropy, and the anisotropy can be characterized
by the differences of variograms along different directions. In geosta-
tistics, a semi-variance y(/) is commonly calculated as the average of
the squared difference of values of a variable at paired locations sepa-
rated by a lag distance 4, and along a specific direction 6 (Eq. (1)).
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where, V; and Vi.; arc the valucs of a variable at two locations
separated by a lag distancc A; N is the number of such location pairs.
To construct a useful variogram, a sufficient number of samplc loca-
tion pairs for each lag distance are required, since too few pairs may
give a variogram too erratic to scrve as a useful description (Issaks
and Srivastava, 1989). However, in many cascs, sample location pairs
may not be separated exactly by a distance used for a lag and along a
direction needed in the variogram plot. Therefore, a tolerance for dis-
tance (1d) and a tolerance for direction (a) are often used to determine
whether two (set of) samplec locations could be paired for a lag (Fig.
1). For cxample. although OA is not exactly separated by a lag dis-
tance d, along a direction &, OA is still considered as a location pair
separated by a lag distance d, becausc A falls within the arca defined
by distance and dircctional tolerances. Obviously, the arcas dctfined
by tolerances for two neighboring directions may overlap, causing
some location pairs to be used for more than one direction, which will
possibly blur some directional ditfercnces (Deutsch and Journcl,
1997). Therefore the overlap should be carefully reduced. Further, a
bandwidth  may be applied as well to further decrease the blurring
effects (Fig. 1).

In Kriging, after the empirical variograms have been calculated
from sample locations, they are usually fitted with theoretical models,
most commonly spherical, exponential or Gaussian. These theoretical
models are later used to derive the weights of sample locations for
interpolating values at un-sampled locations. However, application of
variograms in CBIR 1s somehow different.
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Variograms applied in CBIR

Variograms have been used to capture textual information for
CBIR (Huang ct al., 1999; Aksoy and Haralick, 2000; Xie, 2004) and
for remote sensed image classification (Curran, 1988; Miranda et al.,
1992; Lark, 1996; St-Onge and Cavayas, 1995; Wallace et al., 2000,
Carr, 2002; Jenscn, 2004). An intuitive approach for adopting
variograms in these contexts is to usc the key parameters of the theo-
retic variogram models, such as nugget, range and sill, as the texture
and structure descriptors. Although this approach was applied in im-
age classification (St-Onge and Cavayas, 1995; Wallace ct al., 2000),
it is considered not applicable in CBIR at present, becausc a CBIR
requires a highly automated process, while it is still not reliable to
automatically fit empirical semivaniograms with theoretical models
(Atkinson and Lewis 2000).

A more feasible approach in CBIR up to now is to bypass the curve
fitting bottlencck and construct feature vectors with elements being a
set of semi-variances, calculated from a set of selected lags and direc-
tions. For example, Aksoy and Haralick (2000) compute the gray
level vanances for 5 different distances and 4 directions, and an im-
age is represented with a vector of 20 variances (their research is not
strictly variogram-based, but closely related). Huang et al. (1999) use
color correlogram to capture the spatial correlation of color pairs over
certain distances. Algorithms for cffectively dealing with rotated or
flipped spatial anisotropy phenomena, which are common rather than
accidental 1n geographic images, are proposed by Xie (2004). How-
ever a couple of issues should be paid more attention in using this
approach as discussed below.

The determination of location paiis

First, when calculating semivariances, it is essential to determine
appropriate location pairs, which are separated by a lag distance and
along a direction in an image segment. If a feature vector nceds tc
characterize the spatial continuity anisotropy commonly existing in
geographic images, the semivarainces should be calculated along suf-
ficient number of directions. Further, geographic images may capture
similar geographic entitics at different orientations or the entitics may
be rotated/flipped relative to cach other in different images (Fig. 2).
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Figure 2. lllustration of the common situation that similar geographic
objects in 1mages are oriented differently.

In order to reach a rotation/flip invariant comparison (Xie, 2004), it is
essential that the same set of lag distances be used for different dirce-
" tions.

As a common sense, pixels are arranged in a rcgular spatial grid in
an image, and it is not a challenge for appropriate pair location deter-
mination if only horizontal and vertical directions, (i.e. 0 ° and 90°)
are considered. If we assume the pixel size is fixed and denote it as
one unit, for either horizontal or vertical dircction, a sct of lag dis-
‘tances can be easily selected at the integer number of such units, k. (k
‘»ranges from 1 unit to one thirds or a half of the segment size). By se-
lecting lags in such a way, it is guaranteed that a sufficicnt number of
location pairs will be available. Moreover, no tolerances arc ncces-
sary since the lags cover the exact distances between pixel centers,
and the exact samples locations and values are used.

- Unfortunately, we need morc than these two directions in many
cases, and issues may arise when dealing with diagonal (45° and

135°) and other directions such as 22.5° and so on. Along diagonal

irections, the distance between two pixel centers is V2k ynits. 1t
means that a common set of lag distances along diagonal directions
and horizontal / vertical directions are not readily available given the
existing sample locations. A tolerance on lag distance may have to be
used when determining location pairs if we want to usc the same set
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of lags (k units) as thosc readily available along horizontal /vertical
directions. A directional tolerance is not necessary because a lag tol-
erance 1s enough for producing sufficient pairs. In fact, this can also
avoid blurring directional differcnces due to unnccessary directional
tolerances. To cnsure cach sample location (a pixel center) have a
meaningful corresponding location for any lag distance (k units), the

1
lag tolerance should be 2 units, which is the largest distance from
an un-sampled location to a sample location (pixel center). In cases
when two candidate samplc locations are within the tolerance range,
it is preferablc to pick the one closer to the location with exact lag
distancc.

For other directions other than diagonal, horizontal, and verti-
cal, both a dircctional tolerance and lag distance tolerance are needed
since very rarely can we find sufficient location pairs if only a lag
distance tolerance is used. Many software packages arc available for
calculating variograms by setting directional/lag distance tolerances,
such as VARIOWIN (Pannatier, 1996), GSLIB (Deutsch, and
Journel, 1997), and the Geostatistical Analyst Extension in ArcGIS
by ESRI. However, an unanswercd yet important question is what
tolerances are reasonable for extracting variogrms along arbitrary di-
rections in images. In geostatistics, the principle for setting direc-
tional tolerance is to usc as small an angular tolerance as possible to
limit the blurring anisotropy cffect that results from combining pairs
from different directions (Issaks and Srivastava, 1989). As illustrated
in Fig. 3, for any direction, an angular tolerance of 22.5° should be
sufficient since a sample location (pixel center) can definitely be
found within the area defined by such a directional tolerance for any
lag distance. To minimize blurring further, a bandwidth (&) should be

L

V2

i . . . . .
set at - units, because this is half the maximum distance between

2

two ncighboring pixels ( V> units) and at least one sample location
can be found for any lags (k£ units). For the similar reason, the lag

/
v2

2 -

distance tolerance can also be sct at units.

46



The Florida Geogrupher

Figure 3. An illustration of the distance tolerance (¢d), directional
tolerance (a), and bandwidth to be used for dctermining location pairs
along directions other than horizontal, vertical and diagonal. Specifi-

5 b 2 /.
webo V2 L= = - ?/; /5in(22.5%)
a=225° 2 . sinery | 2 );
cally, =, < units,

denotes when the bandwidth starts to play a role.

units. L

In the above discussions, we implicitly measure lags using Euclid-
ean distance metric. This is nccessary since variograms characterize
spatial continuity, which states that things nearer in space tend to be
more similar than those farther away from each other, and the con-
cept of “near” or “far” should be measured with Euclidcan distance in
most cases. However, in some related applications (Huang ct al.,
1999; Aksoy and Haralick, 2000), a distance metric (Eq. (2)) has of-
ten been misused due to its implementation simplicity.
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Figure 4. An image scgment with isotropic spatial pattern (a), and the

directional variograms (b) along two directions, 0° and 45°, using the
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where, (r,¢;) and (r, ¢>) arc the rows and columns of two pixels.
Apparently in any non-horizontal and non-vertical directions, the

Yo=Y+l -V

distancc between the two pixel centers are units in
. ) ﬁ’i _-r:_)'} -;(4‘—(_) > muxﬂrl -nlle, —('1“
Euclidean distance, and . As a result

of using this distance metric (Eq. (2)), some semi-variances (or vari-
ances) 1n non-horizontal and non-vertical directions will be mistak-
enly associated with a shorter lag, as will incvitably distort the actual
spatial continuity present in the image object.

Such distortions arc illustrated in the two directional vartograms in
Fig. 4. These two variograms are computcd based on the image seg-
ment in Fig. 4a, one along 0° direction and the other 45° (Fig. 4b).
Although there exist no directional differences in spatial continuity in
the original 1magc object, the variogram curve along the 0° direction
is completely diftercnt than that along the 45° direction when the lag
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Figure 5. A series of image segments containing disc objects of var-
ied sizes. The size of a pixel is | unit of distance and the diamcters of
the internal discs are 8, 16, 24, 32, 40, 48, 56 units for a, to g; and a,
to g, respectively. 1) The size of all square scgments is 64 by 64
units. 2) The diameter of all circle segments is 64 units.
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is measured using the metric in Eq. (2). Consequently, Euclidean dis-
tance should always be adopted to mcasure lag distances to avoid di-
rectional distortion.

The image segment shape

In CBIR, an image is often subdivided into small image subsets,
also referred to as image segments. The calculation of scmi-variances
is conducted for each image segment. A squarc shape is often chosen
for convenience. However, the appropriatencss of using the square
shape has not been carefully examined or explicitly justified. In this
section, we investigate the bencfits and drawbacks of two different
segment shapes, squares and circles.

To comparc the different cffects cxerted by square and circle
shaped image segments on the resulting variograms, two experiments
are conducted based on hypothctical image segments. The first cx-
periment involves the use of a series of discs of varied sizes centered
in square (Fig. 5a,-g;) and circle (Fig. 5a,-g,) image scgments. The
use of discs is based on the considcration that a disc bears no dircc-
tional differences in spatial continuity and exhibits spatial isotropy. In
theory, the variograms derived from an image segment containing a
disc should be the same or at least sufficiently close in all dircctions.
An ideal image segment shape should be the one that faithfully char-
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acterizes the spatial isotropy of a disc object.

The size of each square image segment in Fig. 5a;-g, is 64 by 64
units of distance (in Euchdian distance metric) and the diameter of
each circle segment in Fig. 5a;-g, 1s 64 units. The diameters for the
center discs are 8, 16, 24, 32, 40, 48, 56 units as shown in Fig. 5a, to
5g; and 5a, to 5g, respectively. In all the image segments, thc DN
value is 127 for the white pixels and O for the dark pixels.

For each of thc image segments in Fig. 5, we calculate variograms
along 8 directions, including 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°,
and 157.5°, and at lags from | to 64 units . The resulted variograms
from using the square segments and circle segments are shown in Fig.
6a, to 6g,, and 6a- to 6g,, respectively.

As shown in Fig. 6, no matter what mmage segment shape is
adopted, variograms obtained from discs of varied sizes demonstrate
similar overall patterns along the same direction, although the ranges
and sills change with the size of the discs. However, the variograms
along different directions become significantly dissimilar when the
square scgment (Fig. 6a;-g) is applicd, no matter what size disc is
contained. The variogram curves along diagonal directions (i.c. 45°
and 135°) exhibit the largest deviations from those along horizontal
and vertical dircctions (i.e. 0° and 90°), whercas the variogram curves
along 22.5°,67.5°, 112.5°, and 157.5° fall in between. In comparison,
the circle segments produce almost 1dentical variograms for all dircc-
tions for cach segment, though subtle discrepancies do exist (Fig. 6a,-
£).

The second cxperiment asscsses how the shape of an image
scgment affects the dircctional vanograms for image segments con-
taining an anisotropic object, a rectangle in this case. Unlike a disc, a
rectangle exhibits directional differences in spatial continuity (i.e.
spatial anisotropy). In order to assess the sensitivity of a variogram to
the various rotated versions of an object, the same rectangle is ori-
ented at two different angles (i.e. 0° and 45°), embedded within both
the square and circle image scgments. A segment shape is regarded as
more appropriatc if the variograms derived from the same object with
different orientations are still sufficiently close with regard to the ob-
ject directions.
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Figure 6. Thc empirical variograms along 8 directions (0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°, and the angle is mcasured
counter-clockwise starting from due east), and at lags from | to 64
units of distance using both squarc segments (a,-g,), and circle seg-
ments (a;-g5).
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Figure 7. The same rectangle object within square image segments
(SO, SR) and circle image segments (CO, CR). The rectangle objects
in SO and CO arc of original oricntation (i.e. 0° rotation), while those
in SR and CR arc rotated at 45° counter clockwise.

This experiment analyzes a set of 4 image segments, each contain-
ing the same 48 by 24 unit rectangle (Fig. 7). Again, the DN value for
the white pixels is 127 and that for the dark pixels is 0. Two of the 4
segments are square-shaped with a dimension of 64 x 64 units (Fig.
7-SO and SR) and the other two are circle-shaped with a diameter of
64 units (Fig. 7-CO and CR). The rectangle objects in Fig 7-SO and
CO arc of original orientation (i.c. 0° rotation), while those in Fig 7-
SR and CR are rotated at 45° counter clockwise.

The resulted variograms for the image segments in Fig. 7-SO and
SR arc shown in Fig. 8a, and those for the image segments in Fig. 7-
CO and CR are displayed in Fig. 8b. For the image scgments in Fig.
7-SO and CO, five directional variograms at 0°, 22.5°, 45°, 67.5° and
90° of angles are produced. For those in Fig. 7-SR and CR, five cor-
responding dircctional variograms at 45°, 67.5°, 90°, 112.5° and 135°
of angles are created, because the rectangle objects in these later two
image scgments are rotated 45°. When the square segments are used,
the variograms for the two different object onentations (i.e. Fig 7-SO
and SR) along the corresponding directions (c.g. 0° in SO and 45° in
SR) arc significantly different from cach other (Fig. 8a). Conversely,
variogram curves for the corresponding directions are almost identi-
cal when the circle segments are used (Fig. 8b).

A preliminary conclusion can be made based on above discussions.
To describe spatial continuity, circle segments are able to truthfully
characterize both isotropic and anisotropic continuity information of
objccts in the image segments, as illustrated in the two experiments.
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Figure 8. The directional variograms for the image segments in Fig-
ure 7. (a) Variograms for Fig. 7-SO and SR, where x-SO and x-SR
denotes x° directional variogram for the image scgments containing
original and rotated objects respectively. (b) Variograms for Fig. 7-
CO and CR, where x-CO and x-CR stands for x° directional
variogram for the image segments containing original and rotated ob-
jects respectively.
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Figure 9. Four image segments with the same spatial structure, i.e.
cach containing a disc objcct of the same size (32 units in diameter).
The DN values for all the dark pixels in the disc are 0. The DN values
for the shaded pixels outside the disc vary from 15, 31, 63, and 127
for segments (a) to (d), respectively.

(a) (b) (c) (d)

On the contrary, square segments may distort the spatial continuity of
both isotropic and anisotropic image objects, due to the anisotropic
nature of the square shape in itself. Other non-circle segments may
also lead to similar distortions for the same reason. Therefore circle
scgments arc believed by the authors to be more appropriate for de-
riving variograms from a rcmotely senscd image.

The relative semivariogram

All the variograms we have cxamined so far are absolute
variograms, in which the actual semi-variances of the DN values are
used to construct variogram curves. The absolute semivariances may
depend on the mean of data values for that lag. In geostatistics, rela-
tive variograms are used to take account of the changing mean and to
scale semivariances so that a clearer description of the spatial conti-
nuity can be produced (Isaaks and Srivastava, 1989). In this section,
we evaluate whether rclative variograms arc a better alternative when
spatial structurc is of primary concern mstead of DN value variances
in CBIR.

To this end, we create a set of 4 circle image segments (64 units in
diameter) with similar spatial structures, all containing an disc at the
scgment center with a diameter of 32 units (Fig. 9). Within each im-
age segment, the DN value for the dark pixels of the internal discs is
0, but the DN value for the shaded pixels (ranging from dark gray to
white) outside the internal disc varies from 15, 31, 63, to 127 as
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shown in Fig. 9a-d respectively.

There are scveral typcs of relative variograms: local relative
variograms, general relative variograms. and pairwise relative
variograms. Both general and pariwisc relative variograms can pro-
vide adequate display of spatial continuity (Isaaks and Srivastava,
1989). Detailed comparison of the two are beyond the scope of this
paper and only pairwise relative variograms arc used to present the
concepts here.

The pairwise relative variogram adjusts the variogram calculation
by a squared mean, and the adjustment is done separately for each
pair of samples, as shown in Eq. (3).

| V)’
7"’“52[(7/—]1
s st
? 3)

where all the varnables, including V,and V., carry the samc
meaning as in Eq. (1).

For comparison purposcs, we also calculate the absolute
variograms for the 4 image segments in 8 directions, using Eq. (1).
The resulted absolute and rclative dircctional variograms are dis-
played in Fig. 10a and 10b respectively. The curves of the absolute
variograms are dramatically different for the 4 image segments (Fig.
10a) with the semi-variance at the same lag increasing with the in-
crcasing DN valucs of the shaded pixels outside the internal disc (i.e.
15, 31, 63 and 127 respectively). In comparison, all the relative
variograms are remarkably similar to cach other as shown in the Fig.
10b, independent of the DN value variation.

To quantitatively document the differences between the sct of ab-
solute variograms and between the set of relative variograms, we fur-
ther calculate the mean and the standard deviation of all the absolute
and the relative semi-variances over cach lag. The ratio (%) of the
standard deviation to the mean is then derived in order to show the
magnitude of overall deviation from the mcan semi-variance at each
lag. Fig. 1 1a displays the ratio values derived from both the absolute
and relative semi-variances in the same plot. Fig. 11b presents only
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Figure 10. The absolute variograms (a) and relative variograms (b)
for the image segments in Figure 9, where A-x, B-x, C-x, and D-x
represent the directional variograms in x° direction for image seg-
ments in Fig. 9a-d respectively.
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Figure 11. The ratio (%) of standard dcviation to mean of the semi-
variances of 4 image segments in Figure 9 along 8 directions and at
each lag: (a) comparison of the ratios between the absolute and rela-
tive variograms; (b) the ratios of the rclative variogram in detail.
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the ratios derived from the relative semi-vartances but in greater de-
tail.

The ratios derived from the absolute semi-variances are extremely
high, around 120% for all lags (Fig. 1a). Conversely, the ratios de-
rived from the relative semi-variances arc less than 2% for most lags,
about a quarter of the lags with a ratio between 2% and 6% (Fig.1 1b).
Only a few lags have ratios larger than 6%, all of which are at ex-
tremely short lag distances. The large deviation of ratios at the short
lags can be possibly attributed to nugget effects. Nevertheless, the
relative variograms for the four image scgments are very close, wit-
nessing the ability of relative variograms to characterize equivalent
spatial structure regardless ot underlying DN value variation.

Conclusions

A series of experiments are conducted to investigate several impor-
tant issues concerning the appropriate use of variogram-based feature
vectors for CBIR. It 1s argued that except horizontal and vertical di-
rections, lag tolcrance and/or directional tolerance are needed to pro-
duce semivariances at the same sct of lag distances as those readily
available along horizontal and vertical directions. For diagonal direc-
tions, only a lag tolerance is needed. For other directions, a direc-
tional tolcrance and a bandwidth should be also set. It is also empha-
sized that Euclidean distance should always be adopted to avoid add-
ing false anisotropy information not inherent in 1mage objects. The
cxperiments also suggest that, although a square segment is often the
convenient and common choice, a circle segment is more appropriate
for characterizing the dircctional spatial continuity of an object con-
tained within an image segment. [n addition, relative variograms are
morc appropriate to represent spatial structure than absolute
variograms. In conclusion, although variograms based feature vector
can be valuable for characterizing texture and structure information, a
proper usc of variograms guided by the findings in this paper may
better unleash the power of this technique and aid our understanding
and mterpretation of the results obtained.
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