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Abstract 

Knowledge of the risks, or variability, associated with daily precipitation characteristics: 
their frequency, magnitude and duration, is fundamental to correct management and planning 
of many human activities. Characterization of current interannual variability is crucial when 
predicting how different factors like agricultural production, forest-fire risks and streamflow 
(high and low) might adapt/react to climate change. Such predictions are informed by inputs 
from models called weather generators, which include a section on daily precipitation.  

This research examines the parameters employed by weather generators (probabilities 
of wet-to-wet and dry-to-dry transitions, and mean and variance of daily precipitation) during 
winter at Tallahassee, which possesses a long and near-complete daily record. Winter 
precipitation in the Panhandle of Florida constitutes a greater proportion of annual total than 
much of Florida and falls when more is directed to land-based hydrologic stores. Winter is also 
when El Niño-Southern Oscillation (ENSO) has a pronounced regional impact with higher 
seasonal totals during warm phases (El Niño) and lower during cold (La Niña).  

How the properties of daily precipitation respond to ENSO is investigated through the 
combined use of probability distributions, standard parametric tests and the non-parametric 
hypergeometric distribution. Higher seasonal totals in warm phases result from more frequent 
days with precipitation (but no significant changes in transition probabilities) and higher mean 
and variance of totals. Cold phases are more prone to less frequent events, particularly lower 
wet-to-wet transitions, and lower means and variances of daily total. 
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Introduction  

The success of agriculture and many other human endeavors depends greatly on the 
vagaries of daily precipitation characteristics. In the absence of artificial impoundments or 
access to wells, a sequence of dry days without precipitation at a particularly crucial time in the 
growing season can have devastating consequences. Likewise, excessive precipitation can cause 
soil erosion and the loss of seeds and young plants, while a sequence of wet days at the time of 
harvest can damage crops and prevent removal. Variability in climate and associated weather is 
a major source of risk not only to agricultural productivity (Jones, 1993), but also fires (Elliot et 
al., 2016), floods (Sunde et al., 2017), droughts (Herman et al., 2016), slope stability (Bovy et al., 
2016), health (Sparks et al., 2018) and soil erosion (Kinnell, 2019). Concerns heighten with 
anticipated changes in extremes of wet and dry periods resulting from climate change. The 
largest causes of current climate variability globally is the El Niño-Southern Oscillation (ENSO), a 
coupled ocean-atmosphere phenomenon seated in the equatorial Pacific. There are multiple 
phases defined by an increase or decrease in sea surface temperatures and associated 
atmospheric circulation, originating in the equatorial Pacific Ocean every 3-7 years. 
Precipitation and other climatic variables are known to vary worldwide as result.  
(https://iridl.ldeo.columbia.edu/maproom/ENSO/ENSO_Info.html). Over the past three 
decades, the ability to forecast the likely phase of ENSO (warm, neutral or cold) six to nine 
months ahead has improved markedly. This research addresses whether forecasts at the 
hemispheric scale can be translated to risks of daily precipitation properties at the local scale. In 
particular, the long record of daily precipitation at Tallahassee, with its implications for the 
economy of rural northwest Florida, including agriculture, forestry, tourism and estuarine 
shellfisheries, is examined. 

The properties of daily precipitation constitute an important element of statistical 
weather generators used to determine stochastic weather inputs to models of various 
biophysical processes (Wilks and Wilby, 1999).  The approach to representing precipitation 
characteristics has to be probabilistic because of, 1) the inherent variability in weather, 2) the 
fact that no two years of ENSO phases are identical, and 3) the need for farmers and other 
agents to make their own evaluations of the balance between risks and potential profits. The 
two major questions asked simply break down into, “Was there measurable precipitation?”, 
and, “If so, how much precipitation fell?” 

 

Study area and data 

The climate of Tallahassee is fairly typical of the panhandle of Florida and the 
meteorological station possesses a long, reliable record of daily precipitation (1949-2016), with 
few missing data points. Data are available from the Florida Climate Center 
http://climatecenter.fsu.edu/jumi/climate_visualization/Climate_Data.php. The importance of 
winter precipitation is a distinguishing feature of the climate of the Florida panhandle. Between 
a quarter and a third of annual precipitation occurs in the winter, compared to peninsular 
Florida where this proportion drops to less than a fifth (Figure 1).  
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Figure 1. Polar plots of mean monthly runoffs expressed as percentages of the annual mean 
precipitation for four Florida rivers, from the Escambia (black) in the northwest, to Fisheating 
Creek (blue) in the south. Blue shading illustrates the winter wet season definition employed in 
this paper. Stations are located on a map displaying the proportion of mean annual 
precipitation falling in the months November-April. 

Regional differences become more noticeable when viewed through the lens of monthly 
streamflow regimes of the four selected sites shown (Figure 1). Note the relative importance of 
winter flows in the north (Escambia and Santa Fe) compared to those flows in the south, and 
the intervening geographic gradient.  Although the Escambia drains areas north of the Florida 
line where winter precipitation is more important, losses of precipitation to evapotranspiration 
are much lower than in summer, leaving a higher proportion of the precipitation to runoff as 
streamflow. Thus, winter events are of considerable impact upon available regional water 
resources. 

During warm phases of ENSO (El Niño), winter precipitation totals increase, fed by a 
southerly displacement of the sub-tropical jet from the Pacific tracking storms across the 
region. During cold phases (La Niña) storm tracks and jets tend to move north of the area 
producing lower totals (Schmidt et al., 2001; Maleski and Martinez, 2018; Wang and Asefa, 
2018). It is hypothesized that under future climate scenarios, the frequency of the warm and 
cold phases of ENSO will increase in frequency and intensity (Cai, et al., 2014, Cai et al., 2018.  

For the sake of objectivity, years are classified a priori as warm, neutral or cold phases of 
ENSO according to the Center for Ocean-Atmospheric Prediction Studies (COAPS) at FSU, 
(https://www.coaps.fsu.edu/jma) based on definitions used by the Japanese Meteorological 
Association. Of the 63 years of complete record available, 16 are classified as warm phase 
ENSO, 30 as neutral and 17 as cold. 
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Weather generators seek to simulate the properties of both the sequences of wet and 
dry days, and daily total precipitation.  The former property relates to the frequency of daily 
precipitation and the latter its magnitude. 

 

 

Figure 2. Possible combinations of two consecutive days with or without precipitation. Defining 

the occurrence of daily precipitation. 

 

The sequence of wet and dry days is viewed as a series of simple Bernoulli trials (Smith 
1987) with two possible outcomes. Given the persistence of meteorological conditions, the 
probability of an outcome is influenced by the previous outcome. Generally, this dependency is 
modelled using a first order Markov chain (Conejo, et al. 2001). Figure 2 show all possible 
combinations of the wet/dry conditions in two consecutive days.  Only estimates of 
probabilities in the two shaded boxes are needed, as the probability of the other outcome is 
the statistical complement.  
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Figure 3. Daily precipitation total in inches (x-axis) versus the probability of exceedance (y-axis) 

for the winters of 2010-2012. Defining magnitude of daily precipitation. 

 

How much precipitation falls on a rainy day, is generally represented by an exponential-
type probability distribution as shown in Figure 3. A generalized Pareto distribution is 
commonly used for this purpose (Lennartson et al., 2008) and its parameters can be estimated 
by the method of moments from the sample mean ( ̂) and standard deviation ( ̂) (Rosbjerg, et 
al., 1992) as: 
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Variable Notation Computation 

Wet day W  

Dry day D  

Number of days in winter n  

Number of wet days nW  

Number of dry days nD  

Proportion of days wet  nW/n 

Number of occasions that a wet 
day follows a wet day 

nWW  

Number of occasions that a dry 
day follows a dry day 

nDD  

Transition probability of a wet 
day to wet day 

W|W nWW / nW 

Transition probability of  a dry 
day to dry day 

D|D nDD /  nD 

Mean daily precipitation  ̂  

 
∑  

 

 

        

Standard deviation of daily 
precipitation 

 ̂    (
 

 
)∑     

 
   ̂            

 

 

Table 1. Table of definitions for daily precipitation variables, for the winter season, examined in 
the research including; a) the proportion total number of days with precipitation, b) the 
probability of a wet day following a wet day (number of occasions that consecutive wet days 
occur/the number of wet days), c) the probability of a dry day following a dry day (number of 
occasions that consecutive dry days occur/the number of dry days), d) the average depth of 
precipitation on wet days, and c) the standard deviation of the depth of precipitation on wet 
days. 

 

Variables extracted annually during the four months treated as winter (December to 
March inclusive), are defined in Table 1. Years are identified by the calendar year into which 
December falls, for example, the winter from December 2012 to March of 2013 is identified as 
2012, a convention used in the ENSO classification. Winters with any missing records are 
excluded from further analysis. Each winter the number of occurrences of consecutive days of 
similar “states” (dry or wet) are compared to the total number of transitions (the total number 
o days-1) and the proportion days experiencing measurable precipitation are recorded. 
Knowledge of these transitions also determines the likely lengths of the number of consecutive 
wet days (wet spells) or dry days (dry spells). Observed lengths of these spells each winter are 
also extracted, spells which have no defined start or end within the four months are excluded. 
Whenever precipitation occurs, the daily total is extracted and at the end of each winter their 
mean and standard deviation computed. All subsequent analyses are carried out in Microsoft 
EXCEL. 
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Methods 

If the variables in each subpopulation (warm, cold and neutral) are approximately 
normally distributed, then the standard parametric F- and t-tests can be used to determine 
significant differences in their variances and means between the three phases. Test for 
variances must be considered first to determine the correct form of the t-test. Empirical 
cumulative probabilities, P(x≤X), are estimated for each of the seven variables in the reported 
phases of ENSO, using the simple Weibull plotting position (Cunnane, 1978) of  

P(x≤X) = Rank of X/(n+1)       (3) 

where the n observations within each ENSO phase are sorted and ranked (smallest = 1, largest = 
n). Normal distributions possessing the same mean and variance as the observed data are 
created and the Kolmogorov-Smirnov (K-S) goodness of fit test applied (Masereka, et al., 2018). 
The null hypothesis of no significant difference between the observed cumulative probabilities 
and the fitted normal distributions, is applied to all 21 (seven variables defined in Table 1, three 
ENSO phases) variables/subpopulations.  Tests are carried out at the 0.20 level of significance 
(lowest tabulated values) in order to reduce the probability of making a Type-II error in 
hypothesis testing.   

To cover the possibility that data are not normally distributed, comparisons of the 
values of observed variables in each ENSO phase are performed via the hypergeometric 
distribution (Grimm et al., 2000).  Data from all years are sorted regardless of ENSO phase.  A 
count is kept of the number of years of each ENSO phase falling in the upper (lower) tercile of 
those sorted data.  Under the null hypothesis that ENSO has no role in determining annual 
values, it would be expected that one third of all years of a particular phase would appear in 
each tercile (e.g. on average one would expected ten of the 30 observations of neutral years to 
fall in any tercile).  Under the null condition, the probability of finding any number of years, k, 
of the specified ENSO phase in a tercile is defined by the hypergeometric distribution. 

      (4) 

Where N is the total number of all observations (63), K is the number of those observations that 
possess the property of interest (years in each ENSO subpopulation) and n is the size of the 
sample taken (21 in each tercile).  From this distribution, probabilities of unusually large or 
small outcomes can be defined and compared to predefined critical values.  Tests throughout 
are carried out at the 0.05 level unless otherwise stated. 
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Results 

The K-S test failed to reject the null hypothesis in any combination of 
subpopulations/variables, indicating that the assumption of normality is reasonable.  There is 
insufficient evidence in any case to reject the null hypothesis of no significant differences in 
variances despite some visual differences (e.g. Figure 4) - probably the result of the 
comparatively small sample sizes of warm and cold phase ENSO years.  On that basis, a two-
tailed, equal variance, t-test is used to compare means. 

 

 

Figure 4. Probability distributions of the proportion of days with precipitation (bottom axis) and 
number of days with precipitation (top axis) under various phases of ENSO. Figures inside the 
ovals report the mean of the proportion of days in each phase. An equal sign on the lines 
connecting ovals indicates no significant difference in means and a black “X” indicates 
significant difference. 

 

Table 2 displays estimated means of the seven variables under each phase of ENSO.  
These confirm the widely-made observation that winters are wetter during warm phases and 
drier in cold phases, however they provide valuable insights into the way in which these 
seasonal totals are derived in terms of the frequency and magnitude of daily precipitation, and 
their sequencing, at a temporal scale more appropriate for many management practices.  The 
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mean proportion of days with measurable precipitation, a coarse measure of the frequency of 
events, rises from 0.257(25.7% of winter days) during cold phase to 0.308 (30.8%) in warm 
phase.  The important sequencing of consecutive days with similar states (precipitation/no 
precipitation) characterized in weather generators by D|D and W|W transition probabilities, 
reveals an interesting nuance describing the nature of this change in frequency.  Mean D|D 
transitions vary little (0.028, or about 3.6% of undifferentiated D|D values) between the 
phases, with the highest value (0.776), as expected occurring in the drier cold phase and the 
lowest (0.748) in the wetter warm phase.  Mean W|W transitions however display greater 
differences in terms of both absolute values (0.092) and percentages of undifferentiated values 
(23.1%).   Suggesting that, in physical terms, lengths of consecutive dry days (dry spells), 
probably change little between phases, while consecutive days with measurable precipitation 
(wet spells) are more likely be responsive of ENSO phase.  Empirical observations of the mean 
lengths of dry (4.15 days in cold phase, and 3.78 days in warm) and wet spells (1.51 days in cold 
and 1.82 days in warm) initially seem not to support this.  However, once the changes (0.37 and 
0.31 days respectively) are expressed as percentages of the undifferentiated means, the 
proportionate changes become clear (9% for dry spells and 19% for wet). 

 

Variable Cold Phase Neutral 

Phase 

Warm Phase 

Proportion of days 0.257 0.274 0.308 

D|D Probability 0.776 0.772 0.748 

W|W Probability 0.347 0.398 0.439 

Mean Total (in) 0.498 0.554 0.646 

St.Dev. Total (in) 0.641 0.751 0.838 

Coeff. of Variation(%) 1.29 1.36 1.30 

Mean Dry Spell (dy) 4.15 4.00 3.78 

Mean Wet Spell (dy) 1.51 1.62 1.82 

 

Table 2.  Estimated mean value of parameters of daily precipitation under the three phases of 

ENSO. 

 

Not only do the daily frequency characteristics of the precipitation change, but so do 
those of the magnitude of daily precipitation totals.  Mean daily totals increase from 0.498” 
(cold phase) to 0.646” (warm phase), a 27% increase.  Perhaps of greater significance in terms 
of risks associated with excess precipitation (flooding, erosion, sedimentation), is that this 
increase in means is accompanied by an increase in the average value of the standard deviation 
of precipitation totals (0.641” in cold phase and 0.838” in warm) in a season.  As precipitation 
can only assume positive values, this increase in the average value of the standard deviation 
(0.197” or 26% of undifferentiated) can only be accommodated by increases in the upper tail of 
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the distribution – the larger daily totals.  The coefficient of variation (standard deviation/mean) 
remains fairly constant across phases.  The fact that they are all greater than unity implies that 
a distribution with a “heavier tail” than an exponential, like the Generalized Pareto, would be 
required 

Table 3 summarizes the statistical significance of the comparisons of means and 
supports the notion that, with the exception of D|D transitions, the parameters entered into 
weather generators, and the resultant probabilities of daily winter precipitation should change 
with the state of ENSO.  The contrast between warm and neutral phases is less marked and, 
statistically, cold and neutral phases are almost indistinct. 

Given the small sub-sample sizes of warm and cold phases and the very conservative 
nature of the K-S test, the non-parametric hypergeometric is used to validate the conclusions 
drawn about differences in values for a weather generator between ENSO phases. 

 

Variable 

Compare 

Prop. D|D W|W Mean St. 

Dev. 

Dry 

Spells 

Wet 

Spells 

Warm/Cold W*  W* W* W C W 

Warm/Neutral W* N  W*  N* W* 

Cold/Neutral   N     

 

Table 3.  Summary of the statistical significance of comparisons of means of each variable under 
various phases of ENSO.  Empty cell indicates no significant difference.  Letters identify the 
phase of ENSO – Warm (n= 16), Neutral (n=30), Cold (n=17) - generating the larger mean at 
0.10 level.  Asterisks show significant differences at the 0.05 level. 
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Figure 5. Empirical distribution of all annual estimates of D|D transition probabilities, identified 
by ENSO phase.  Data are divided into three groups (terciles) of equal membership.  As an 
example of the test of the hypergeometric probability distribution, the number of occasions 
that warm phase years fall in each tercile is recorded. 

 

Figure 5 plots all 63 annual estimates of D|D transition probabilities, identified by ENSO 
phase.  Data are divided into terciles and particular attention is paid to the 21 observations with 
the largest D|D transition probabilities (upper tercile) and the 21 with the smallest (lower 
tercile).  The former would be years likely to experience the longest dry spells while the latter 
would likely experience the shortest.  In total sixteen years are classified as warm phase.  If 
estimates of D|D are independent of phase, then roughly five warm phase years would be 
expected in each tercile.   As it is, only three warm phase years fall in the upper tercile and 
seven in the lower.  The hypergeometric distribution permits calculation of the probabilities of 
these outcomes under the null hypothesis of randomness. In neither case are the chances of 
the observed values sufficiently large or small to permit rejection of randomness at either the 
0.10 or 0.05 levels, supporting the result in the upper row of Table 3 of no significant difference 
in the mean values of D|D between warm and cold phases. 

Given a particular phase of ENSO, the observed numbers of years falling in either the 
upper, or lower, tercile classes of each variable can be greater than, less than, or not 
significantly different from, that expected at random.  Figures 7 and 8 summarize the nature of 
the relationships (greater above line, less below line) for upper and lower terciles of the five 
parameters directly related the weather generator. The proportion of days with precipitation 
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during warm phase occurs significantly more frequently in the upper tercile than random, as do 
values of the mean and standard deviation of precipitation - but at only the 0.10 level.   

 

 

Figure 6. Results of the application of the hypergeometric distribution to frequencies with 
which the observed values of parameters of the weather generator fall within the upper tercile 
of all values.  Heavy colors indicate significance and hashing at the 0.10 level.  

 

Values of W|W transitions during cold phase years fall significantly fewer times in the 
upper tercile and D|D probabilities show no tendencies. These observations are consistent with 
previous results, of 1) more days with precipitation and larger totals during warm phases, and 
2) lower probabilities of consecutive wet days during cold phases.   

Cold phase years appear more prominently in the analysis of frequencies with which 
estimates fall in the lower tercile of all parameter values (Figure 7).  All parameters, except for 
D|D, occur more often at the 0.10 level.  The tendency for larger mean daily precipitation totals 
in warm phase years is illustrated by significantly fewer estimates of this variable within the 
lower tercile. 
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Figure 7. Results of the application of the hypergeometric distribution to frequencies with 
which the observed values of parameters of the weather generator fall within the lower tercile 
of all values.  Heavy colors indicate significance and hashing at the 0.10 level.  

 

Discussion 

More complex versions of weather generators which use higher orders of Markov chain 
(Harrison and Waylen, 2000) and different probability distributions exist (Hanson and Vogel, 
2008), but the approach and types of parameters remain basically the same as those shown 
here.  This research has focused on changes in the values of parameters necessary to 
operationalize weather generators under current climate variability, rather than the exact 
forms of models to be used. 

The goodness of fit test of the assumption of normality, suffers from the same issues 
that many such tests which are generally established to minimize the chance of making a Type I 
error.  Visually, plots such as Figures 4 and 5 support the statistical conclusions and a small 
degree of non-normality does not preclude the use of the parametric tests, it only reduces the 
likely significance of the results.  Application of the non-parametric hypergeometric distribution 
test bolsters the findings.  Terciles are used as categories (“above normal”, “normal” and 
“below normal”) as they are used widely in climate forecasting (see for example, 
https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/). 

Although the focus is on the collective set of parameters used to describe the variables 
in weather generators, knowledge of the probability distribution of each individual variable is 
also of value.  For instance, Figure 8 displays the probability of W|W transitions separated by 
ENSO phase.  The “average” estimate of this variable’s probability over all 63 years is about 0.4. 
The probability of experiencing this value or less in a warm phase year is about 0.30, rising to 
over 0.70 in cool phases.  Likewise, choosing a measure of relative “rareness” of a particular 
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value, such as a roughly 20 year return period excess (0.95 cumulative probability) or deficit 
(0.05 cumulative probability), estimated W|W values range from 0.46 (cold) to 0.55(warm) , 
and 0.20 (cold) to 0.31(warm), respectively.   Knowledge of the normality of these variables, 
therefore, conveys a great deal more valuable practical information than just a simple table of 
the means and standard deviations.  

While these are only point measurements made at Tallahassee, they are based on the 
longest and most complete daily record in the area of the state most impacted by ENSO and 
therefore provide the largest sub-population sizes upon which to complete tests.  Given the 
regional nature of seasonal frontal precipitation, the lack of major topographic barriers and the 
well documented regional extent of ENSO impacts, it is reasonable to assume that similar 
changes will be experienced regionally, even if the exact sizes of those changes vary from 
location to location. 

Figure 8. Probability distributions of the estimated W|W transition probability under various 
phases of ENSO. 
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Conclusions 

This work disaggregates to the daily scale the well-known impacts of ENSO in the 
panhandle, north and central Florida on winter precipitation totals. In doing so it highlights 
comparative changes in both the frequency (transition probabilities, proportion of days with 
measurable precipitation), and magnitude (mean and standard deviation of daily totals) of the 
precipitation process, as well as the risks of excessive wet or dry spells. Given the extensive use 
of weather generators in numerous practical planning and forecasting applications, these 
changes can be important to decision-making in local forestry, agricultural, tourism and 
fisheries activities. In particular, if a warm phase event is forecast as opposed to a cold phase, 
the following changes might be anticipated: a) an increase in the proportion of winter days with 
measurable precipitation, b) an increase in the probability of wet to wet transitions, c) an 
increase in the mean length of wet spells, d) a decrease in the mean length of dry spells, and e) 
a proportionate (coefficient of variation) increase in both the mean and standard deviation of 
daily precipitation totals. When comparing warm and neutral phases, contrasts are similar, but 
less frequently statistically significant, with the exception that dry-to-dry transitions are shorter 
in warm phases. Few statistically significant distinctions exist between cold and neutral phases.  
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