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Effect of host decoys on the ability of the parasitoids 
Muscidifurax raptor and Spalangia cameroni 
(Hymenoptera: Pteromalidae) to parasitize house fly 
(Diptera: Muscidae) puparia
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Abstract

The pteromalid pupal parasitoids Muscidifurax raptor Girault & Sanders and Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) are commonly 
released on livestock farms for management of house flies, Musca domestica L. (Diptera: Muscidae). To be effective, parasitoids must be able to locate 
live host puparia in complex environments that may include dead or formerly parasitized hosts and non-host physical objects. In this study, both 
species of parasitoids were examined for their ability to kill and parasitize live house fly puparia either alone or in mixtures with formerly parasitized 
(dead) hosts or similarly sized acrylic beads. Muscidifurax raptor killed significantly fewer hosts and produced fewer progeny when the parasitoids 
were provided with hosts that were mixed with formerly parasitized puparia. Spalangia cameroni was unaffected by the presence of formerly para-
sitized puparia for any of the measured variables. When beads were used as a decoy instead of formerly parasitized puparia, high bead-to-live-host 
ratios (90% decoys) resulted in significantly fewer numbers of hosts killed by M. raptor compared with the other treatments (50% and no decoys). 
Residual host mortality at the high bead-to-live-host ratio (90% decoys) was lower (31.2%) than in ratios of 50:50 and with no decoys (51.6 and 59.3%, 
respectively), so that progeny production by M. raptor was unaffected by the presence of beads. Spalangia cameroni killed over twice as many hosts 
and produced twice as many progeny in the absence of bead decoys than when beads made up 90% of the decoy–host mixture. The results support 
the scatter method for deploying parasitized puparia during releases, because the presence of formerly parasitized hosts did not interfere substan-
tially with the ability of S. cameroni and M. raptor to locate and parasitize live pupae.
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Resumen

Los parásitos pteromalidos de las pupas, Muscidifurax raptor Girault & Sanders y Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) 
se suelen liberar en las fincas ganaderas para el manejo de las mosca doméstica, Musca domestica L. (Diptera: Muscidae). Para ser eficaz, 
los parasitoides deben ser capaces de localizar las pupas hospederas vivas en ambientes complejos que pueden incluir hospederos muertos 
o anteriormente parasitados y objetos físicos que no son hospederos. En este estudio, se examinó a ambas especies de parasitoides para 
determinar su capacidad para matar y parasitar las puparias de moscas vivas solas o en mezclas con hospederos anteriormente parasitados 
(muertos) o cuentas de acrílico de tamaño similar. Muscidifurax raptor mató significativamente menos hospederos y produjo menos progenie 
cuando los parasitoides fueron proporcionados con los hospederos que fueron mezclados con puparia parasitadas anteriormente. Spalangia 
cameroni no se vio afectada por la presencia de puparia anteriormente parasitadas para ninguna de las variables medidas. Cuando se utili-
zaron las cuentas de acrílico como señuelo sustituto en lugar de puparia anteriormente parasitada, altas proporciones de cuentas de acrílico 
–hospederos vivos (90% señuelos) resultó en un número significativamente menor de hospederos muertos por M. raptor en comparación 
con los otros tratamientos (50% y no señuelos ). La mortalidad residual del hospedero en la proporción alta de cuentas de acrílico -hospedero 
(90% señuelos) fue menor (31,2%) que en las proporciones de 50:50 y sin señuelos (51,6 y 59,3%, respectivamente), por lo que la producción 
de progenie por M. raptor no se vio afectada por la presencia de cuentas de acrílico. Spalangia cameroni mató más del doble del número de 
hospederos y produjo el doble del número de progenie en ausencia de señuelos de cuentas que cuando las cuentas constituían el 90% de la 
mezcla señuelo-hospedero. Los resultados apoyan el método de dispersión para el despliegue de puparia parasitada durante las liberaciones 
en que la presencia de hospederos anteriormente parasitados no interfiere sustancialmente con la capacidad de S. cameroni y M. raptor para 
localizar y parasitar pupas vivas.

Palabras Clave: Musca domestica; mosca del estable; Stomoxys calcitrans; control biológico; busqueda de hospederos

House flies (Musca domestica L.; Diptera: Muscidae) are worldwide 
pests that are an agricultural nuisance and a major public health con-
cern. These flies have the ability to mechanically vector a wide variety 

of pathogenic microorganisms to humans and livestock and may have a 
role in the dispersal of antibiotic-resistant bacteria (Graczyk et al. 2001; 
Zurek & Ghosh 2014). There is critical need for house fly management 
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tools because of increasing resistance to conventional insecticides (Ma-
lik et al. 2007; Scott et al. 2013). Pteromalid pupal parasitoids provide 
one of the most common and readily available biological controls for 
fly management (Machtinger & Geden 2017). Commercial insectaries 
rear and sell a variety of species, including Muscidifurax raptor Girault 
& Sanders and Splangia cameroni Perkins (Hymenoptera: Pteromali-
dae). Although releases of these species have proven effective as part 
of integrated pest management programs in a variety of production 
systems (Geden et al. 1992; Geden & Hogsette 2006; Birkemoe et al. 
2009), questions remain about the numbers of parasitoids needed 
to provide satisfactory management and the best methods to deploy 
parasitized hosts in the field.

Parasitoids can be released by either scattering parasitized pupar-
ia in areas of known fly breeding (Rutz & Axtell 1981; Kaufman et al. 
2002, 2012; Skovgård 2004) or by placing them in release stations that 
protect them from damage and accidental removal (Geden et al. 1992; 
Petersen et al. 1995; Crespo et al. 1998; Weinzierl & Jones 1998; Floate 
2003; Skovgård & Nachman 2004; Geden & Hogsette 2006). Although 
release stations provide protection, scattering has the advantage of 
placing the parasitoids near the target fly puparia and mitigates con-
cerns about the limited dispersal distances of some species (Tobin & 
Pitts 1999; Skovgård 2002; Machtinger et al. 2015). However, the scat-
ter method results in an accumulation of formerly parasitized puparia 
in the habitat that must be searched through and avoided by parasit-
oids. Such accumulations may or may not impose increased handling 
time constraints on the parasitoids as they locate, inspect, and then 
reject unusable candidate hosts (Hubbard & Cook 1978; Waage 1979; 
Van Alphen & Galis 1983). The objective of the present study was to 
evaluate the effect of the presence of formerly parasitized hosts on 
M. raptor and S. cameroni parasitism of house fly puparia. We also 
examined whether the presence of an equivalent volume of inanimate 
objects roughly similar in size and shape to house fly puparia would 
affect the searching efficiency of both species.

Materials and Methods

INSECTS USED IN BIOASSAY

Spalangia cameroni and M. raptor females were from colonies 
maintained at the United States Department of Agriculture Agricultural 
Research Service (USDA-ARS) Center for Medical, Agricultural and Vet-
erinary Entomology in Gainesville, Florida. The original source material 
for both colonies was collected from a dairy farm in Gilchrist County, 
Florida. All tests with S. cameroni and the M. raptor tests involving pre-
viously parasitized puparia were conducted with colonies established 
in 2012. During the hiatus between tests with formerly parasitized pu-
paria and bead decoys, the M. raptor colony developed Nosema dis-
ease and was no longer suitable for use in bioaasays, so another colony 
was used that had been collected 1 yr earlier.

Parasitoids were provided with 2-d-old house fly puparia every 
3 to 4 d at a host-to-parasitoid ratio of 5:1 in 32.5 × 32.5 × 32.5 cm 
cages (MegaView Science, Taiwan) and held at 25 °C and 80% RH un-
der constant darkness. House flies were from a colony (“Orlando Nor-
mal”) originally collected in the 1950s near Orlando, Florida, and since 
then maintained at the USDA-ARS Center for Medical, Agricultural and 
Veterinary Entomology. Fly larvae were reared on a 13:1:6.5 ratio of 
wheat bran, Calf-Manna (Manna Pro Products LLC, Chesterfield, Mis-
souri), and water (by volume). Adults were reared under laboratory 
conditions of 27 °C, 45 to 70% RH, and a photoperiod of 16:8 h L:D. 
Adult flies were fed a diet consisting of granulated sucrose, powdered 
milk, dried egg, and sugar and maintained at 27 °C in wire mesh cages.

HOST DECOYS

Parasitoids were presented with either live fly puparia alone or in 
combination with “decoys” in the form of either fly puparia formerly 
parasitized by conspecifics or acrylic craft beads. Formerly parasitized 
puparia were obtained by examining spent puparia from parasitoid 
colonies and selecting those with exit holes indicating parasitoid emer-
gence. The acrylic craft beads were included to provide an inanimate 
matrix comparable to an equal volume of puparia. The beads (item 
#6M145F, Gifts of Avalon, Gainesville, Florida) were obtained from a 
local craft shop and had outer dimensions of 2.9 × 4.4 mm, whereas 
fly puparia averaged 2.5 × 6.5 mm. The beads also had an open center 
for insertion of a string (Fig. 1). Although the beads had a somewhat 
smaller length-by-width aspect than the puparia (12.9 and 16.4 mm2, 
respectively), the differences in shape meant that groups of beads oc-
cupied a somewhat larger volume than the puparia. The quantity of 
beads needed to achieve the desired equivalent volume as 1,000 live 
pupae (33 cm3) was 616 beads (Fig. 1).

BIOASSAY

For both types of decoys (formerly parasitized puparia and 
beads), the treatments consisted of 3 mixtures with live pupae: 1) 
1,000 live puparia (1–2 d after pupation) with no decoys (100% live 
hosts); 2) 500 live puparia and either 500 parasitized puparia or 313 

Fig. 1. A set of 1,000 live house fly puparia and an equal volume (33 cm3) of 
the acrylic beads used in the assays to illustrate the general appearance of the 
bead decoys.



446	 2017 — Florida Entomologist — Volume 100, No. 2

beads (50% live hosts); and 3) 100 live pupae and either 900 parasit-
ized pupae or 554 beads (10% live hosts). These combinations were 
placed in 60 cm3 cups with muslin covers. Parasitoids were removed 
from colony containers, placed on a chill table to anesthetize them, 
and groups of 5 females were counted and placed into gelatin cap-
sules (size 00, B&B Pharmaceuticals, Aurora, California). Parasitoids 
were released from a single capsule into the assay cups by opening 
the gelatin capsules and tapping the parasitoids onto 1 of the 3 pu-
paria treatments. There were 5 replicates of pupae and decoys for 
each species, combination, and type of decoy (parasitized puparia 
or beads) tested, for a total of 10 observations. Parasitoids were re-
moved after 24 h by placing puparia in a standard U.S. number 10 
sieve (with 2 mm openings) and shaking gently until all 5 parasitoids 
came through the sieve. Live puparia were separated from formerly 
parasitized puparia by microscopic examination and removal of pu-
pae with exit holes. Live puparia were separated from beads by sift-
ing puparia through a U.S. standard no. 6 sieve (3.36 mm openings). 
Puparia were returned to the bioassay cups and held for fly emer-
gence at 28 °C for 7 d. Dead adult house flies and empty puparia were 
discarded. Uneclosed puparia were counted and then placed back 
into the 28 °C rearing chamber for parasitoid emergence. In tests 
involving M. raptor, progeny production was determined by counting 
the number of adult parasitoids present in the assay cups. Because S. 
cameroni will sometimes re-enter puparia through exit holes before 
dying, counting the number of adult parasitoids found in an assay 
cup can result in substantial underestimates of progeny production 
(Machtinger & Geden 2013). Therefore, for this species, we examined 
puparia for the presence of exit holes and used this as our measure 
of progeny production. Residual host mortality, or the percentage of 
killed hosts that produced neither a fly nor a parasitoid, was calcu-
lated for each bioassay cup (Taylor et al. 2016). The entire experiment 
was replicated on 2 occasions with different cohorts of flies and para-
sitoids. The bioassays with the 2 decoy types (parasitized puparia and 
beads) were conducted 2 yr apart, in 2014 and 2016, respectively.

Data on the number of hosts killed, progeny produced, and residual 
mortality were analyzed separately for each species and decoy type by 
1-way ANOVA using the 3 live host–decoy combinations as the group-
ing variable. Preliminary analysis indicated no significant effect of rep-
lication for either species or decoy type, so results from the replicates 
were pooled (n = 10 sets of parasitoids and puparia for each species 
and host–decoy combination). Treatment means were compared using 
Tukey–Kramer honest significant difference (HSD) tests if the overall 
model F was significant at P ≤ 0.05. Analyses were conducted using 

PROC GLM with the MEANS/TUKEY statement using SAS software 
version 9.4 (SAS Institute Inc. 2013).

Results

Muscidifurax raptor killed significantly more hosts (55.3) and pro-
duced more progeny (43.1) when decoys were absent than when the 
live pupae were mixed with formerly parasitized puparia (Table 1). The 
presence of formerly parasitized hosts had no significant effect on M. 
raptor residual mortality. Spalangia cameroni was unaffected by the 
presence of formerly parasitized puparia for any of the measured vari-
ables (Table 1). When beads were used as decoys rather than formerly 
parasitized puparia, the high decoy-to-live-host ratio (90% beads) re-
sulted in significantly lower numbers of hosts killed by M. raptor (56.6) 
compared with the other treatments (79.2 and 97.2) (Table 2). Residual 
mortality at the high decoy-to-live-host ratio (90% beads) was lower 
(31.2%) than in the other treatments (51.6 and 59.3%), indicating that 
progeny production by M. raptor was unaffected by the presence of 
decoys. Spalangia cameroni killed over twice as many hosts (99.4) in 
the absence of bead decoys than at the high decoy-to-live-host ratio 
(37.9) (Table 2). Residual mortality was unaffected by the treatments 
(52.1–63.3%), as progeny production by S. cameroni was about twice 
as high (39.6) when decoys were absent than in the 90% decoys treat-
ment (19.5).

Discussion

Muscidifurax raptor and S. cameroni are both cosmopolitan spe-
cies with wide host ranges that are best known for attacking house 
flies and stable flies in a variety of animal production systems (Macht-
inger & Geden 2017). Although they occur sympatrically, their differ-
ences in searching behavior result in a degree of niche partitioning, 
with Muscidifurax species searching near the surface of host-breeding 
substrates and S. cameroni searching at greater depths (King 1997; 
Geden 2002; Rueda & Axtell 1985; Pitzer et al. 2011). Recent studies 
have documented that Muscidifurax species rely on pupal odors to lo-
cate hosts, whereas Spalangia species are attracted by combinations 
of host larvae and breeding substrates (Machtinger et al. 2015; Macht-
inger & Geden 2015).

Little is known about how these parasitoid species locate and as-
sess potential hosts at close range once they have discovered a host-

Table 1. Mean (SE) numbers of hosts (live house fly puparia) killed and progeny produced by groups of 5 Muscidifurax raptor and Spalangia cameroni females over 
24 h when hosts were either presented alone or in combinations with decoys in the form of dead fly puparia that had been parasitized by conspecifics (empty 
puparia that had produced adult parasitoids).

Treatment (% decoys) No. of hosts killed No. of progeny Residual mortality (%)a

Muscidifurax raptor
0% decoys 55.3 (4.6)a 43.1 (4.9) 22.2 (6.7)
50% decoys 39.6 (4.3)b 30.9 (3.9) 15.7 (13.6)
90% decoys 47.8 (3.1)b 32.1 (2.6) 32.8 (3.7)
ANOVA Fb   3.76*   2.93 ns   0.91 ns

Spalangia cameroni
0% decoys 34.2 (3.9) 14.6 (1.2) 50.6 (9.2)
50% decoys 37.8 (3.3) 17.6 (2.4) 53.0 (6.0)
90% decoys 34.6 (3.1) 14.7 (2.2) 51.2 (12.1)
ANOVA Fb   0.33 ns   0.73 ns   0.02 ns

Means followed by the same letter within columns under the same species header did not differ at P = 0.05 (Tukey).
aPercentage of killed hosts that did not produce an adult parasitoid.
bOne-way ANOVA, df = 2,27; *, P ≤ 0.05; ns, P > 0.05.
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rich patch. Both M. raptor and S. cameroni inflict higher host mortality 
and produce more progeny when hosts are widely distributed rather 
than clumped within a patch (Mann et al. 1990). Live puparia in natural 
settings must be discovered against a background of physical features 
of the habitat, as well as in a context of hosts that are unsuitable be-
cause they are currently parasitized or dead from various other causes, 
including past parasitism. Dead puparia that have already produced 
parasitoids can accumulate in substantial numbers in stable habitats, 
and live hosts may represent only a small proportion of those encoun-
tered by a parasitoid while searching. The time required to assess 
and reject numerous unsuitable hosts can reduce successful parasit-
ism by increasing “handling time,” or the interval between parasitism 
events (Connor & Cargain 1994). One of our goals was to determine 
whether searching efficiency deteriorated when live hosts were pre-
sented along with formerly parasitized puparia. Our results indicate 
that S. cameroni is unaffected by the presence of such hosts, and that 
the effect on M. raptor was weak, even when live hosts made up only 
10% of the potential hosts that had to be assessed. As a control for 
the spatial complexity that dead puparia provide, we also examined 
parasitism when live hosts were mixed with comparable volumes of 
inanimate decoys in the form of acrylic beads. Surprisingly, a stronger 
effect on search efficiency was observed with bead decoys than with 
dead puparia. The beads appear to have provided a degree of spatial 
complexity that the parasitoids found more difficult to navigate than 
the presence of formerly parasitized puparia. In this regard, the results 
with beads are perhaps analogous to other studies where Spalangia 
species and Muscidifurax species parasitoids were exposed to hosts 
alone or hosts within substrates (Geden 2002; Pitzer et al. 2011).

Comparison of Tables 1 and 2 indicate that performance of M. 
raptor in the absence of decoys differed between the tests involving 
formerly parasitized puparia and beads. Although progeny production 
was similar in the assays, parasitoids in the tests with formerly parasit-
ized pupae attacked more hosts and had higher residual mortality rates 
than in the tests with beads. This is probably due to the use of differ-
ent M. raptor strains in the 2 types of assays, which were conducted 
2 yr apart. At the time of the bead tests, the M. raptor colony used in 
the earlier assays was compromised by Nosema disease. This required 
using a different colony for the bead tests, and house fly and stable fly 
parasitoid colonies can vary in their intrinsic residual mortality rates 
(Geden et al. 2006).

When parasitoids are released in augmentative fly management pro-
grams, the end-user must decide whether to scatter parasitized puparia 
in fly breeding areas or place them in discrete release stations. Both 
methods have advantages and liabilities. One potential disadvantage of 

the scatter method is that the accumulation of parasitized puparia in the 
environment could diminish the ability of foraging females to locate live 
puparia. To our knowledge, Birkemoe & Oyrehagen (2010) conducted 
the only study comparing the 2 methods and found no significant effect 
on house fly parasitism by S. cameroni on Danish pig farms. They sug-
gested that any disadvantages of the scatter method were compensated 
for by the short distance that parasitoids needed to travel to find hosts 
(Birkemoe & Øyrehagen 2010). Our results support the practice of scat-
tering parasitized puparia in that the presence of formerly parasitized 
hosts does not interfere substantially in the ability of S. cameroni and M. 
raptor to locate and parasitize live puparia.
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