A TAXONOMIC REVIEW OF STACHYOTIS (LEPIDOPTERA: YPONOMEUTOIDEA: PLUTELLIDAE) WITH DESCRIPTION OF A NEW SPECIES FROM CHINA

JAE-CHEON SOHN
Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, U.S.A

Department of Entomology, University of Maryland, College Park, MD, U.S.A.

E-mail: jsohn@umd.edu

ABSTRACT

The genus Stachyotis (Lepidoptera, Yponomeutoidea, Plutellidae) is reviewed by re-description of the type species, Stachyotis epichrysa Meyrick from Sri Lanka and description of a new species, Stachyotis chunshengwui sp. nov. from China. These 2 congeners are distinguished from each other in their forewing patterns and male genitalia. The diagnostic features of Stachyotis are proposed from the forewing venation, structures of the second sternite and the tergites, and the male genitalia. A possible association of Stachyotis and Orthenches-group is discussed.

Key Words: China, Orthenches-group, Plutellidae, Sri Lanka, Stachyotis chunshengwui n. sp., Yponomeutoidea

RESUMEN

Se revise el género Stachyotis (Lepidoptera, Yponomeutoidea, Plutellidae) con la re-descripción de la especie tipo, Stachyotis epichrysa Meyrick de Sri Lanka y la descripción de una nueva especie, Stachyotis chunshengwui n. sp. de China. Estos 2 congéneres se distinguen por el patrón de las alas anteriores y la genitalia del macho. Se provee características diagnósticas de Stachyotis para la venación de las alas anteriores, la estructura del segundo esternito y los tergitos y la genitalia masculina. Se discute una posible asociación de Stachyotis y el grupo Orthenches.

Palabras Clave: China, grupo Orthenches, Plutellidae, Sri Lanka, Stachyotis chunshengwui n. sp., Yponomeutoidea

The genus Stachyotis was originally described in Plutellidae by Meyrick (1905). Since then, the systematic position of the genus has not been revised. Kyrki (1984) characterized Plutellidae (Plutella-group auct) by the presence of the curved teguminal processes surrounding the anal tube in the male genitalia. This character is not found in Stachyotis. Meyrick (1905) suggested that the genus may be related to Orthenches that he believed also belonged to Plutellidae. In accordance with his opinion, Stachyotis is treated as a plutellid genus in this study, although the plutellid association of Orthenches needs further attention (Dugdale 1996).

Meyrick (1905) defined Stachyotis, based on the head, hindleg, and wing venation characteristics. These superficial features are apparently insufficient to differentiate the genus from other similar yponomeutoids. Stachyotis includes only the type species, Stachyotis epichrysa Meyrick, 1905, from Sri Lanka. This species has never been illustrated or described with genital features, which are often crucial in defining taxonomic relationships. Nothing is known about the biology of Stachyotis. Because the yponomeutoid fauna of the Oriental Region is poorly known (Lewis & Sohn, in preparation), there may exist other congeners in the region, especially on the Indochina Peninsula.

The aims of this paper are to re-describe Stachyotis and its type species, Stachyotis epichrysa Meyrick, to describe a new congener from southern China, and to discuss the morphological similarities between Stachyotis and the Orthenches-group sensu Dugdale (1996). The abbreviations in the specimen data are as follows:

BMNH (Natural History Museum, London, UK); GSN (genitalia slide number); and USNM (National Museum of Natural History, Washington, DC, USA).
SYSTEMATIC ACCOUNT

Stachyotis Meyrick

Stachyotis Meyrick, 1905: 612.

Type species: *Stachyotis epichrysa* Meyrick, 1905, by monotypy.

Diagnosis

The yponomeutoid association of this genus is substantiated by having 2 autapomorphies for the superfamily: the presence of the posteriorly expanded male pleuron VIII, also known as pleural lobes, and the transverse ridge near the posterior margin of sternite II. *Stachyotis* is similar to *Rhabdocosma* Meyrick, 1935 (Ypsolophidae) in the shape of the pleural lobes but differs from the latter in the male genitalia: processes on uncus in *Stachyotis*, absent in *Rhabdocosma*; gnathos acuminate medially, upcurved in *Stachyotis*, with linguiform medial plate in *Rhabdocosma*; and saccus longer in *Stachyotis* than in *Rhabdocosma*. The diagnostic features of *Stachyotis* include the forewing veins CuA₁ and CuA₂ stalked (Fig. 4); the sternite II with a V-shaped transverse ridge on the posterior margin (Fig. 5); tergites with scattered short setae (Fig. 5); lateral arms of gnathos convergent to medial process (Figs. 10 and 11); and valva divided into 2 portions distally (Figs. 10 and 11).

Redescription

Head (Figs. 1 and 2) with vestiture of vertex appressed with piliform scales; frons with elongate scales; ocelli absent [Meyrick (1905) erroneously stated that *Stachyotis* possessed ocelli on the head]; antenna filiform in both sexes; flagellomere with 2 whorls of elongate scales; labial palpus 4-segmented; proboscis naked. Hind tibia (Fig. 3) with piliform scales denser dorsally. Forewing with pterostigma spanning one half of costa and Rs₅; costa slightly curved; apex narrowly round; termen slightly concave medially; tornus subtruncate; dorsal margin arched at distal ⅓. Hindwings with costa slightly emarginated near midlength. Forewing venation (Fig. 4) with Sc+R reaching margin slightly before middle of costa; R arising from near basal ⅓ of radius; Rs₁ reaching margin above apex; Rs₂; arising from anterior margin of accessory cell near midlength, parallel to R; Rs₃ parallel to Rs₂; Rs₄ and Rs₅ connate basally, then divergent; Rs₆; reaching margin below apex at the anterior ⅓ of termen; M with 3 branches; M₁ parallel to M₂; M₃ and M₄ close basally, then divergent; CuA₁ and CuA₂ stalked, reaching dorsal margin; CuA₃ slightly curved after stalk; CuP vestigial as fold in basal ⅔; basal fork of 1A+2A near ⅓ of length. Hindwing venation (Fig. 4) with Sc+R, reaching margin at distal ⅓ of costa; Rs reaching margin above apex, slightly arched; M stem vestigial; M₅ divergent from Rs; M₆ nearly parallel to M₅; M₇ connate with CuA₂; CuA₂ parallel to CuA₃; CuP present; 1A+2A slightly divergent from CuP in distal ⅔, with basal fork ⅔ of length. Abdominal tergites (Fig. 5) with minute setae uniformly scattered on entire area. Sternum II (Fig. 5) with apodeme and venula ⅓ as long as pleura II; anterior margin notched and sclerotized medially. Tergum VIII (Fig. 6) fused with pleuron VIII, broadly rounded posteriorly, broadly margined posteriomedially. Male genitalia with socii and teguminal processes; subscaphium present; gnathos upcurved; valva elongate; saccus as an elongate arm; vesica with cornual zone comprised of spinules. Female genitalia unknown.

Included species

Stachyotis chunshengwui Sohn, sp. nov. *Stachyotis epichrysa* Meyrick, 1905

STACHYOTIS EPICHRYSY MMEYRICK

(Figs. 1, 3-8, 10)

Stachyotis epichrysa Meyrick, 1905: 612.

Diagnosis

This species is similar to *Prays peregrina* Agassiz, 2007, from England in superficial appearance, but the latter belongs to Praydidae, which can be characterized by the presence of the broadly enlarged male sternum VIII.

Redescription

Head (Fig. 1): Scales on vertex white, with dark brown band subterminally; frons white, tinged with dark brown laterally. Antenna ⅔ as long as forewing; scape brownish white, scales with dark brown band subterminally; flagellomere pale gray on basal half, dark brownish gray on distal half. Labial palpus 1st segment white, dark brown terminally, with elongate scales ventrally; 2nd segment dark brown, speckled with white laterally, white, sparsely peppered with dark brown mesally; 3rd segment white, tinged with dark brown on basal and apical areas and at middle.

Thorax: Patagium pale brownish gray; tegula dark brown; mesonotum white, sparsely peppered with dark brown spots on anterior half, dark brownish gray on posterior half. Fore- and midlegs with coxa and femur white, sparsely peppered with dark brown; tibia dark brown, white terminally; tarsomere dark brown, with
broad white band at basal \(\frac{3}{4} \). Hindleg with coxa to tibia pale brownish gray; tibia with long hairs dorsally, spiniform scales ventrally; tarsomere white, densely speckled with dark brownish gray, with dark brownish gray band distally. Forewing length 7.4-8.8 mm (\(n = 7 \)) slightly dilated distally, white, suffused with pale brownish gray on basal area and anterior \(\frac{4}{5} \) of costal area, speckled with dark brown; sparse dark brown strigulae near to costa on basal \(\frac{1}{3} \); subbasal, antemedial and postmedian lines brownish gray, with golden luster; dark brown on dorsum; subbasal line rhomboid; postmedian line slender, sinuous on costal area; fringe dark brown with golden luster. Hindwing pale brownish gray; fringe pale yellowish gray.

Abdomen: Tergites pale brown; sternites pale orange. Male genitalia (Fig. 10) with uncus trapzezoidal, posterior margin emarginated medially, with a digitate process and an elongate, distally-curved, apically-obtuse process posteriolaraterally; socius elongate, slender, as long as valva, setose dorsally; V-shaped ridge at junction between uncus and tegumen. Tegumen subtrapezoidal in posterior half, subrectangular in anterior half. Gnathos V-shaped, upcurved medially. Valva elongate, rectangular, divided into 2 setose portions apically, upper portion semicircular, lower portion digitate; sacculus slightly convex. Vinculum subquadrate; sacculus slender, 2x longer than valva, dilated terminally. Phallus (Fig. 10a) elongate, slightly curved medially; cornutal zone \(\frac{1}{3} \) as long as phallus.

Type

HOLOTYPE (Fig. 7) - male, “Holo-type” [circular label with red border], “Maskeliya, Ceylon. Pole. 12.03”, “Meyrick Coll. B.M. 1938-290.”, “Stachyotis epichrysa 2/11 Meyr. E. Meyrick det. in Meyrick Coll.”, “Abdomen missing” [pale blue label], deposited in the Natural History Museum, London, United Kingdom.

Material Examined

Distribution

Sri Lanka (Central, North East).

Stachyotis Chunshengwui sp. nov.
(Figs. 2, 9, 11)

Diagnosis

This species closely resembles Stachyotis epi-
chrysa but can be distinguished from the latter
in having the forewings with narrower subbasal,
antemedian, and postmedian lines and a dark
yellowish brown, semicircular patch along the
terminal area; the male genitalia with shorter
posterior processes on the uncus and upper api-
cal portion of the valva tapering.

Description

Head (Fig. 2): Scales on vertex white, with
dark brown tip; frons white. Antenna 2/3 as long
as forewing; scape white, intermixed with dark
brown scales dorsally; flagellomeres white, anu-
lated with dark brown dorsally. Labial palpus 1st
segment dark brown, intermixed with pale brown
scales; 2nd and 3rd segments brownish white,
mottled with dark brown at middle; scale tuft on
2nd segment, white with dark brown tip.

Thorax: Patagium and mesonotum dark brown
with purplish luster; tegulae white, suffused with
dark brown basally and distally. Fore- and mid-
legs with coxa, femur, and tibia dark brown, inter-
mixed with white scales dorsally, white ventrally;
tsosmeres dark brown, with a white ring bas-
ally. Hindleg with coxa, femur, and tibia brown-
ish gray dorsally, white ventrally; tibia with gray
hairs dorsally, white hairs ventrally; tarsomerses
entirely dark brown, except 1st segment white
ventrally. Forewing length 6.9 mm (n = 1), white,
with dark brown, irregular strigulae along costa
and posterior margin; subbasal and antemedian
lines dark brown, almost perpendicular to dor-
sum; postmedian line ½ as wide as medial line,
constricted around anterior ⅓, blurred posteri-
orly; subterminal line dark brown, narrower than
and almost parallel to postmedian line; terminal
area with semicircular, dark yellowish brown
patch; fringe mostly dark brown, white with dark
brown tip on tornus Hindwing dark brownish
gray, with dark brown streaks along veins; fringe
dark yellowish gray.

Abdomen: Tergites dark gray; sternites pale
orange. Male genitalia (Fig. 11) with uncus broad,
subhexagonal, with bifid projection posteriorly;
each process digitate, sparsely setose; socii 3x
longer than posterior uncal processes, slender,
straight, slightly enlarged terminally, with 2 short spines apically, setose. Tegumen 2 × as long as uncus, relatively narrow, slightly angulated on distal ⅓; medial process of gnathos robust, strongly sclerotized. Valva elongate, relatively narrow, shallowly convex at distal ¼ of costal margin, with a short, digitate process protruding from costal side of apex; a robust, digitate sac- cular process rising from ½ of valva. Vinculum rectangular; saccus with a narrow basal plate and a slender process 1.5x longer than valva; anellus relatively narrow, with minute setae. Phallus relatively slender, slightly bent medially, 1.5x longer than saccus; cornutal zone ½ as long as phallus.

Type

HOLOTYPE (Fig. 9)—male, “HOLOTYPE Stachyotis chunshengwui Sohn, 2009” [red label], “Guangxi Miaoershan Chinese Academy of Sciences” [in Chinese], “1985.7.14 Collector: Shi Mei Song” [in Chinese], “Genitalia slide IOZ-09047 J. C. Sohn” [green label], deposited in the Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Distribution

China (Guangxi).

Etymology

This species is named after Dr. Chun-Sheng Wu who assisted me with my research.

Discussion

Stachyotis has been associated with Plutellidae, since Meyrick (1905, 1914). The evidence justifying this relationship are, however, tenuous. In fact, the genus lacks an autapomorphy of Plutellidae proposed by Kyrki (1984). Kyrki (1990) stated 2 other diagnostic characteristics for Plutellidae from the female genitalia and the shape of cocoon. These cannot be evaluated for Stachyotis because no females and immature stages are known for the genus. Kyrki (1990) characterized Plutellidae based on the Holarctic species (Sohn et al. 2013). Future efforts toward better characterization of Plutellidae need to consider the world species and may find useful characters in evaluating the plutellid association of Stachyotis.

Meyrick (1905) noted superficial similarities between Stachyotis and Orthenches. Orthenches once included 4 species groups. Dugdale (1996) found that these differ from one another in host plant, cocoon structures, adult external and genital structures. Regarding these differences, he assigned one group including 10 species to a separate genus, Chrysorthenches, and established
the *Orthenches* group including about 25 species from New Zealand, Australia, eastern Pacific and South America. The *Orthenches* group is similar to Plutellidae in larval and pupal characteristics but differs from the latter in having the male gnathos narrowly fused with the tegumen laterally, and the larval setal group SV unisetose, not bisetose, on the abdominal segment IX (Dugdale 1996). The latter characteristic was suggested as an autapomorphy of the *Orthenches* group by Dugdale (1996). This feature, however, cannot be evaluated for *Stachyotis* whose larvae remain unknown. Therefore, an association of *Stachyotis* with the *Orthenches* group remains tenuous.

Interestingly, *Stachyotis* shares at least two characteristics with some species of *Orthenches* from Neotropics (e.g. *O. osteacma* Meyrick, 1931) in the male genitalia: 2 pairs of processes on uncus, each possibly corresponding to socii and teguminal processes, and an upcurved gnathos. There, however, are several differences between *Stachyotis* and the *Orthenches* group (John S. Dugdale 2014, personal communication): i) elongate scale covering on the antennal scape present in several species of the *Orthenches* group but absent in *Stachyotis* and *Chrysorthenches*; ii) the forewing veins CuA, and CuA stalked in *Stachyotis*, but separate in *Orthenches* and *Chrysorthenches*; and iii) the male gnathos absent (Chrysorthenches) or without medial process in Australian and New Zealand species of the *Orthenches* group, but with an elongate medial process in *Stachyotis*.

ACKNOWLEDGMENTS

I would like to thank John S. Dugdale (Landcare Research New Zealand Ltd, Nelson, New Zealand) for his advice and proof-reading my early draft and also Kevin Tuck (Natural History Museum, London) for allowing me to check the museum specimens under his responsibility. I am also very grateful to Chun-Sheng Wu and Dayoung Xue (Chinese Academy of Sciences, Beijing) for allowing me to borrow the specimens from their institution and Mujie Qi (Incheon University, Incheon, Korea) for translating the Chinese label data.

REFERENCES CITED

