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abstract

The ability to manage geospatial data has made Geographic Information Systems (GIS) an 
important tool for a wide range of applications over the past decades, including manage-
ment of natural resources, analysis of wildlife movement, ecological niche modeling, or land 
records management. This paper illustrates, using invasive termite species as examples, 
how GIS can assist in identifying their potential sources of infestations and model their 
spread in urban South Florida. The first case study shows that the Formosan subterranean 
termite, Coptotermes formosanus Shiraki, and the Asian subterranean termite, Coptotermes 
gestroi (Wasmann) (Isoptera: Rhinotermitidae), were introduced into and dispersed across 
South Florida by sailboats and yachts. The second case study shows an agent-based model to 
simulate the natural spread of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae) 
in Dania Beach, Florida. This paper provides an overview of basic functionalities in GIS and 
demonstrates how they can be customized for advanced modeling and simulation.
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resumen

La capacidad de manejar datos geoespaciales ha hecho de los Sistemas de Información Geo-
gráfica (SIG) una herramienta importante para una amplia gama de aplicaciones en las 
últimas décadas, incluyendo el manejo de los recursos naturales, análisis de movimiento 
de la fauna, modelos de nichos ecológicos, o manejo de los registros de terrenos. Se ilustra, 
utilizando especies invasoras de termitas como ejemplos, cómo el SIG puede ayudar a identi-
ficar las posibles fuentes de infestación y modelar su diseminación en las zonas urbanas del 
sur de la Florida. El primer caso de estudio muestra que la termita subterránea de Formo-
sa, Coptotermes formosanus Shiraki y la termita subterránea asiática, Coptotermes gestroi 
(Wasmann) (Isoptera: Rhinotermitidae), fueron introducidas y dispersadas en todo el sur de 
la Florida por medio de los barcos veleros y yates. El segundo caso de estudio muestra un 
modelo basado en agentes para simular la diseminación natural de Nasutitermes corniger 
(Motschulsky) (Isoptera: Termitidae) en Dania Beach, Florida. Este documento provee una 
visión global de las funciones básicas de SIG y demuestra la forma como puede ser adaptado 
para producir modelos azanzados y simulaciónes.

Palabras Clave: análisis espacial, funcionalidad GIS, modelos, sur de la Florida, termitas 
exóticas

Termites are destructive insect pests which 
cause billions of US dollars in structural damage 
and control within the United States alone (Su & 
Scheffrahn 1998). Worldwide, more than a dozen 
exotic termite species have become established 
(Evans 2011), of which 6 can be found in Florida 
(Scheffrahn et al. 2002). Typical research ques-
tions related to invasive species are: (Q1) How 
did non-native species invade and establish non-

endemic populations? (Q2) How fast do invasive 
species disperse without human assistance with-
in a new environment? In the case of termites, 
maritime transport has long been suspected to be 
responsible for the transport and nonendemic es-
tablishment of numerous termite species across 
ocean barriers (Gay 1967; Scheffrahn et al. 2009). 
Two invasive termites, the Formosan subterra-
nean termite (FST), Coptotermes formosanus Shi-
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raki (Isoptera: Rhinotermitidae), and the Asian 
subterranean termite (AST), Coptotermes gestroi 
(Wasmann), are now well-established pests in 
urban South Florida. The paper by Hochmair & 
Scheffrahn (2010) illustrates how a Geographic 
Information System (GIS) was utilized to show 
with spatial analysis that these two invasive spe-
cies were introduced through boat traffic. In a 
second example herein, we demonstrate how GIS 
functions together with an agent-based model 
simulate the natural dispersal of an arboreal in-
vasive termite, Nasutitermes corniger (Isoptera: 
Termitidae), in Dania Beach, Florida. The focus 
of this paper is on describing how a GIS can be 
used to run spatial analyses in order to answer 
the aforementioned research questions.

Geographic Information Systems

A GIS comprises an integrated suite of soft-
ware components containing (1) a data manage-
ment system, (2) a mapping system for display 
and interaction with maps, and (3) a spatial anal-
ysis and modeling system (Longley et al. 2011). It 
uses georeferenced data, that is, having unique 
location information, such as postal addresses, or 
point coordinates. Geovisualization is used to ex-
plore, analyze, and present spatial data, however, 
a GIS mapping system also supports on-screen 
digitizing of spatial features on top of background 
maps. Point, line, and polygon object features are 
often displayed over a base map, e.g. a satellite 
image, which can be provided through a Web 
mapping service within the GIS. Geovisualization 
often involves a map projection, which is a pro-
cess that transforms the spherical Earth’s surface 
into a plane (Slocum et al. 2005). The resultant 
map allows use of a Euclidean coordinate system 
with Eastings and Northings instead of geograph-
ic coordinates with longitude and latitude. This 
simplifies the computation of distance, direction, 
and area compared to spherical geometry.

A raster dataset represents geographic fea-
tures by dividing the Earth into discrete square 
or rectangular cells laid out in a grid. Cells, also 
called pixels, are arranged in rows and columns, 
and each cell has a value that is used to represent 
some characteristic of that location. Resampling 
of both background maps and raster datasets in 
general is necessary whenever raster data must 
be transformed to another coordinate grid system 
or the cell size between input and output raster 
changes, like in the case of registering remotely 
sensed data to a ground coordinate system. Dur-
ing this process cell values in the new grid are 
filled with cell values derived from the original 
grid using a resampling technique. Resampling is 
also necessary in the context of map projections. 
Let us assume that a background image (Fig. 1) 
is provided in Albers Equal Area Conic projection 
for North America, as shown to the left. The im-

age has a pixel resolution of approximately one 
meter, and Eastings and Northings are given in 
meters. Let us further assume that the GIS uses 
the Universal Transverse Mercator (UTM) projec-
tion (Zone 17) to display the image together with 
other data layers. For this task, the background 
image needs to be re-projected to UTM. The con-
version between these 2 projected grids is done 
through different sets of equations, where pro-
jected coordinates are converted to geographical 
coordinates. For the output image in UTM pro-
jection, pixel brightness values need to be deter-
mined for each pixel from the input image (Albers 
projection). Since there is no direct one-to-one re-
lationship between pixels of the input and output 
image, the output image often requires a value 
from a location of the input pixel grid that does 
not fall neatly on a cell center. This is illustrated 
in a zoomed portion of the images, shown with a 
highlighted grid cell as an example (lower right 
portion of Fig. 1), where the brightness value of a 
pixel in the pool area is sought (yellow dot). Using 
mapping equations, the point coordinate of that 
cell center in the output image can be converted 
back to the point coordinates in the coordinate 
system of the input image (dashed arrow), giv-
ing the position indicated by the brown dot. Since 
the brown dot in the input image is not on a cell 
center, a mechanism for determining the bright-
ness value from neighboring cells is used. This 
mechanism is called intensity interpolation and 
is the core of resampling techniques (solid arrow). 
Widely used interpolation methods include the 
nearest neighbor interpolation, the bilinear inter-
polation, or the cubic convolution (Jensen 2005).

GIS Analysis

Two conceptual schemas are used to represent 
the Earth, which are (i) discrete object view and 
(ii) continuous-field view. Both schemas have im-
plications on the GIS data models used for GIS 
analysis. In the discrete object view the world 
is empty except where occupied by stationary 
or moving objects with well-defined boundaries, 
including lakes, roads, buildings, or animals. 
While this schema works for many everyday ap-
plications, it becomes difficult to provide defini-
tions for all kinds of objects to be mapped, e.g. 
to distinguish between a hill and a mountain. In 
the discrete object view geographic objects are de-
fined by their dimensionality and represented in 
the GIS as a vector data model. The vector data 
model uses points and their x-, y- coordinates to 
construct polygons (for area-like objects such as 
counties), lines (for linear features such as roads), 
and zero-dimensional points (such as termite-
infested boats). In the continuous-field view, the 
world is described by a number of variables where 
each variable can be measured at every position 
on Earth. This conceptual scheme is realized as 



748 Florida Entomologist 96(3) September 2013

raster data in a GIS, where a surface is overlaid 
with a raster grid that has attributes assigned to 
its cells, such as elevation or land cover class.

The large number of spatial analysis functions 
in a GIS can be divided into (1) analyses based 

on a single location, and (2) analyses based on 
distance between separate places (Longley et al. 
2011). The first group compares different proper-
ties of the same place and calculates relationships 
and correlations between them. For example, this 

Fig. 1. Re-projection of a 1-m resolution aerial image between Albers Equal Area Conic projection and UTM 
projection (Zone 17) using geographic coordinates as an intermediate step. Resampling is used to fill pixel values 
in the output image through pixel values derived from the input image.
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includes the analysis of attribute tables, spatial 
joins, point-in-polygon operations, polygon over-
lays (such as Union and Erase), and raster analy-
sis. The Union operation creates a new layer of 
vector polygons (called coverage) by overlaying 
two input polygon coverages. The resultant cov-
erage contains the combined polygons and attri-
butes of both input coverages. The Erase opera-
tion removes the part inside of the first coverage 
which is covered by the outline of the overlaid 
coverage. The second group of analysis functions 
includes the measurement of distances between 
points, buffering, cluster detection, computation 
of autocorrelation, density estimation, and spa-
tial interpolation. All these methods can be com-
bined into more complex tasks both in the raster 
and vector data model. One example is surface 
analysis, which includes the computation of both 
slope and aspect of a surface grid cell, finding the 
least cost path between two grid cells, delineation 
of watersheds, or determining viewsheds (a view-
shed is an area of land or water that is visible to 
the human eye from a fixed vintage point) based on 
topography. Another example is network analysis 
which includes routing and logistics problems in 
transportation networks, such as optimizing the 
routing of delivery trucks. Observation of social 
insect behavior has allowed computer scientists 
and engineers to improve network based optimi-
zation algorithms, such as the Travelling Sales-
man Problem which consists of finding the short-
est tour between a given set of cities visiting each 
city once only and ending at the starting point. 
This problem has been tackled by the use of arti-
ficial pheromones (with a decay of the pheromone 
concentration over time) that artificial ants use 
to mark travelled paths along completed routes. 
This approach has been adopted from ant colony 
behavior, where ants use pheromones during for-
aging for food to collectively discover the shortest 
path between nest and food source (Bonabeau et 
al. 2000). A GIS provides sampling tools for spa-
tial statistical testing, e.g., generating random 
points within a pre-defined area (de Smith et al. 
2010).

GIS Modeling

A GIS can also be used to create and visual-
ize dynamic simulation models. A simulation 
shows the evolution of the phenomenon of inter-
est through time and may involve multiple sub 
processes. Dynamic modeling allows scientists to 
experiment with policy options and what-if sce-
narios. It also allows them to implement ideas 
about the behavior to the world (Longley et al. 
2011). Typical case study applications include: 
Planning for emergency evacuations, e.g. in the 
case of hurricanes or wildfires; urban growth sce-
narios and its impact on food resources and en-
vironment; assessment of the effect of planning 

policies on deforestation area; modeling competi-
tion for canopy space in forest ecosystems for bet-
ter informed silvicultural prescriptions.

Widely used model types include: (a) analytical 
models, e.g. diffusion-type processes, which use 
differential equations (Holmes et al. 1994); (b) 
agent-based models (ABM) (Judson 1994), a.k.a. 
individual based models (IBM), which study the 
fate and movement of single individuals using 
both physiological and behavioral rules; (c) land-
scape models (Mladenoff 2004), which consider 
each cell as group of individuals; and (d) cellular 
automata models (Ermentrout & Edelstein-Kesh-
et 1993), which represent the surface of the earth 
as a raster where each cell has a fixed number of 
states that change through transition rules based 
on each cell’s neighborhood.

Since these models are usually more complex 
than what is provided through standard GIS 
functionality, they need to be implemented from 
scratch or through customization of existing func-
tions. Customization is the process of modifying 
GIS software through adding new functionality, 
embedding GIS functions to other applications, 
or creating specific-purpose applications (Longley 
et al. 2011). Numerous programming languages, 
such as C, C++, C#, Java, or Python are avail-
able for customizing both desktop GIS software 
and Web GIS applications (Zaragozí et al. 2012; 
Zandbergen 2013). Integrated development en-
vironments (IDEs) combine various software de-
velopment tools, including a visual programming 
language, an editor, and a debugger. To support 
customization, a vendor must expose details on 
the software’s functionality to the developers. A 
key feature of such software components is that 
they have well-defined programming interfaces 
that allow the functionality to be called by pro-
gramming tools in an IDE. One example is ESRI’s 
ArcObjects model and all its functionality which 
can be accessed through any programming lan-
guage that supports the Microsoft Component 
Object Model (COM), such as VB.NET, C#, C++, 
or Java. The R programming language for statis-
tical computing (R Development Core Team 2012) 
has recently improved its spatial functionalities 
and added a package called RPYGeo providing ac-
cess to most of ESRI’s ArcGIS geoprocessing tools 
from within R. Within the ArcGIS software suite, 
customization can also be done with the Model-
Builder. This allows the user to build a customized 
workflow of geoprocessing operations from exist-
ing tools using a graphical interface. The same can 
also be accomplished by using Python scripting. 
Finally, geospatial analyses and a number of im-
age processing tasks can also be carried out using 
either open source software, e.g. R, GRASS GIS, 
SAGA GIS, or GeoDa, or proprietary software, e.g. 
Matlab, SAS, ENVI, or ERDAS. These software 
platforms typically exchange data through com-
mon GIS formats, such as shapefiles or geotiffs.
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materials and metHods

For enhanced clarity, the figures in this report 
are also displayed online in color in supplemen-
tary material for this article in Florida Entomolo-
gist 96(3) (2013) at http://purl.fcla.edu/fcla/ento-
mologist/browse.

Termite Samples

All termite samples used for analysis in the 
two case studies are preserved in 85% ethanol 
and are deposited in the University of Florida ter-
mite collection at the Fort Lauderdale Research and 
Education Center in Davie, Florida. Samples were 
collected by operatives in the pest control industry 
and property owners and submitted to R.H.S. The 
collection database records contain among other 
data the genus and species, geographic latitude and 
longitude of the termite infestation, collection date, 
and collecting conditions. For the analysis of the 
first case study, samples were used with collection 
dates ranging from Apr 1996 to Mar 2009 for AST, 
and from May 1990 to Jul 2008 for FST. For that 
study, termite samples were externally submitted 
for identification and location georeferencing, but 
no additional field surveys were conducted.

For the second case study, collection dates of used 
samples for N. corniger ranged between Jan 2003 
and Feb 2012. From early 2003 until early 2011, a 
previously delineated area was targeted for a de-
liberate eradication campaign of this invasive pest. 
Sample locations were recorded in the field using a 
GPS device and later imported into a database. The 
surveyed area covered around 200 acres (81 ha). 
In 2012, new infestations were found in areas that 
were not surveyed since 2005 due to cancellation of 
project funding, providing some insight into the dy-
namics of natural dispersal.

Case Study 1: Infestation Source Analysis

The first GIS example comes from a study 
that compares the distances between 190 terres-
trial point records for FST (first infestation reported 
1980 in Broward County), 177 records for AST (first 
discovered 1996 in Miami), and random points loca-
tions in the surrounding urban areas to the near-
est marine dockage (Hochmair & Scheffrahn 2010). 
The hypothesis is that both species are significantly 
closer to potential infested boat locations, i.e., ma-
rine docks, than random points in these urban ar-
eas. It is further hypothesized that a larger median 
distance between FST infestations and proximal 
dockage can be observed than for AST.

Using the ArcGIS software suite and as depicted 
in Fig. 2, the two point sets of termite sightings were 
first projected from geographic to UTM coordinates. 
Next, the study region was tessellated (i.e., divided 
into non-overlapping squares), where squares con-
taining a dockage location, assessed through a back-

ground image on the screen, were marked as having 
a dock. Then a random point pattern in urban areas 
was generated. Urban areas as defined by the U.S. 
Census Bureau were utilized. Urban areas can be 
split into two categories, which are Urbanized Area 
(UA) and Urban Cluster (UC) (U.S. Census Bureau 
2002). Only those UA and UC polygons for which at 
least one termite collection was recorded, serve as 
the reference area for the generation of a spatially 
random point pattern. Finally, for each point in both 
termite point sets and the random point set the clos-
est dock location (i.e., the nearest center of a square 
dock polygon) was identified and the straight line 
distance determined. These last 2 steps were ac-
complished through the Spatial Join function in the 
GIS.

Case Study 2: Spread Model

The second case study combines GIS functional-
ity with a computer simulation (Fig. 3) that uses an 
individual based model to predict the dispersal of N. 
corniger. A sample of 189 termite sightings between 
Jan and Apr 2003 in Dania Beach, FL (Tonini 2013) 
was used as the starting point for the simulation 
which was run for 10 yr between 2003 and 2012. 
The simulation algorithm is realized through a set 
of R functions that implement an individual based 
model (IBM) for natural termite dispersal. The 
model considers a variety of biological parameters, 
such as overall survival rates of alates, mean dis-
persal flight distance, age of colony maturity, and 
maximum density of colonies per hectare. Before 
the simulation, ArcGIS was used to determine ar-
eas suitable for the establishment of a new colony. 
A Union overlay operation (Fig. 3A) was applied to 
polygon coverages showing hydrographic features, 
buffered roads, airport runways, and agricultural 
fields, which gave an unsuitable area coverage. By 
means of the Erase operation (Fig. 3B), this cover-
age was converted to a suitable area coverage, which 
was utilized in the simulation (Fig. 3C). While over-
lay functions in ArcGIS provided the suitable area 
polygon layer, a set of R packages (libraries), includ-
ing ‘sp’, ‘spatstat’, ‘rgdal’, and ‘raster’, was used in 
order to carry out further basic geoprocessing op-
erations in preparation for the simulation. These in-
cluded point-in-polygon overlays (to make sure that 
termite colonies do not fall within unsuitable habi-
tat), the creation of a reference simulation grid over 
the study area (to control the maximum density of 
termite colonies), point-to-raster conversions (to 
represent the approximate area covered by one or 
more colonies based on the aforementioned simula-
tion grid), and raster overlays (to count the number 
of times a given pixel was occupied after 100 Monte 
Carlo simulations).

To assess the sensitivity of the model with re-
spect to model parameters, the simulation was 
run with one or two alternative values for each 
parameter, giving a total of 12 alternative model 
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Fig. 2. GIS operations involved in distance analysis of termite collection sites and random points to nearest 
dockage: A) Point coordinate conversion from geographic to UTM coordinates; B) Digitize dock locations and gener-
ate random point pattern in urban areas; C) Determine distance to nearest dockage through Spatial Join function, 
as illustrated for selected termite and random points.
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realizations in addition to the baseline simula-
tion. The uncertainty associated with the outcome 
of a stochastic simulation was estimated through 

the Monte Carlo technique and 100 simulation 
runs. The GIS mapped the simulation result of 
the baseline model for 2012 on a background im-

Fig. 3. Spatial analysis functions supporting termite spread model: A) Union overlay to determine unsuitable 
area; B) Erase operation to identify suitable area; C) Suitable area coverage together with 2003 termite collection 
sites used as input for spread model in R, with mapped model result to the right.
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age provided through a Web service (Fig. 3C), 
illustrating the spread of termite colonies from 
original points of infestation. Yellow, orange, and 
red cells indicate the >0%, >=50%, and 100% oc-
cupancy envelopes, respectively. The 100% occu-
pancy envelope groups areas that are predicted as 
infested by all runs.

Statistical Analysis

Case study 1 resulted in three sets of distanc-
es which are Euclidean (straight line) distances 
to the nearest dockage for FST, AST, and the 
random points, respectively. A one-sample Kol-
mogorov Smirnov test indicated that distances in 
each set were not normally distributed. Therefore 
the non-parametric Mann-Whitney U test was 
used to compare median distances between the 
three distance sets.

Data analysis in case study 2 had two goals. 
The first goal was to validate the model fitness 
by comparing the predicted infested area for 2012 
with actually observed infestation data occurring 
up to 2012. The predicted area was visualized 
through visualization of >0%, >=50%, and 100% 
occupancy envelopes resulting from a Monte 
Carlo simulation. This was visually compared to 
74 new infestation sightings in 2012, all of which 
were found in previously Insecticide-untreated 
areas. The second goal was to conduct a sensitiv-
ity analysis for 12 alternative model realizations 
in addition to the baseline simulation to assess 
the effect of model parameters on predicted in-
fested area. The sensitivity analysis comprises 
relative and absolute growth rates in infested 
area compared to the base line model for a given 
year between 2004 and 2012, and also a compari-
son of total predicted infested area for the differ-
ent years.

results

Case Study 1: Infestation Analysis

Table 1 provides the descriptive statistics for 
distances associated with the 3 point patterns. 
Mann-Whitney U tests showed that the median 
distances to nearest docks associated with AST 
and FST, respectively, were significantly smaller 
than for the random point set (p < 0.0001, 2-tailed 

for AST and FST), indicating that AST and FST 
are significantly closer to potential infested boat 
locations, i.e., marine docks, than random points 
in considered urban areas. A Mann-Whitney U 
test further showed that observed median dis-
tances to nearest docks were significantly smaller 
for AST than for FST (p < 0.0001, 2-tailed). Since 
FST was discovered in Florida about two decades 
before AST, larger median distances for FST than 
for AST can be expected if assuming that these 
two invasive termite species were first establish-
ing near boat dockage, and with later generations, 
colonizing areas further away. In summary, sta-
tistical comparison of median distances provides 
strong evidence that the two exotic termite spe-
cies were introduced and spread by boat in South 
Florida. A more detailed discussion of analysis 
results can be found in (Hochmair & Scheffrahn 
2010).

Case Study 2: Spread Model

To validate the simulation model, the locations 
of newly infested sites from 2012 were compared 
to the occupancy envelopes which are based on 
2003 sample sites as initial infestation points. 
Fig. 4A shows the infested areas predicted by 
the baseline simulation model with in all three 
occupancy envelopes (Tonini 2013). The 100% 
occupancy envelope overlaps well with the 2012 
sighted collection points, while the > 0% and >= 
50% envelopes overestimate termite spread.

Sensitivity analysis (Fig. 4B) found that the 
prediction model was most sensitive to the fol-
lowing parameters: Number of alates generated 
by a colony over the colony’s lifetime, survival 
rate of alates, maximum mating pheromone at-
traction distance, and mean dispersal flight dis-
tance. Only small effects were observed for the 
following parameters: prevalence of male alates 
in the colony, age of first production of alates, 
density of colonies/ha. While the solid line in Fig. 
4B indicates the predicted infested area when 
using a parameter baseline value of 200 m for 
mean flight distance of alates, the dashed lines 
show the effect on the predicted infested area 
when changing this parameter to 100 m and 300 
m (Tonini 2013). The results of this stochastic 
individual-based simulation model provide a 
means for regulatory agencies to anticipate pos-
sible areas of infestation. It must be noted that 

table 1. distance oF land-based inFestations oF Coptotermes gestroi and Coptotermes formosanus to 
nearest marine docks (in meters).

AST  (C. gestroi) FST  (C. formosanus) Random

Mean 709 2719 7914
Standard deviation 849 3882 6173
Median 405 1382 6796
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it is crucial to calibrate model parameters if the 
spread of other species is modeled, and that the 
current model does not take into account anthro-
pogenic dispersal.

summary

A Geographic Information System (GIS) is a 
useful tool in various stages of analyzing the in-
festation and spread of invasive termites. The 2 
examples herein illustrate how mapping and spa-
tial analysis operations in the GIS, including map 
projection, on-screen digitizing, spatial join, and 
overlay functions, facilitate analysis in concert 
with external statistical software packages. Due to 
continued advances in spatial analysis, improved 
customization capabilities of GIS functions, and 
steadily increasing computer processing power, 
the role of GIS for spatial analysis of invasive pests 
is likely to increase further in the near future.
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